
AIPS 2002

Sixth International conference
on

Artificial Intelligence Planning and Scheduling (AIPS2002)

Workshop on Knowledge Engineering Tools and Techniques for AI Planning

Toulouse, France

24 April 2002

http://scom.hud.ac.uk/planet/aips02kett/programme.html

Workshop Chair

Lee McCluskey, University of Huddersfield

Working Notes for distribution to workshop attendees only.

Event Sponsors:

CONTENTS PAGE

1. Knowledge Engineering: Issues for the AI Planning Community
Lee McCluskey

2. Supporting the Domain Expert in Planning Domain Construction

Rith Aylett and Chris Doniat

3. Generic Types as Design Patterns for Planning Domain Models
Ron Simpson, Lee McCluskey, Derek Long, Maria Fox

4. Integrated Modelling: When time and resources play a role

Roman Bartak

5. Extending TIM Domain Analysis to handle ADL Constructs
Stephen Cresswell, Maria Fox, Derek Long

6. Reuse of Control Knowledge in Planning Domains

Luke Murray

7. A First Approach to Tackling Planning Problems with Neural Networks
S. Fernandez, I.M. Galvan, Ricardo Aler

8. Design of a Testbed for Planning Systems

Klaus Varrentrapp, Ulrich Scholz, Patrick Duchstein

9. Profitable Directions for AI Planning Research
Perter Jarvis

Knowledge Engineering:
Issues for the Planning Community

T. L. McCluskey
School of Computing and Mathematics,

University of Huddersfield, UK
email: lee@zeus.hud.ac.uk

Abstract

Knowledge engineering for AI planning is the process
that deals with the acquisition, validation and main-
tenance of planning domain models, and the selection
and optimization of appropriate planning machinery to
work on them. Evidence from the growing body of ex-
perience in applying planning technology suggests that
knowledge engineering issues are crucial to an applica-
tion’s success. The Knowledge Engineering Technical
Co-ordination Unit of PLANET1 has been active for
several years now in carrying out workshops and spon-
soring cross-site visits on the subject. Here I briefly
summarise some of the material in our roadmap doc-
ument(McCluskey et al. 2000), selecting some of the
important research questions from it, and introduce the
papers that are to be presented in this workshop.

Introduction

Knowledge Engineering (KE) for AI Planning is the
process that deals with the acquisition, validation and
maintenance of planning domain models, and the selec-
tion and optimization of appropriate planning machin-
ery to work on them. Hence, knowledge engineering
processes support the planning process - they comprise
all of the off-line, knowledge-based aspects of planning
that are to do with the application being built.

KE issues have to be engaged by our community if
we are to get non-AI Planning people to use our tech-
nology. These issues are recognised as a major prob-
lem in the application of planning systems. Experience
with planners adapted for aerospace and military appli-
cations (Wilkins 1999; Tate, Drabble, & Dalton 1996;
Muscettola et al. 1998) has pointed to KE aspects as
being those most in need of attention.

In the field of Knowledge-based Systems, from
whence the term ‘Knowledge Engineering’ originates,
the need for modelling knowledge at the conceptual
level has long been accepted in the development of KBS
methodologies. Specifying components and their inter-
faces at the knowledge rather than implementational
level leads to the kind of abstractions that facilitates in-
teroperability and re-use. The knowledge-level principle

1The EU-funded Network of Excellence in Planning

of Alan Newell (Newell 1982) influenced and directed
much KBS work into this direction. Hence the pursuit
of KE within planning may be seen as a special case
of KE within the general knowledge-based system field.
It may prove useful to derive methods and adapt tools
from KBS, as the work of Tate et al (Tate, Polyak, &
Jarvis 1998) has attempted. There are peculiarities of
planning that clearly distinguish engineering planning
knowledge from general expert knowledge:
• the ultimate use of the planning domain model is to

be part of a system involved in the ‘synthetic’ task of
plan construction. This makes it very specific in the
world of KBS, where many successful systems are, in
contrast, aimed at solving diagnostic or classification
problems.

• the knowledge elicited in planning is largely knowl-
edge about actions and how objects are effected by
actions. This knowledge has to be adequate in con-
tent (and ultimately in form) to allow efficient auto-
mated reasoning and plan construction.

In branches of requirements capture in software engi-
neering knowledge is elicited about processes or actions
in the domain of interest, similar to that in Planning.
Very expressive and formal languages and development
environments have been introduced for this purpose. In
software engineering however, the purpose of this cap-
ture in very different - it is to help in the analysis and
understanding of a system, and to be used in the cre-
ation and validation of a new system model.

Despite the peculiarities mentioned above, it seems
fruitful to pursue research and developments in KE
for planning in the context of related developments in
KBS and software requirements engineering. In par-
ticular, it is appears inevitable that research in AI
Planning must adopt multi-disciplinary approaches to
knowledge-based planning.

The Growth of Tool Support
Not too many years ago tools for planning domain ac-
quisition and validation amounted to little more than
syntax checkers. ‘Debugging’ a planning application
would naturally be linked to bug finding through dy-
namic testing. The two pioneering KBS planners O-

1

Plan and SIPE have of course, by necessity, developed
methods and tool support. The O-Plan system has for
example its ‘Common Process Editor’ (Tate, Polyak,
& Jarvis 1998) and SIPE has its Act Editor (Myers &
Wilkins 1997). These visualisation environments arose
because of the obvious need in knowledge intensive ap-
plications of planning to assist the engineering process.
They are quite specific, however, having been designed
to help overcome problems encountered with domain
construction in previous applications of these planning
systems.

One of the earliest types of tool support for AI Plan-
ning grew from research into Machine Learning (ML).
From an ML point of view, siting a learning mechanism
with a clean, classical planner led to an attractive way
to evaluate the automated learning algorithms. Hence
ML tools for planning have received considerable at-
tention over the last 20 years. For example, tools have
been built to induce operator descriptions from traces
of actions, and to acquire or tune heuristics in the form
of macro-operators, state evaluation functions and goal
orders.

More recently interest has grown in the area of do-
main analysers. These tools process a domain model
with the goal of making explicit useful information, and
they may be embedded in an online planner or be stand-
alone. In the latter case, they can function as part
of a modelling environment, helping a user to perform
static validation on an acquired model. For example,
tools may: check that a planning operator is consis-
tent (e.g. it never inputs a valid state and outputs an
invalid state); reason with operators and output state
invariants to be visually checked by a user; or output
necessary goal orderings, to check for impossible goal
combinations. Also, domain analysis tools can help in
the acquisition of heuristics that customise a general
planning engine to an application, or more importantly
to identify the kind of planner appropriate for solve
problems within the application domain.

A further step is to produce tools environments for
acquiring, modelling and prototyping planning applica-
tions in such a way that the tools are integrated and
the environment is open. An open environment means
that users can attach their own tools which integrate
with the other tools. Research into and the develop-
ment of such an environment for classical AI planning
was one of the goals of the PLANFORM project (Plan-
form 1999). GIPO, an outcome of this project, is a GUI
designed to integrate tools in support of knowledge en-
gineering for AI planning. GIPO is purely a ‘labora-
tory’ system aimed as a testbed for knowledge acqui-
sition techniques and planning tool integration. Users
can attach their planners to GIPO via a PDDL (AIPS-
98 Planning Competition Committee 1998) interface,
but other more knowledge-rich interfaces are yet to be
developed. Truly open environments are essential for
the development of planning technology, but this re-
quires a level of standardisation not yet present in the
community.

Representation Languages and
Standardisation

Both to help the Planning field mature, and to help
engineers apply and integrate the technology, represen-
tation language conventions should be sought. This has
been achieved in a very limited way with PDDL, a com-
munity accepted standard for communicating minimal
dynamical models of a domain. PDDL has been a low-
est common denominator for planning systems running
under many of the classical STRIPS-assumptions, al-
lowing sets of domain models to be distributed and
certain classes of planning engines to be compared in
competitions. There is a need to exchange and to some
degree standardise much more than bare domain dy-
namics - for example, domain structures and heuristics.
Specifically, it would be useful to share and exchange
generic object structures that could be re-used over a
range of applications. More generally, creating a plan-
ning knowledge base without re-use seems at best ineffi-
cient. There is some work emerging on planning ontolo-
gies (for example see (Gill & Blythe 2000)) but there is
still a long way to go.

When considering standard representations one must
consider the function and content of the representation
itself. For example, in contrast to domain specification
languages, there have been attempts at creating stan-
dard languages for plan specifications - notably the work
surrounding the creation of SPAR (Tate 1998). Another
class of representation language, which concerns knowl-
edge engineers in particular, is one in which languages
are specifically designed with pragmatic features that
help the process of domain acquisition and modelling.
Our roadmap (McCluskey et al. 2000) postulates cri-
teria for such languages, asserting that they should be
well structured, tool supported, expressive, customiz-
able, well founded, and finally, embedded within a mod-
elling method. Languages that have been developed
from the point of view of knowledge acquisition, and ful-
fill some of these criteria, include DDL.1 (Cesta & Oddi
1996), Act (Myers & Wilkins 1997), TF (Tate, Polyak,
& Jarvis 1998) and OCLh (McCluskey & Kitchin 1998).

A Note about Terminology
Research papers that concern KE in planning often ap-
pears to use inconsistent, confusing or imprecise ter-
minology. I will choose a simple but pervasive exam-
ple to illustrate the point. In this volume of papers
phrases such as ‘domain description’, ‘domain specifi-
cation’, ‘domain definition’, ‘domain model’, ’domain
theory’ and simply ‘domain’ are used. Firstly, a dis-
tinction: let the domain denote the reality being mod-
elled within the corresponding planning system. Let
any form of symbols representing parts of the domain
be called a domain description – for example a doc-
ument containing natural language describing the do-
main. Domain description is the most vague term of
the set.

The term domain specification is less vague than a

2

description. It implies something that is finished, and
something that can be reasoned with. In other words,
we expect a domain specification to be complete and
precise, and often formal in the sense that valid infer-
ences can be made using it, about the domain itself. Of
course most specifications fail in these aspects!

The term domain model implies that we have a rep-
resentation that can be used to perform operations in
the same manner that occur in the domain; and that
there is a well-known operational semantics for con-
structs in the model. Further, the term ‘model’ im-
plies that named objects within it correspond directly
to named objects in the domain, and there is an obli-
gation on the developer to check that the model accu-
rately predicts changes in the domain. I would argue
that the traditional operator-based domain descriptions
fall exactly into this last case - they are domain mod-
els. In software engineering there is a divide between
implicit or property-based formal specifications on the
one hand, and executable formal specifications on the
other. While the former might state properties of the
domain, it may or may not contain operational details.
Hence, a domain model is rather like the idea of an ex-
ecutable specification in software engineering.

In summary, we call the outside reality the Domain;
the Domain Description is any set of documents about
the Domain, possibly in natural language; the Domain
Specification is an abstract, formalised account of the
Domain; and the Domain Model is a Domain Specifica-
tion which is in an operational form, containing explicit
details of domain dynamics, and suitable for processing
by a planning engine.

Issues for the Planning Community
Planet’s KE Roadmap (McCluskey et al. 2000) lists
a number of concerns and research challenges for the
future in the area. Here I list several but expect that
many more will arise as a result of the workshop.
evaluation of knowledge engineering methods:

How do we evaluate knowledge engineering methods,
tools and techniques? Case studies and controlled
experiments are very expensive compared to evalua-
tion of a planner against a set of benchmarks. Is the
introduction of challenges or competitions feasible or
desirable to promote this area?

improved representation languages: Pragmatic
aspects of programming languages (objects, types,
modules) are very well developed to help one to
program. On the other hand, it can be argued
that PDDL is at the level of a ‘machine code’
for domain description. What kind of standard,
pragmatic structures are needed in domain modelling
languages?

further standardisation: There are many reasons
why standardisation can help advance a field - one
in particular is to help us develop components of
a planning system flexibly. Should we be devel-
oping languages for standardising the exchange of

heuristics, and other planning - related knowledge?
Given the potential for applying planning technology
through the internet, should we not be developing
web-friendly ‘semantic’ mark-up languages for this
purpose?

ontologies: Given the emphasis on Ontologies in
Knowledge-based Systems, should we be developing
Planning Ontologies, and if so, in what form? The
availability of libraries of components from which to
assemble planning knowledge bases and planning sys-
tems seems very desirable (Gill & Blythe 2000), but
how do we go about funding and evaluating this
work? Hertzberg in the last section of reference
(Hertzberg 1996) declares that there is a lack of a
‘vocabulary for describing the characteristics of do-
mains, plans . . . ’. In the context of Knowledge En-
gineering, the pursuit of such a classification system
and/or vocabulary is still on the to-do list, and well
worthy of action.

The Workshop Papers
Aylett and Doniat tackle the very difficult area of
knowledge acquisition for planning, using an approach
inspired by the KBS community. Their focus is on help-
ing a domain expert rather than a planning expert per-
form such a task. The aim of Simpson et al’s work is
also knowledge acquisition, but at a more detailed spe-
cific level where libraries of generic types could be used
to aid the acquisition of new domains. Murray’s paper
too concerns generic types, but rather than for domain
structure, he attempts to use them as abstract control
rules that could form a generic control rule library.

The papers by Cresswell et al and Varrentrapp et al
both concern support tools. The first deals with a much
needed extension to an existing domain analyser, while
the second postulates an open environment specifically
for evaluating planners using dynamic testing.

The work of Fernandez et al falls into the category of
using learning techniques to tune planning heuristics.
Of note is their use of a Neural Network as the learning
technique, resulting in interesting coding issues center-
ing on the representation of states and goals as inputs
to such a network.

Bartak’s paper is ambitious in that it proposes the
creation of a modelling framework which spans both
planning and scheduling, and which regards resources
and activities with durations as fundamental. Influ-
enced by scheduling applications, Bartak’s work pro-
vides a good counterpoint to emerging modelling plat-
forms aimed at AI planning.

Finally, Jarvis’s paper calls for a change in AI Plan-
ning’s research direction away from the easily evaluated
‘stand-alone’ knowledge sparse planner (of the AIPS
competition variety), to the more embedded, mixed-
initiative expressive kind. He introduces the idea of
‘computer aided planning’ rather than ‘computer re-
placed planning’ and argues most convincingly that this
is both a more feasible and useful direction for main-

3

stream planning research. Perhaps the AI Planning
Community will split up along these lines, with a gap
emerging between AI scientists, interested in planning
capabilities per se, and AI Planning engineers, inter-
ested in exploiting the technology. These issues will no
doubt be discussed at the Panel session!

References
AIPS-98 Planning Competition Committee. 1998.
PDDL - The Planning Domain Definition Language.
Technical Report CVC TR-98-003/DCS TR-1165,
Yale Center for Computational Vision and Control.
Cesta, A., and Oddi, A. 1996. DDL.1: A Formal
Description of a Constraint Representation Language
for Physical Domains. In Ghallab, M., and Milani,
A., eds., New Directions in AI Planning. IOS Press.
341–352.
Gill, Y., and Blythe, J. 2000. PLANET: a shareable
and reusable ontology for representing plans. In Pro-
ceedings 17th International Conference on AI.
Hertzberg, J. 1996. On Building a Planning Tool Box.
In Ghallab, M., and Milani, A., eds., New Directions
in AI Planning. IOS Press. 3–18.
McCluskey, T. L., and Kitchin, D. E. 1998. A Tool-
Supported Approach to Engineering HTN Planning
Models. In Proceedings of 10th IEEE International
Conference on Tools with Artificial Intelligence.
McCluskey, T. L.; Aler, R.; Borrajo, D.; Haslum,
P.; Jarvis, P.; and Scholz, U. 2000. Knowl-
edge Engineering for Planning ROADMAP.
http://scom.hud.ac.uk/planet/.
Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams,
B. C. 1998. Remote Agent: To Boldly Go Where
No AI System Has Gone Before. Artificial Intelligence
103(1-2):5–48.
Myers, K., and Wilkins, D. 1997. The Act-Editor
User’s Guide: A Manual for Version2.2. SRI Interna-
tional, Artificial Intelligence Center.
Newell, A. 1982. The Knowledge Level. Artificial
Intelligence 18:87 – 127.
Planform. 1999. An open environment for building
planners. http://scom.hud.ac.uk/planform.
Tate, A.; Drabble, B.; and Dalton, J. 1996. O-Plan:
a Knowledged-Based Planner and its Application to
Logistics. AIAI, University of Edinburgh.
Tate, A.; Polyak, S. T.; and Jarvis, P. 1998. TF
Method: An Initial Framework for Modelling and
Analysing Planning Domains. Technical report, Uni-
versity of Edinburgh.
Tate, A. 1998. Roots of spar - shared planning and
activity representation. Knowledge Engieering Review
13:121 – 128.
Wilkins, D. 1999. Using the SIPE-2 Planning System:
A Manual for SIPE-2, Version5.0. SRI International,
Artificial Intelligence Center.

4

Supporting the Domain expert in planning domain construction

Ruth Aylett, Christophe Doniat

University of Salford
Centre for Virtual Environments

Business House
Salford M5 4WT

Fax: +(00 44) (0) 161 295 2925
r.s.aylett @salford.ac.uk; m.soleil@wanadoo.fr

Abstract
This paper discusses work aimed at allowing domain experts
to generate a domain model for an AI planning system as
part of a larger project to build an integrated set of tools for
supporting AI planning. It outlines the overall methodology
and discusses the tool in which this is embodied. A Domain
model is generated in which can be represented by cluster of
constraints shaping an Ontology of each studied case.
Progress has been made towards automatic conversion into
the modelling language OCL and integration with the OCL
tool GIPO. We illustrate the methodology by applying it in
two examples of planning

Introduction and motivation

The effort required to construct a domain model for an AI
planning system has long been recognised as a major
barrier to the take-up of this technology outside the AI
planning community. The PLANFORM project, which is
supported by the UK Engineering and Physical Sciences
Research Council, involves researchers collaborating
between the Universities of Huddersfield, Salford and
Durham [Planform 99] who are tackling this problem. Its
aim is to research, develop and evaluate a method and
supporting high level research platform for the systematic
construction of planner domain models and abstract
specifications of planning algorithms, and their automated
synthesis into sound, efficient programs that generate and
execute plans. Figure 1 shows the high-level architecture of

the PLANFORM system.
Within Planform, the domain model is represented in the

language OCL [McCluskey & Porteous 97, Liu &
McCluskey 99] which supports validation and checking
tools as well as translation to other formalisms such as
PDDL [McDermott et al 98]. The toolset GIPO [Simpson
et al 01] has been produced to help in the iterative
construction and validation of this model. However GIPO
still currently requires too much specialist knowledge of
OCCL and of AI planning in general to be a suitable
interface for a domain expert – one who understands the
domain in which planning is to take place but lacks any
specific expertise in AI planning. The KA-Tool discussed
here is aimed at such domain experts.
The problem of supporting knowledge acquisition directly
from the domain expert, without the intervention of a
knowledge engineer, has been discussed in the field of
Knowledge-Based Systems (KBS) for many years [Musen
98,Valente 93]. A consensus has been reached that this
may be feasible where a skeletal domain model can be
provided to guide the knowledge acquisition process and
both the skeleton model and the process itself can be
defined through a methodology embodied in the
knowledge acquisition tool [Musen 98]. The key
components of the skeleton model are seen as domain
ontologies combined with domain-independent problem-
solving methods which have often been thought of as
generic tasks. The best-known – but far from the only –

Figure 1: Planform architecture

5

mailto:@salford.ac.uk;
mailto:m.soleil@wanadoo.fr

example of a methodology is Common KADS [Breuker &
Wielinger 89, Shrieber et al 94], which provides libraries
of configurable problem-solving components together with
stereotypical configurations which can be thought of as
corresponding to types of abstract problem-solving tasks
such as diagnosis by heuristic classification or
interpretation.

It is noticeable that AI Planning has rarely been
considered as part of this research (see Valente 93 for a
rare exception). While in theory planning could be
considered as one or more generic tasks, in practice the
Knowledge Engineering community has concentrated on
other generic tasks – diagnosis in particular [Benjamins 93]
– while AI Planning researchers have hardly been involved
at all, tending to concentrate on the development of
planning algorithms.

The approach discussed here draws on this work in the
KBS community, and sees the combination of ontologies,
logics and generic problem-solving methods as a way of
addressing knowledge acquisition for planning [Musen 98].
It supports the capture and structuring of relevant
knowledge about a domain and its intelligent behaviours
[Hayes-Roth & Hayes-Roth 90] because they play an
important role in the choice of an appropriate problem-
solving method, possibly configured from complex
components stored in a library [Valente 93].

Knowledge Acquisition Process
Since the tool being constructed automates a knowledge
acquisition (KA) process, first it is necessary to model the
process itself. The KA process is shown in Figure 2,
embodying two different extraction/refinement processes.

The first of these (bottom - right) moves from protocol to
problem specification . By protocol we mean raw domain
knowledge - transcripts, documents, interviews,
observations1. A protocol is created by a problem-solving
episode, where the expert is provided with an AI Planning
problem, of a kind that they normally deal with, and are

1 We will used the term ‘transcript’ in the next paragraphs
to mean a combination of transcripts, documents,
interviews, observations as a whole.

asked to solve it. As they do so, they are required to
describe each step, and their reasons for doing what they
do. The transcript of their verbal and/or text account is, in
this case, called a protocol . By problem specification we
mean a definition or description of an application domain
represented as a set of choices at a particular level of
abstraction in an ontological hierarchy. Thus 'Entertaining
a foreign visitor' and ‘Drumstore’, the domains used for the
experiments reported later, are problem specifications.

The second extraction/refinement process moves from
problem specification (middle - right) to conceptualisation
(top – right). By conceptualisation , we mean a stable and
restricted formal representation (concepts, relationships
and objects) with defined structure and behaviour2. Clearly
movement between these levels is iterative rather than
linear.

The conceptual model (top - left) is represented using a
hierarchical frame system because this allows easy
representation of inheritance between sorts (the
relationship kind-of) and/or aggregation between sorts (the
relationship part-of) for instance. Translation into a sorted
first-order logic such as that used by OCL is
straightforward. Frames have an advantage over a first-
order logic in that both structure and behaviour can be
embodied in one generic entity.

An ontology is defined [Gruber 93] as a rigorous
specification of a set of specialised vocabulary terms
sufficient to describe and reason about the range of
situations of interest in a particular domain - a conceptual
representation of the domain entities, events, and
relationships. Two primary relationships of interest are
abstraction (kind-of) and composition (part-of). Thus an
ontology provides a grounding of the key concepts within a
domain. In principle we need both an ontology of planning
problem domains and of planning software to carry out
knowledge acquisition since the premise is that the
conceptual framework of the problem domain is not the
same as that of the planning software – otherwise there
would be no problem for the domain expert.

2 Note here that this is a basic definition of behaviour only.
Complex behaviours are not covered in this present work.

Figure 2. Knowledge acquisition process1.

6

A Domain dictionary (middle of figure) is a partial
ontology - using the experimental approach, it is hard to
make an exhaustive analysis of all domain objects.
Nevertheless, the problem specification can be used to
define relevant objects and relationships, using
macroscopic properties that support appropriate choices.
Broadly, the Domain Dictionary is associated with (i) a
particular domain, (ii) specification of a problem or
problems that we want to solve, (iii) the reasoning that
belongs to the studied domain and allows the specified
problem to be solved.

Overview of PLANFORM-KA Tool architecture
Figure 3 shows the main architecture of the PLANFORM-
KA tool – an intelligent system that contains the KA
process. The user applies the module of domain model
building to a particular problem specification . The building
of a new conceptual model might be carried out with or
without an existing problem specification from the Domain
model library . The result is recorded in this library. On the
right-hand side, the overall knowledge base consists of the
conceptual model of the knowledge acquisition process
itself, called PLANFORM-KA and the KA-Expertise
belonging to the particular conceptual model being
constructed.

Case studies and methodology

In this section, we present two case studies created with
our methodology, using the problem specifications: (i)
‘EVentus: Entertaining a foreign visitor to your lab at the

weekend’ and (ii) ‘Drumstore: a logistics problem in a
nuclear waste factory’. We conducted these experiments,
respectively with ten people and six people who verbalised
their knowledge about how they would solve this problem
during interviews. We chose EVentus because (i) people
knew about it (drew on general rather than specialised
knowledge) and it was not difficult to capture it, (ii) it was
an example of a planning domain. Drumstore was chosen
because it had already been implemented as an AI planning
domain within the group. The interviews contained the
unstructured knowledge (discourse) and sometimes some
notes such as graphics, plans and other material describing
knowledge and activity (explicitly/implicitly) both about
the case studies and the KA process itself.

It is important to understand the level of abstraction at
which such a sample problem must work. The
PLANFORM toolkit as a whole will be used to create a
domain model within which a number of specific tasks can
be planned. Thus the experiment does not start with a
specific task, but with the generic problem specification.
Subjects were asked to explore the generic domain model
that would be needed to plan within the domain of the
problem specification and to support the solving of a
number of specific tasks. Note that a more abstract version
of this problem would be to replace ‘your lab’ with ‘a lab’
where this might be anywhere in the world potentially. An
instance of a specific task would be something like
‘Professor Stein from GMD Germany is to be entertained
on Saturday May 9

th
’.

Figure 3: Architecture of the KA-Tool

7

Building of a domain dictionary
The first extraction phase gives us a domain dictionary
(Table 1) that puts together a set of terms according to the
problem specification.

Drumstore EVentus

 Robot
 Thing
 Gripper
 Object
 Relation
 Reference

 Thing
 Activity
 Context
 Visitor
 Capability

Table 1. Domain dictionary

Next, we built a set of scenarios with the shared
knowledge of these domain experts to find out how each
expert defines reasoning strategies to solve the problem
specification. We used a part of the KOD (Knowledge
Oriented Design) [Vogel 88] method to obtain an accurate
process for knowledge acquisition and to build the
conceptual model through the set of examples and
scenarios (see section 2.2). Table 2 and 3 show the number
of instances of each term in each scenario. We will call
these outcomes instance coverage.

Drumstore Terms
1

R T G O Rel Ref
1
2
3
4
5
6
7
8

5
10
20
10
5
6
8
7

1
2
5
3
1
1
1
1

3
2
5
3
4
3
5
4

7
5
12
5
7
13
7
11

2
2
1
1
2
2
2
2

3
3
3
3
2
2
3
2

Table 2.Instance coverage of Drumstore.

1 Each Drumstore scenario is designed through the six
terms as follows: Robot (R), Thing (T), Gripper (G),
Object (O), Relation (Rel) and Reference (Ref).

EVentus Terms
2

T A C V Ca
1
2
3
4
5

9
5
8
5
13

4
6
7
5
7

1
1
2
3
1

1
1
2
1
2

3
2
2
4
6

Table 3.Instance coverage of EVentus.

This shows that knowledge about this particular
specification varies between domain experts giving
different number of examples of each term. This coverage
gives us an idea of experts’ practice so as to build the
interface of the future intelligent system.

Building of conceptual/epistemological model
The second extraction gives us first a conceptual model,
i.e.semantic relationships, objects and actions. Then the
model is completed with a epistemological model, i.e., the
definition of concepts, its hierarchy and structuring
relationships (behaviours). A domain model is thus defined
by these representations in our methodology by using a
frame system as in Figure 4.
Drumstore relies on the nine following generic

concepts: Thing is a root of the domain model and
describes two mobile things: Robot and Object. Robot
depicts a real robot, which can navigate and has equipment
– Gripper – to bring and carry some Object according
to a Relation/Reference address pair (e.g.
(Object,at,beacon1)). Primitives depict a set
of generic concepts like Drum (Object), At, Near
(Relation) and Beacon (Reference). Substate
and Transition depict respectively the conditions in
which Robot does some tasks and the state of each task
when it has taken place.
. EVentus contains the nine following generic concepts:
Visitor is a locus of the domain model and describes a

2 Each EVentus scenario is designed through the four terms
as follows: Thing (T), Activities (A), Context (C), Visitor
(V) and Capability (Ca).

Figure 4. Frame systems of Drumstore and EVentus

8

real visitor according to her/his real capacities, which are
depicted by Capacity. Activity and Context
describe behaviours of a visitor, Plan describes a set of
alternative plans used by a visitor. Thing describes
Places and Events used during the activity. Finally,
Primitives depicts a set of generic concepts like a
restaurant, a town (place) or an exhibition (event).

Summary
A KA process has been carried out to capture knowledge
and build two domain models for particular problem
specifications through two case studies: Drumstore and
EVentus. The generic concept Thing is defined in both
domain models with different semantics. In Drumstore,
this concept represents an abstraction of mobiles but in
EVentus, it represents an abstraction of locations.

Categories Drumstore EVentus

Agent

Object

Task

Thing

Position

Substate
Transition

Visitor

Thing

Context
Activity
Plan

Table 4. Abstraction similarity undependable the level
between Drumstore and EVentus.

Table 4 shows the similarity between Drumstore and
EVentus concepts using three main categories: Agent,
Object and Task as a skeleton ontology for planning
domains [9]. Note that the Task category is divided into
two semantic sub-categories: (i) the Drumstore task is
state-based and the EVentus task is action-based . This
represents a first step towards an epistemological model.

An Intelligent system: PLANFORM-KA

In this section we discuss the Planform-KA tool in more
detail – see Figure 5 for its conceptual model. As outlined
above, the process component of the tool can be
decomposed into a set of refinement processes – called
phases – carried out by the domain expert according to an
expertise . We envisage supporting it with a generic
ontology like the Upper Cyc Ontology [Upper Cyc]
(though in this work we have constructed a small ontology
ourselves) to start instance collection .

This Ontology provides a sufficient common grounding
for applications. Some concepts such as Actor or Plan
are already supplied as generic definitions, which should
help the domain expert . It also includes definitions of
Object and Agent categories (as in the Summary above)
and possibly a fragmentary definition of the Task
category. That is the case for Drumstore for instance
where there are State and Transition generic
concepts as parts of OCL.

Conceptual model of PLANFORM-KA
Its conceptual model (Figure 5 above) relies on several
interrelated generic concepts. The domain expert
generic concept depicts the subject acquiring the
knowledge model, the KA-expertise generic concept
features the knowledge required to build the knowledge,
the KA-Process generic concept describes the behaviour
carried out by the domain expert. The KOD method was
again used to elaborate a frame system.

Frame representations for Domain expert, KA-
Expertise and KA-Process
For reasons of space we illustrate only a subset of the
frame representations for these concepts.

Figure 5. The PLANFORM-
KA conceptual model.

9

Domain expert
We consider the domain expert (DE) as the cognitive agent
carrying out the process of knowledge acquisition. DE has
a mental model of the real world expressed in concepts.
The domain expert generic concept represents the
properties of this agent in relation to the carrying out of the
KA-Process and is central to the overall conceptual model
since there are composition relationships with concepts
KA-Process and KA-expertise

KA-Expertise
The KA-Expertise generic concept represents the
memory of our domain expert . This holds three knowledge
categories: transcripts from a case study, and the related
domain dictionary and domain model.

The Transcript generic concept represents the
properties of documents such as free-text or graphics
collected in a case study. The Domain dictionary
generic concept represents the properties of a domain
specification expressed as a set of choices – terms –
themselves organised into a set of scenarios (Figure 6).

DOMAIN DICTIONARY Frame and its slots Arity

Kind-of value KA-EXPERTISE

Name domain STRING
 If-add
<TERM,createinstance(),($term)>

Term domain TERM
 If-add <EXAMPLE,create-
instance(),($example)>

Scenario domain SCENARIO
1

(1)
(1,1)

(1)
(1,1)

 (1)
(1,n)

(1)
(1,n)

Figure 6. DOMAIN DICTIONARY Frame definition.

The Domain model generic concept depicts the
properties of a conceptualisation as a set of
conceptual/epistemological and logical representation
levels (Figure 7).

DOMAIN MODEL Frame and its slots Arity

Kind-of value CONCEPT

Name domain STRING
 If-add <CONCEPTUAL_MODEL,create-
instance(),($Conceptual_level)>

Conceptual_level value CONCEPTUAL_MODEL
 If-add <LOGICAL_MODEL,create-
instance(),($Logical_level)>

Logical_level domain LOGICAL_MODEL

(1)
(1,1)

(1)
(1,1)
 (1)

(1,1)

(1)
(1,1)

Figure 7. DOMAIN MODEL Frame definition.

1 Each scenario will spead through the relationship with the
instances of examples.

KA-Process
The KA-Process generic concept represents the process
which drives knowledge acquisition and refinement phases.
The KA process starts with an instance collection phase,
i.e. the explaining of each term by providing examples of
it. For example, Drum and Robot, two terms of the terms
in Drumstore, contain the following instances:
Drum D12 is radioactive
Drum D12 is at beacon B14
Robot R3 navigates from location S3
towards beacon B14

Robot R3 docks at beacon B14
Robot R2 grabs from beacon B15 drum D12
This phase continues until the expert provides instances

for each newly defined term. The process then continues
with a creation of scenarios (scenariosation) phase, the
description of several scenarios – particular problems to be
solved – within the scope of the given global goal (for
example: entertaining a foreign visitor; a logistic problem
in a nuclear waste factory) using the previously defined
instances.

Each scenario belongs to one expert or a group of
experts. Finally, a scenario can be seen as a set of facts
(predicates), which will be used to define some properties,
constraints, plan and goal states samples at the conceptual
level. The outcome is a terminology, i.e. a set of terms and
a set of scenarios. The built-in ontology is used to prompt
the expert during this phase.

This bottom-up approach has also been supplemented by
a top-down approach in which the ontological categories
agent, object and action, [Aylett & Jones 96] are
used to drive a question cycle in which new terms are
extracted from the expert. Questions move between the
categories, so that if the expert provides an agent term
(for example robot), they are then prompted for actions
carried out by that agent and objects involved in the action.

At the conceptual/epistemological level, first of all, the
process automatically carries out a translation phase into
the frame-based representation, so that each defined term
becomes a frame. Next, the domain expert defines by hand,
or through the agent-object-action question cycle, the
properties of each frame. For example, the term Robot
becomes the Robot frame and belongs to the Concept2

superframe..
Following the same process, we defined the Visitor

frame – from EVentus – as seen below. The
CAPABILITY frame depicts the properties of natural
abilities and skills that make the visitor able to do some
activities. A visitor could have either at least seven {Status,
gender, age, budget, type, quality, nationality} or several
further capabilities such as {like to try new things,
accompanying other people, swim, has a budget, other}.

2 SuperFrame CONCEPT is the generic frame, which is the
root/father of all frames in the frame system.

10

VISITOR Frame and its
slots

Relationship
type

Arity

 Kind-of value AGENT Kind-of (frame-
frame)
Inheritance
(frame–frame)

(1)
(1,1)

 Name domain String =
{Fred,Group B,other}

 If-add
<VISITOR,create-
instance(),($group)>
 If-add<PLAN,create-
instance(),($pref-to-
do)>
 If-add
<CAPABILITY,create-
instance(),($capability
)>

Has-a
(frame–attribut
e)
Is-a
(frame–instance
)
(Behaviour)
(Behaviour)
(Behaviour)

(1)
(1,1)

 Group domain VISITOR Part-of
(frame–frame)

(1)
(0,n)

 Pref-to-do domain PLAN Part-of
(frame–frame)

(1)
(1,n)

 Capability domain
CAPABILITY

Part-of
(frame–frame)

(1)
(7,n)

The conceptualisation finishes with a second translation
phase from the frame-based representation into sorted first-
order logic, in which each defined frame becomes a set of
propositions. Here, we decided to use the sorted first-order
logic language OCL. In OCL, substate and transition
substate concepts describe respectively, the conditions
before the transformation of each task and the transition
when an object changes from one substate to another
substate.

This translation is automatic: each frame ‡1 sort, each
instance of frame ‡ object, each attribute ‡ predicate and
each part-of relationship with its related arity ‡ a defined
predicate called ‘belongs_to’. For example, table 5 shows
the Robot frame and its translation into OCL where
gripper – equipment – of the robot. The arity of this slot
(column Arity, bottom) is defined by (1), i.e. this slot
takes one frame gripper in the relationship at the same time
and (1,1), i.e. this slot allows the obligatory instantiating
of one gripper’s instance. As a result, the relationship and
its arity of this slot translates into invariant predicates
(bottom) the constraint that one robot has to have one
gripper only.

Evaluation and results
A first demonstrator has been implemented to validate the
approach of PLANFORM-KA. Figure 8 shows the main
graphical user interface during the creation of the Robot
generic concept in the Drumstore domain model.
We have also generated the logical model seen in
Appendix 1 with OCL semantics and syntax through a first
version of a translator:

1 ‡ means ‘is translated into the type of…’

Generalising over the different phases of the KA process,
we have formulated the notion of Constraint. Thus the
Term generic concept – in the instance collection phase –
is a kind of constraint which allows the domain expert to
make a set of choices to justify the domain specification.
Next, the Scenario generic concept – used in the
scenarioisation phase – is also a kind of constraints,
allowing choices in the design of task representations. Thus
the task could be state-based, action-based and so forth.

In the same way, the Relationship generic concept
– in the conceptualisation phase – is a kind of constraint
(Figure 9), which structures each concept. In addition, the
Arity and Daemon generic concepts – from the
epistemological phase – are also kinds of constraints
(Figure 10) on the problem-solving methods (PSM) and
heuristics.

Finally, the Proposition generic concept – from the
logical phase – is also a kind of constraint (Figure 13),
representing the chosen logical language. The
Constraint is then described as something that must be
true. Thus in the KA-process we define a cluster of
constraints (Figure 11) across the several representation
levels.

Capturing actions
The creation of a strong methodological framework for the
Planform-KA tool was seen as a priority, and this has been
accomplished. What is required now is to incorporate the
planning-specific conceptual framework of agent, object
and task [Aylett & Jones 96] in a more direct fashion. We
have not at the time of writing attempted to generate
planning operators into OCL, but the question-driven
agent-action-object dialogue is seen as the basis for doing
so. Given that Planform-KA sits within the overall

Figure 8 – Creating the term Robot

11

Planform architecture, even the generation of skeletal
operators would allow use of GIPO’s refinement
mechanisms to fill them out into a complete form. This
would require an AI planning expert to supplement the role
of the domain expert but would at least automate the basic
knowledge acquisition process from the expert.

Related work

Many specific approaches propose a set of solutions for the
acquisition, the representation and the sharing/reusing of
knowledge using libraries and/or strategies, since this topic
has been studied extensively in the KBS community since
the 1980s. Some of them are more specialised in the first
extraction of knowledge proposing a generic surrogate to
capture knowledge. Protégé [Freidman-Noy et al 00]
includes a suite of tools for editing ontologies, which can
automatically generate customised editors that are
accessible to domain experts. The Protégé library includes
the problem-solving strategies (diagnosis) and also
methods ontologies that describe the kinds of domain-
independent knowledge used in strategies. EXPECT [Gil &
Blythe 00a] used the explicit representations of problem-
solving strategies (propose-and-revise strategy for the
configuration design task, for example) that is used to
support flexible approaches to knowledge acquisition. For
instance, Protégé is an approach supported by a tool that
captures new ontologies, and offers a library of problem-
solving methods – For example propose-and-revise – to
combine with them.

EXPECT [Gil & Blythe 00a] is a framework and
knowledge based system to acquire and represent problem

solving method capabilities. PLANET [Gil & Blythe 00b]
is Ontology for the representation of plans in the AI
Planning field and is very relevant to the more extended
framework discussed here. In other approaches, the answer
for a given problem is built through a combined set of
different techniques (AI methodologies, for example KOD,
KADS [Shrieber et al 94]) according the major aim
(diagnosis for example [Mercatini et al 99, Mercatini et al
00]).

Conclusion and further work

Surprisingly, given the amount of work in the KBS
community in general, knowledge acquisition has not been
widely studied in AI planning. Yet applying planning
systems to real-world problems requires a systematic
approach to knowledge acquisition and a methodology
supporting reuse rather than ad-hoc adaptations of specific
planning systems by particular individuals whose expertise
remains private and invisible. The work discussed here
represents some steps in this direction.

Conclusion
Our work consisted in demonstrating the value of the
methodology called PLANFORM-KA in supporting a
knowledge acquisition process.

First of all, we have presented the basic steps of a
methodology to build a representation of AI Planning case
studies according to a given problem specifications . We
have described how a cluster of constraints could help
domain experts during the knowledge acquisition process
and how the configuration of a cluster at any representation
level can formalise the knowledge of a domain expert.

Second, we have validated our KA process through the
building of the case studies such as Drumstore and
EVentus and shown some results as follows:

Figure 9. Constraints-cluster on conceptual model

Figure 10. Constraints-cluster on epistemological model

Figure 11. Clustered constraints define the KA
model and process

12

• Instance coverage . This allows us to study the interaction
with the domain expert,

Two frame system . These introduce different abstraction
levels of knowledge.

• Three AI Planning categories : Agent, which is a mobile
thing like Robot or Visitor, Object, for example
location (Position, Place, Event) and Task,
which is specialised into action-based and state-based
representations.

• The Constraint generic concept. It features an abstraction
of several constraints defined at different representation
levels.

Finally, we are building on the question-driven interface
and expect soon to generate at least outline planning
operators

Further work
So far, we have built a framework for an intelligent system
to solve a set of issues concerning the knowledge
acquisition in AI Planning. We will make a systematic
survey – at the epistemological level – of other approaches
like PROTÉGÉ, EXPECT or PLANET, for instance, which
focus on a similar approach with respect to reuse of
ontology. A particular direction is to explore the use of
generic types, [Fox & Long 00] formulated by Planform
co-researchers Fox and Long, within the question-driven
acquisition module. Currently, generic types are extracted
from PDDL domain models, but the FSM definitions used
for this might be moved towards the domain expert through
incorporation into Planform-KA. Thus once an expert
identifies a mobile agent for example, the system could
actively prompt for the possibility of route-following.
Further case-study examples will be explored in order to
assess the coverage Planform-KA is able to provide for
domains where a domain model has already been created
by hand. Finally, supporting the expert with a much larger
ontology – possibly a specialised version of the CYC
Upper ontology – will also be explored. This would then
enable much more widespread trials of the system

References
Aylett, R.S & S. Jones. Planner and Domain: Domain

Configuration for a Task Planner. Int. Journal of Expert
Systems, 9(2), 279-318, 1996.

Benjamins, V. R. (1993). Problem Solving Methods for
Diagnosis. PhD thesis, University of Amsterdam,
Amsterdam, The Netherlands.

Breuker, J. and Wielinga, B. (1989). Models of Expertise
in Knowledge Acquisition. G. Guida and C. Tasso (eds).
Topics in Expert Systems Design: methodologies and tools.
North Holland Publishing Company, Amsterdam, The
Netherlands

M. Fox, and D. Long. Automatic Synthesis and use of
Generic Types in Planning. AIPS 2000 - Workshop on
Analysis and Exploiting Domain Knowledge for Efficient
Planning.

Fridman-Noy, N. et al. The knowledge model of
Protégé-2000: combining interoperability and flexibility.
2th Int. Conf. on Knowledge Engineering and Knowledge
Management (EKAW). Juan-les-Pins (France) 2000.Y.

Gil and J. Blythe. 2000a How Can a Structured
Representation of Capabilities Help in Planning?
Proceedings of the AAAI – Workshop on Representational
Issues for Real-world Planning Systems. 2000.

Y. Gil and J. Blythe. 2000b PLANET: A Shareable and
Reusable Ontology for Representing Plan. Proceedings of
the AAAI – Workshop on Representational Issues for Real-
world Planning Systems. 2000.

Gruber, T.R. A Translation Approach to Portable
Ontology Specifications. Knowledge Acquisition, 2(5),
1993.

Hayes-Roth, B. and F. Hayes-Roth. A Cognitive Model
of Planning. Representation and Reasoning. Readings in
Planning. Morgan Kaufman Publishers. 1990.

D. Liu and T. L. McCluskey, The Object Centred
Language Manual - OCLh - Version 1.2. Technical report,
School of Computing and Mathematics, University of
Huddersfield, 1999.

McDermott, D et al. PDDL --- The Planning Domain
Definition Language. In Machine Intelligence 4. D.
Michie, ed., Ellis Horwood, Chichester (UK). 1998.

McCluskey, T.L and Porteous J. M. Engineering and
compiling planning domain models to promote validity and
efficiency, Artificial Intelligence, pp.1-65. 1997.

J.M. Mercantini et al. Safety previsional analysis method
of an urban industrial site. Scientific Journal of the Finnish
Institute of Occupational Health, serie: People and Work,
safety in modern society, pp. 105-109, 33. 2000.

N. Mercantini et al. Etude d’un systeme d’aide au
diagnostic des accidents de la securite routiere. IC’99.
Palaiseau (France). 1999.

M. Musen. Modern Architectures for Intelligent
Systems: Reusable Ontologies and Problem-Solving
Methods. In Chute (Eds), AMIA Annual Symposium, 46-
52. 1998.

Planform. An Open environment for building planners.
Available at http://helios.hud.ac.uk/planform. 1999.

Schreiber, G., Wielinga, B., de Hoog, R., Akkermans, H.
and Van de Velde, W. (1994). CommonKADS: A
Comprehensive Methodology for KBS Development. IEEE
Expert, 9 (6), pp. 28-37..

Simpson, R.M; T. L. McCluskey, W. Zhao, R. S. Aylett
and C. Doniat 2001 An Integrated Graphical Tool to
support Knowledge Engineering in AI Planning.
Proceedings, 2001 European Conference on Planning,
Toledo, Spain.

.Sowa, F. Knowledge representation: logical,
philosophical and computational foundations. Brooks/Cole
(eds). 2000.

Valente, A. Planning models for the CommonKADS
librairy. ESPRIT Project KADS-II. 1993. Available at
http://www.swi.psy.uva.nl/usr/andre/publications.html.

Vogel..C. Le genie cognitif. Masson (Eds). 1988.

13

http://helios.hud.ac.uk/planform
http://www.swi.psy.uva.nl/usr/andre/publications.html

The Upper Cyc Ontology, available at
http://www.cyc.com/cyc-2-1/cover.html.

Appendix 1 – OCL model
domain_name(drumstore).

% Sorts
sorts(non_primitive_sorts,[thing,position]).
sorts(primitive_sorts,[robot,gripper,object,relat
ion,reference]).
Sorts(thing,[robot,object]).

% Objects
objects(robot,[r1,r2,r3,r4]).
objects(gripper,[g1,g2,g3,g4]).
objects(object,[d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d1
1,d12]).
objects(relation,[near,at]).
objects(reference,[s1,s2,s3,s4,b1,b2,b3,b4,b5,b6,
b7,b8,b9,b10,b11,b12,b13,b14,b15,b16]).

% Predicates
predicates([
 can_sense(robot,object,relation,reference),
 sense_on(robot),
 position(thing,relation,reference),
 full(gripper),
 empty(gripper),
 belongs_to(robot,gripper),
 in(object,gripper),
 released(object),
 in_range(reference,reference)]).

% Atomic Invariants
atomic_invariants([

position(r1,at,d12),position(d9,at,d4),position(r
2,near,s2),

belongs_to(r1,g1),belongs_to(r2,g2),belongs_to(r3
,g3),belongs_to(r4,g4),
 in_range(s1,b12),in_range(b12,s1),
 in_range(s2,b15),in_range(b15,s2),
 in_range(s3,b14),in_range(b14,s3),
 in_range(s4,b13),in_range(b13,s4),
 in_range(b13,b1),in_range(b1,b13),
 in_range(b15,b13),in_range(b13,b15),
 in_range(b12,b14),in_range(b14,b12),
 in_range(b14,b16),in_range(b16,b14)]).

14

http://www.cyc.com/cyc-2-1/cover.html

Generic Types as Design Patterns for Planning Domain Specification

R. M. Simpson and T. L. McCluskey
School of Computing and Mathematics, The University of Huddersfield, Huddersfield, UK

r.m.simpson@hud.ac.uk, lee@zeus.hud.ac.uk

Derek Long and Maria Fox
Department of Computer Science, University of Durham, UK

d.p.long@dur.ac.uk, maria.fox@dur.ac.uk

Abstract

In this paper we investigate the use of ‘Generic Types’
as design patterns to assist in the specification of plan-
ning domains. Current planning technology uses in-
duced patterns discovered in a domain specification to
speed up plan creation. We argue that such generic
types can also be used to help a domain author to de-
velop a design for a domain at specification time using
concepts at a much higher level of abstraction than is
normally provided by domain specification languages.

Introduction
Research into domain independent AI Planning and
Scheduling, has traditionally focused on the devel-
opment of algorithms to efficiently find solutions to
planning problems within the domain. The problems
of dealing with what is perceived to be realistically
large problems has been very difficult but recent ad-
vances in algorithms appear to make the problems more
tractable. Perhaps because of the difficulty in develop-
ing capable solution generating algorithms knowledge
engineering for applications of AI Planning technol-
ogy is still very much in its infancy. Recent success-
ful AI planning applications (Muscettola et al. 1998;
A. Tate (editor) 1996) have nonetheless highlighted
the problems facing knowledge engineering in planning.
Questions raised by such work include issues of how
to encode knowledge into domain models for use with
planning algorithms. Subsequently concern over the de-
velopment of knowledge engineering issues in AI Plan-
ning has resulted in a set of workshops and initiatives,
including (Benjamins, Nunes de Barros, Shahar, Tate
and Valente (eds) 1998; PLANET 1999).

In this paper we describe a domain definition strategy
and tools to support the knowledge acquisition phase,
to be carried out by domain experts rather than experts
in AI Planning. We show that planning domains can
be constructed using concepts at a much higher level
of abstraction than has traditionally been the case in
domain independent planning. Traditional languages
for the specification of planning domains allow the au-
thors of a new domain great freedom in their choice of
representation of the domain details. This freedom is
we contend for the most part unnecessary and provides

an unwanted conceptual barrier to the development of
effective domain definitions. As part of our ongoing
project to enhance the tools available for knowledge
engineering in planning we recently released a “Graph-
ical Interface for Planning with Objects” called GIPO
(Simpson et al. 2001). This is an experimental GUI
and tools environment for building classical planning
domain models, providing help for those involved in
knowledge acquisition and the subsequent task of do-
main modelling. The current work is an enhancement
to the GIPO tools environment which is supported by
EPSRC grant GR/M67421, within the PLANFORM
project http://scom.hud.ac.uk/planform.

Generic Types
The primary purpose of generic types in planning
as introduced by Fox and Long (Fox & Long 1997;
Long & Fox 2000; 2001) was to provide control infor-
mation to planning algorithms to boost the speed of
finding solutions to planning problems. The underlying
conjecture in that work is that if common structural
elements can be detected in a domain definition then
specialised algorithms can be brought to bear on those
elements of the problem to speed up the detection of
solutions. With this in mind researchers have now iden-
tified a number of candidate generic types that can be
found in a range of the domains publically available.
The purpose of our research is to investigate the possi-
bility of using generic types as design patterns to assist
the domain modeller in the construction of an initial
specification. Defining a design pattern in his seminal
work (Alexander et al. 1977), Alexander states that:

Each pattern describes a problem which occurs
over and over again in our environment, and then
describes the core of the solution to that problem
in such a way that you can use this solution a mil-
lion times over without ever doing it the same way
twice. Christopher Alexander

There are many potential advantages to presenting
the domain modeller with a range of patterns around
which a domain can be structured. Just as the con-
cept of design patterns has promoted greater reuse at
a higher level of abstraction in software engineering,

15

it can equally be beneficial for planning domain engi-
neering. The domain modeller can benefit from en-
capsulated clean and elegant solutions to representa-
tion of common domain structures. Another advantage
is, again as with software engineering practice, the de-
signer is encouraged to conceptualise the domain at a
higher level of abstraction than has typically been the
case for modellers working in STRIPS derivative lan-
guages such as PDDL. A further benefit is that the
use of canonical, “normalised” domain representations
supports the opportunity for reuse of deeper domain
knowledge associated with the patterns, such as con-
trol knowledge, specialised algorithmic problem-solvers
and so on.

The language OCL (Liu & McCluskey 2000) which
has a design suite of tools GIPO (Simpson et al. 2001)
itself tries to lift the level of generality at which the
modeller can design the domain by making the concept
of an object and the changes of state that they undergo
central to the conceptualisation of the domain. How-
ever the research group acknowledges that the task for
the domain modellers who are not themselves experts in
the field of A.I. planning is still too difficult. Along with
other approaches being investigated by the team, this
current research is seen as having the potential to help
bridge the gap between the tools and techniques usable
by a domain expert, who is not necessarily steeped in
the technologies of AI, and those that may only be used
by experienced practitioners in the field of AI Planning.

In software engineering, design patterns (Gamma et
al. 1995) are described using stylised natural language
templates, combined with UML class diagrams, describ-
ing the relationships between the fundamental build-
ing blocks of object-oriented software. In planning do-
mains the corresponding notion of a generic type is
described using relationships between the fundamental
building blocks of planning domain descriptions: sorts
(or types), predicates, object states and state transi-
tions (associated with operators). These relationships
can be captured graphically, in a diagram rather like
a UML class diagram (Figure 1), or more formally, us-
ing declarative specifications of the necessary relation-
ships between the components. The formalisation of
these descriptions is still the subject of current research,
since the precise language should combine expressive-
ness with precision and tractability. The role of generic
types has expanded from being patterns to be identi-
fied and exploited, which demands a description that
can be matched efficiently against domain descriptions,
to that of domain engineering construct, which is not
concerned with pattern-matching, but with expressive-
ness and ease of instantiation.

Broadly, a generic type then defines a class of classes
of objects all subject to common transformations dur-
ing plan execution. Within OCL we refer to sorts which
are sets of objects all subject to the same characteri-
sation and transformations, in typed-PDDL the range
of a type identifies a set of objects all subject to the
same characterisation and transformations. A generic

Type L

Type M1

at1

Type M2

at1

Type P

at1 in1

1

2
3

4

5

5: The move for M2 is enabled by the loaded
 condition for the portable type, P.
6: M2 is a carrier for the portables P.
7: The location at which the load or unload takes place
 is the location of the carrier.

1: A single type satisfies the fingerprints for mobile
 and portable types (M1 = P).
2: The locatedness properties of the portable and mobile
 instantiations are the same.
3: The locatedness property links the mobile to a
 location type, L.
4: A second mobile, M2, also moves on locations L.

6
7

Figure 1: Pattern description for the driver generic
type.

type accordingly ranges over the types or sorts of in-
dividual domains. The degree of commonality in the
characterisation and transformations that these types
or sorts must share have been described in the litera-
ture in terms of state machines describing the patterns
of transformations that the objects undergo.

In the following section we illustrate the way in which
a generic type can be used as a design pattern to sup-
port a more abstracted view of the structure within a
planning domain during the engineering process.

An Extended Example
We will describe the generic type for a “mobile”. A
“mobile” can initially be thought of as describing the
types of objects that move on a map. They can very
simply be characterised by the state machine shown in
figure 2

Type L
P

Transformation by action A

Type M

Predicate in property P relates objects
of type M to objects of type L.

Figure 2: The Mobile Generic Type

In this one-state-machine the state is characterised by
the property of the mobile object corresponding to its
locatedness and the transition is identified by the action
causing it to move. For this generic type to be applica-
ble to a type or sort in a particular domain there must
be a type such that there is an action that changes the
truth value of a n placed predicate N >= 2, let us call it
at, where one argument identifies the type in question,
M , and another a value L which changes as a result of
the application of the operator. That is the value of L
differs in the pre- and post-conditions of the action in
the reference to the at predicate. No other predicate
referencing M should change truth value in the same
action definition in this most basic form of the mobile
prototype. The namings of predicates and arguments

16

may (and will) be different in different instances of the
generic type. This is a very weak characterisation of a
mobile, in that domains that describe actions that per-
form transformation on some property of the objects in
question might fulfill the above requirements and hence
be characterised as a mobile. From the point of view of
the designer of planning algorithms this does not rep-
resent a problem as it just means that any specialised
algorithms identified to speed up processing domains
containing such structures will have wider application.
From the point of view of someone trying to produce
tools to assist domain developers it poses a problem in
conveying to the user precisely what is the scope and
potential uses of the pattern we have described as mo-
bile. This problem of communication is probably ex-
acerbated when we realise that subtle variations of the
pattern need to be distinguished from one another.

Flavours of Mobiles First we characterise the tran-
sition made by such a “mobile” in terms of the
formula [at(Mobile0, LocA) ∧ LocA �= LocB] ⇒
[at(Mobile0, LocB)] where the compound predicate
within square brackets to the left of ⇒ describes the
object Mobile0 prior to application of the action and
the formula to the right describes it after the application
of the operator. The question arises as to the nature of
the relationship between the values of LocA and LocB.
In the formula they are required to be distinct and, we
will assume, of the same type but their relationship is
not otherwise constrained.

In some domains a more complex relationship might
be required to hold between the two locations in order
to allow movement between them. For example if “a”
and “b” are locations then the transition from “a” to
“b” can only be made if there is a “road” from “a” to
“b”. In the case of the logistics domain transition are
allowed if both locations are in the same city. In yet
other cases e.g. the rocket world the only restriction
may be the one we have assumed anyway that the loca-
tions are all of the same type and that they are distinct
from one another. Distinguishing these differences may
be necessary when analysing existing domains with the
intention of speeding up solution detection but it does
not follow from that that we should provide the domain
developer with the freedom to create each variant, with
the consequent additional burden of forcing the devel-
oper to distinguish conceptually between the different
patterns. We must decide whether or not the differences
are essential to capturing distinct behaviours of objects
in the respective domains or whether they are merely
alternative ways of describing the same behaviour and
represent nothing deeper than differences in encoding
strategies. We believe that there are advantages to re-
quiring the developer to come to terms with a minimal
toolkit of canonical concepts to allow them to model
their domains. We should only deviate from this if min-
imality means that the developer must conceptualise a
problem at a level of abstraction that is too far removed
from a natural way of thinking of the domain, in which

case we may introduce features which from the mini-
malist point of view are redundant. Determining what
represents a “natural” way of thinking about domain
structures is a matter of experience and of judgement —
we anticipate the need to refine the collection of generic
types offered as a domain design patterns as their use
develops.

Data Structures

Consideration of the very simple model of a mobile de-
scribed above leads us further to distinguish different
elements of a generic cluster. In particular, we need to
distinguish between data structures that are referenced
in the cluster and the dynamic generic types. Data
structures are elements within the domain that are cap-
tured in predicates that do not change truth value dur-
ing the application of a plan. In PDDL, data structures
are given in the initial state of a problem. An exam-
ple is the set of connectedness propositions that define
the road structure in the truck-world which form a con-
nected graph. Such data structures may be referenced
by multiple operator definitions within the planning do-
main. The dynamic generic types are types or groups of
types characterised by the changes in state they make
during plan application.

Data structures in planning domains are not normally
identified in terms of their structure but are captured
implicitly in collections of predicates. In PDDL data
structures are to be found in a subset of the proposi-
tions defined as true in the initial state of a problem
definition. In OCL, these static propositions that do
not change truth value during the planning process are
collected together in the atomic invariants section of
the domain specification.

Examples
• Sets In the logistics domain the proposition

in-city(pgh-po,pgh) is used as a way of asserting that
pgh-po is a member of the set of locations defined
as part of the city pgh. Sets may be identified more
simply than this. A set may simply be represented
as the values of a particular argument in a predicate.
We would describe the locations that can be visited
in the brief-case world as forming a set, though they
are never referred to in the domain specification other
than as values of the location argument in the predi-
cate that relates an object such as the “briefcase” to
a location. Given this example it might seem that
the range of every typed variable could be regarded
as forming a set but we distinguish between dynamic
and static types and only the ranges of static types
are regarded as candidates to be identified as sets.
The distinction between dynamic and static objects
we have discussed in (Simpson et al. 2000). To sum-
marise: dynamic objects are those that would nor-
mally be regarded as changing their properties or re-
lations during plan execution, where as static objects
do not change. Again referring to the briefcase world,

17

in the at(briefcase1, home) predicate that describes
the location of the briefcase1 as being at home, it
would be normal to regard briefcase1 as changing lo-
cation when moving from “home” to the “office”, but
we would not think of the locations themselves as
changing state simply as a result of the arrival or
departure of a briefcase. Hence we regard the “brief-
case” as dynamic but the “home” as static.

• Maps Examples of maps can be found in the “travel”
world that contains collections of predicates such as
road(a, b) in the “init” sections of the problem spec-
ifications. The collection taken as a whole for each
problem specifies a directed graph which has to be
navigated by some dynamic object, the locations are
again regarded as static.

• Sequences Examples of sequences are rarer and less
obvious in the public domain planning domains.
They occur in such domains as the “elevator” do-
main to show the relationships between floors but
we would probably use a map in such an instance to
model the relationship. In domains such as “truck”
and “ferry” and “rocket” worlds there are single step
sequences moving from “full” to “empty”, which pro-
vides a very primitive way of representing resources
in those domains. We generalise this and provide the
notion of a sequence to enumerate the stages in the
consumption or production of a resource. The use
of this idea can be seen in the encoding of fuel lev-
els and space resources in the Mystery and Mprime
domains (AIPS’98 Planning Competition) and also
in aspects of the encoding of the FreeCell domain
(AIPS’00 Planning Competition).

Definitions
• A map we define as a named directed graph with

nodes identified by simple labels/names and edges
identified by a tuple containing the map name and
node names. The tuple {x,a,b} identifies that there
is an edge in map “x” from node “a” to node “b”.

• A sequence we define as a fully ordered set with mem-
bers identified by simple labels/names and a unique
named < relation. The tuple {< x,a,b} identifies that
“a” immediately precedes “b” in the “< x” sequence.

• A set we define as a set of items uniquely identified
by labels and a predicate name identifying the set.
The tuple {x,a} identifies “a” as a member of the set
“x”.

Defining Core Generic Types

The work done to date primarily identifies a family of
types clustering around the notion of a “mobile”. Fig-
ure 3 shows an initial pattern language for this collec-
tion of patterns. We distinguish two forms of mobile,
those constrained to move on “maps” and those that
move on “sets”. The first we call “mobiles” the second
we call “carriers”. There is then a number of optional

components that can be added to both mobiles and car-
riers. First both may be used to transport other objects.
In which case the other objects will make a transition
analogous to the “mobile” when the mobile moves but
they will also make transitions when “loaded” into the
mobile and “unloaded”. These objects which we call
“portables” can be characterised by state diagrams as
shown in figure 4 The behaviour of portables are to be

L

FSM for Mobile Objects

MP

Location Objects

"in" relates P objects to M objects

to L objects.
"at" relates P objects

"at" relates M objects to L objects.

FSM for Portable Objects

at

in

at

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

load

unload

Consider pre- and post-conditions
of load and unload actions.

The following components form the fingerprint for portability:

1. A previously identified mobile generic type, M , and its linked lo-

cation generic type, L.

2. A new type, P , with a FSM containing two states linked by tran-

sitions in both directions.

3. One state of the FSM for P must include a property formed from

a predicate linking the P type objects to the M type objects.

4. The other state of the FSM must contain a property formed from

a predicate linking the P type objects to the L type objects.

5. The operators from which the two transitions in the P type FSM

are derived must require an M object to be located at the same

location as the P object is located at the appropriate end of the

transition.

Note that the names of the operators and predicates are irrelevant

and that the name of the predicate in feature 4 need not be the same

as the locatedness predicate for type M .

Figure 4: The Portable Generic Type

determined by three actions, the action to move the
mobile, an action to load the portable into the mo-
bile and an action to unload the portable from the
mobile. The state diagram for the portable does not
however specify how the movement of the portable is
to relate to the similarly structured movement state di-
agram for the mobile. Given that both describe the
same “movement” action there are two plausible ways
that they may relate to one another. First the transi-
tions may both be required to take place together, in
which case it will be a precondition of the “movement”
action that the portable be “in” the mobile before any
movement can take place. Portables of this sort we call
“Drivers” and a specific transition needs to be defined
for each driver participating in the action. The second

18

Restricted
Mobile

Passenger Ignition Key

Driver

Portable

Location

Dynamic Map

Map

Static Map

Carrier

Mobile

Restricted
Carrier

Driven
Mobile

Key-protected
Mobile

Driven Mobile
Key-protected Key-protected mobile

requires ignition key

Simple
Portable

between locations
accessibility

Map identifies

between locations
Mobile moves

Carrier carries portables

requires driver
Driven mobile

Figure 3: A Hierarchy of Mobile-related Generic Types

case arises when the transition of the portable is con-
ditional on the portable being in the mobile but it is
not required that a portable be in the mobile to allow
the mobile itself to make the movement transition. In
this case the conditional transition will apply to any in-
stance of the portable “in” the mobile. We have there-
fore distinguished two types of mobile (a) carriers and
(b) mobiles both being capable of being associated with
two types of portable (i) drivers (ii) portables.

We have not yet exhausted our elaboration of the
“mobile” generic type. In a number of domains, in-
cluding one of the simplest, the “rocket” world, there is
a notion of fuel which is a resource to be consumed as a
result of the mobile moving. In the rocket world the fuel
is consumed in one shot. The rockets starts with fuel
full but any movement action results in the rocket being
empty of fuel. We can easily see that the consumption
of the resource could have been staged and to accom-
plish this we model the movement action as traversing
a step of a sequence on each movement. Given the
sequence {full, half, empty} a single movement action
might take the rocket from full to half and from half
to empty. With the notion of resources we can aug-
ment any transition as any transition might consume
or produce some resource. The movement action may
consume fuel, but equally loading or unloading some
portable may consume energy.

In the discussion above we have not described fea-
tures of mobiles that require “dynamic maps” nor “key”
enabled actions. We have given an indication of the
complexity and flexibility of the “mobile” generic type,
viewed as a design pattern.

Composition of Generic Types

The problems of the composition of patterns falls
broadly in two. The simple case is that already ex-
plored where a complex pattern has many optional but
predictable variations. Examples are where a mobile
requires a driver or consumes a resource. The more
problematic case is where the domain contains two or

more patterns where the same object type plays a role
in more than one pattern instance. This can happen
even in domains just containing mobiles. In a variation
of the “hiking” domain we may have cars which can be
used to transport the hikers from one centre to another
but the hikers themselves may be mobiles in that they
also walk from some locations to neighbouring moun-
tain tops. In relation to the car(s) mobile pattern the
hikers will play the role of either, or both, the roles of
“drivers” and “portables” but in relation to their walk-
ing they play the role of mobiles perhaps even with their
own portables such as the “tent” which they may carry
on some walks.

The problem of composition also occurs where we
have conceptually independent patterns. To illustrate,
one of the patterns we are working with we call a “bis-
tate” and it represents objects that typically exist in
one of two states and there are actions to change back
and forth between the states. A canonical example of
a bistate would be a switch that can be “off” or “on”.
In the hiking domain the tent that the hikers sleep in
may play a role as “portable” relative to the car and the
hikers themselves, but may additionally be modelled as
a bistate in that it is typically either “up” i.e. erected
or “down”. In this case the “erect” transition may be
captured by the formula [down(Tent0)] ⇒ [up(Tent0)]
The “load” and “unload” transitions associated with
the tent as portable may be captured as:
[at(Tent0, LocA)] ⇒ [in(Mobile0, T ent0, LocA] and
[in(Mobile0, T ent0, LocA] ⇒ [at(Tent0, LocA)].
The combination that we require is to associate the
“down” state with the “at” state but we cannot simply
replace the designation of the “down” state with that
of the “at” state because the “at” state carries extra
information about the location of the tent. We could
not adequately describe the transition of the tent when
we take it down as [up(Tent0)] ⇒ [at(Tent0, LocA)]
as there is no indication as to how the “LocA” vari-
able is to be bound. Obviously the location of the
tent is the same as that it had when the tent was

19

erected. Accordingly to preserve the location informa-
tion we must merge the arguments in the “at” and
“down” states and then propagate additional argu-
ments to the other state descriptors in the merged pat-
terns. In this case the “erect” transition now becomes
[at(Tent0, LocA)] ⇒ [up(Tent0, LocA)] and the “take
down” transition is similarly enhanced.

The strategy shown here is the one that we gener-
ally follow in combining instances of patterns where a
common state exists between the roles of the merged
patterns.

Domain Definition using Generic Types
To enable the domain developer to use the identified
generic types to structure a domain we have developed
a series of dialogs which we have integrated into the
GIPO domain development tool. The dialogues allow

Figure 5: The Pattern Manager

the user to choose the relevant patterns and then tailor
them to the problem in hand. In simple cases tailoring
is simply a matter of naming the components of the
pattern in an appropriate way. In more complex cases
the user must add optional components to the pattern
again by form filling and in the most complex cases en-
sure that domains using multiple patterns allow them
to interact with each other in the correct way. The set
of dialogues form a domain editor in such a way that
the user committing her choices in the editing dialogues
will result in the formal domain specification being au-
tomatically generated. We illustrate the process with
snapshots taken from the “Pattern Manager” in figure 5
which is used to control the addition and editing of pat-
terns known and instantiated within the domain. We
also show the main dialog for defining the parameters
of the “mobile” pattern in figure 6.

Evaluation
The implemented pattern editors that we have pro-
duced currently give good coverage of domains featuring
“mobiles” of one sort or another. Our evaluation is cur-
rently limited to testing to see if we can produce using
the pattern editors versions of the domains that have
been made available as part of previous AIPS compe-
titions. We are judging equivalence of domains not at

Figure 6: The Mobile Dialog

the level of encoding the operators and problems but
rather at the level of generality that would allow us to
say that derived solutions to equivalent problems are
equivalent. We do not require for example that any
planner that works with the original will work with our
generated version, as this is not the case even in the
rocket world as our encoding uses conditional effects
whereas the commonly available originals typically do
not. We would also judge domains to be equivalent
even where they do not contain the same number of
operators or predicates, for example a move operator
may be either expanded into multiple move operators
each responsible for moving objects of different sorts or
conversely we may contract multiple operators into a
single operator dealing with a more general sort.

An interesting observation is that though the
pattern-directed reconstructions of classic domains are
not always identical to the familiar encodings we con-
sider it a strength of the use of patterns that a canon-
ical encoding, with its attendant well-understood be-
haviours, is used to encode the domains. Nevertheless,
it raises an important point about the expected be-
haviour that a domain is intended to capture. In recon-
structing domains we expect to find that there is a cor-
respondence between legal states of the reconstructed
domain and the original encoding, with an induced cor-
respondence between plans in the two domains (see fig-
ure 7). Confirmation that this correspondence exists
forms a reasonable element of the evaluation of the use
of the pattern-directed approach to domain construc-
tion.

Evaluation of the provision of support for domain
construction by domain design patterns is difficult. It
is intended that they make domain construction easier,
but this is a matter of HCI and could only be empir-
ically evaluated with access to a reasonable sample of
potential users. Of course, the developers consider the

20

Initial Final

Plan

Initial Final

Plan

State correspondence
S

S

Induced plan correspondence

Original encoding

Reconstructed encoding

Figure 7: Equivalence between domain encodings.

approach to be an efficient and convenient way to gen-
erate domains. A separate dimension of evaluation is
to consider the extent to which the patterns provide
support across a wide range of domains. For example,
one might consider how many benchmark domains can
be reconstructed using the patterns, with the patterns
providing support for a high-level view of the domain
objects and their behaviours. It is of interest to note
that many of the benchmark domains include a trans-
portation element (Logistics, Gripper, Briefcase, Grid,
Mystery and MPrime are all examples). The Tyreworld
domain consists chiefly of interlocking bistate elements
(hubs can be up or down, nuts are on or off, loose or
tight, and wheels are on or off, inflated or deflated).
Many of the other domains contain a construction com-
ponent (Hanoi, Blocksworld, Assembly and Freecell)
and we are currently exploring the implementation of a
generic cluster to support construction.

Further Work

The work described above is still work in progress. We
continue to develop it at a number of levels. We con-
tinue to work on incorporating known “generic types”
into the GIPO tool and to enhance the facilities within
the tool for creating, editing and combining patterns.
At the level of the patterns themselves there is still
more work to be done in identifying new patterns and
elaborating further the existing patterns. We are also
working at formulating more formally the rules for com-
bining patterns with an ultimate goal of providing a for-
mal description of patterns and an “algebra” for their
composition. Ideally the outcome of this work would
be tools to allow the domain designer to develop a wide
range of domain definitions without the need to develop
the domain in any way at the level of the underlying
specification language such as OCL or PDDL. A further
goal of the work is also to provide planning algorithms
with information on the instantiated patterns to allow
them to use this as control information to inform the
planning process itself. We do not expect however that
this will eliminate the need for further domain analysis
to assist in speeding up planning solution production.

References
A. Tate (editor). 1996. Advanced Planning Technol-
ogy: Technological Achievements of the ARPA/Rome
Laboratory Planning Initiative. IOS Press.
Alexander, C.; Ishikawa, S.; Silverstein, M.; Jacobson,
M.; Fiksdahl-King, I.; and Angel, S. 1977. A Pattern
Language. Oxford University Press.
Benjamins, Nunes de Barros, Shahar, Tate and Va-
lente (eds). 1998. Workshop on Knowledge Engineer-
ing and Acquisition for Planning: Bridging Theory
and Practice. Proceedings of AIPS.
Fox, M., and Long, D. 1997. The Automatic Inference
of State Invariants in TIM. JAIR 9:367–421.
Gamma, E.; Helm, R.; Johnson, R.; and Vlissides, J.
1995. Design Patterns: Elements of reusable software.
Addison-Wesley.
Liu, D., and McCluskey, T. L. 2000. The OCL Lan-
guage Manual, Version 1.2. Technical report, Depart-
ment of Computing and Mathematical Sciences, Uni-
versity of Huddersfield .
Long, D., and Fox, M. 2000. Automatic synthesis
and use of generic types in planning. In Proc. of 5th
Conference on Artificial Intelligence Planning Systems
(AIPS), 196–205. AAAI Press.
Long, D., and Fox, M. 2001. Planning with generic
types. Technical report, Invited talk at IJCAI’01
(forthcoming Morgan-Kaufmann publication).
Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams,
B. C. 1998. Remote Agent: To Boldly Go Where
No AI System Has Gone Before. Artificial Intelligence
103(1-2):5–48.
PLANET. 1999. PLANET Knowledge Technical Co-
ordination Unit. http://scom.hud.ac.uk/planet.
Simpson, R. M.; McCluskey, T. L.; Liu, D.; and
Kitchin, D. E. 2000. Knowledge Representation in
Planning: A PDDL to OCLh Translation. In Proceed-
ings of the 12th International Symposium on Method-
ologies for Intelligent Systems.
Simpson, R. M.; McCluskey, T. L.; Zhao, W.; Aylett,
R. S.; and Doniat, C. 2001. GIPO: An Integrated
Graphical Tool to support Knowledge Engineering in
AI Planning. In Proceedings of the 6th European Con-
ference on Planning.

21

Integrated modelling: when time and resources play a role

Roman Barták

Charles University in Prague, Faculty of Mathematics and Physics
Malostranské námestí 2/25

118 00 Praha 1, Czech Republic
bartak@kti.mff.cuni.cz

Abstract
A formal model of the planning or scheduling problem is
the first step in the design of a solver for such a problem.
In the paper we propose a basic framework for modelling
planning and scheduling problems that involve reasoning
about time and resources. In this framework we go beyond
the traditional definitions of planning and scheduling and,
from the beginning, we expect integration of both these
areas.

Introduction

Traditional AI planning tackles the problem of sequencing
operators to achieve some goal. In STRIPS-like planning,
the operator is defined by pre-conditions and effects, i.e.,
the pre-conditions must be satisfied to use the operator,
and the effects hold after using the operator. The task is to
find a sequence of operators starting from a given set of
pre-conditions and achieving a given set of effects.

There is no explicit usage of time and resources in
traditional planning. In fact, there are no numeric values
used so planning methods are based mostly on symbolic
manipulation. That is the reason why planning is assumed
to be an AI problem rather than a number crunching task.
Nevertheless, we can find time and resources behind the
traditional planning notions. At least relative time must be
assumed if speaking about operator sequencing, i.e., the
pre-conditions hold just before we execute the operator
and the operator's effect will be true since we execute the
operator (until another operator annihilates the effect).
Still, traditional planning uses instantaneous operators,
i.e., no duration of the operator is assumed. This is OK if
we are just sequencing the operators, but, it may cause
problems when overlaps of operators are allowed.
Moreover, in reality executing the operator takes some
time so the planning system should assume this time when
looking for a valid sequence of operators. The above
observations are reflected in so called durative actions that
are included in the recent version of PDDL (Fox and Long
2001), a modelling language for planning problems, and
that are studied in (Coddington, Fox, and Long 2001).

While time is hidden in semantics of operators, the
resources can be encoded in formulas defining pre-
conditions and effects. Even one the earliest planning
problems - a block world problem - involved a resource,
the robot's hand that moves the blocks over the table.
Encoding resource in pre-conditions and effects is a
standard way of modelling resources in traditional
planning. However, this technique covers only a limited
number of resources, we can call them state resources.
Pre-conditions describe a required state of the resource to
execute the operator, e.g., an empty hand, and effects
describe a state of the resource after executing the
operator, e.g. holding a block A.

In reality, the interaction between resources and
operators and the integration of time and resources is
more complex, e.g. a single resource may execute several
operations in parallel. This brings planning to a new level
where the quality and feasibility of the plan depends on
time and resources too. Planning community is aware of
such real-life demand and handling of time and resources
is a hot topic in AI planning.

Time and resources play a key role in the areas of
scheduling and timetabling too. The scheduling task is to
allocate a known set of activities to available resources
over time respecting precedence, capacity and other
constraints. Timetabling can be seen as a special case of
scheduling (Wren 1996) with different view of space-time
(slots) and different objectives. Thus, we will not speak
about timetabling separately.

The main difference of scheduling (and timetabling)
from planning is that in scheduling we know the structure
of activities while planning has to construct this structure.
Therefore, when solving real-life problems planning and
scheduling modules can be kept separated: first, we plan
which activities (operators) are necessary to satisfy the
demands and, second, we schedule the activities to
available resources. This could be useful in some problems
due to efficiency issues (Srivastava and Kambhampati
1999) but in other areas, integration of scheduling and
planning seems necessary (Barták 1999) or (Smith, Frank,
and Jónsson 2000). Note that this integration is not easy
because of rather different techniques used to solve
problems in planning and scheduling. While planning is

22

based mainly on symbolic manipulation, scheduling uses
number crunching techniques from operations research.
Recently, constraint satisfaction seems to provide a bridge
between these two different technologies so discussions
about integration of planning and scheduling are
becoming more realistic now. Constraint programming is
a widespread technology in scheduling (Wallace 1994);
application of constraint satisfaction techniques to
planning problems is described in (Binh Do and
Kambhampati 2000), (Laborie 2001), (Nareyk 2000), or
(Van Beek and Chen 1999) among others.

When speaking about integration of planning and
scheduling, a formal modelling framework to describe
such problems is one of the first issues. There exists a de
facto standard modelling language PDDL for description
of planning problems (Ghallab et al. 1998) and this
language is being extended to model time (Fox and Long
2001). Other approaches in planning attempts to model
resources (Brenner 2001) or (Koehler 1998). Still, all
these approaches have their limitations when describing
real-life resources and time.

Surprisingly, there is no system independent language
for scheduling problems; at least we are not aware of any
such language. There exists a well-known classification of
scheduling problems using the triple (machine
environment | job characteristics | optimality criterion) by
Graham et al. (Brucker 2001). However, this is an
academic classification, not a modelling language to
describe a particular problem. Some modelling languages,
like STTL (Kingston 2001), exist for timetabling problems
but these languages can hardly be extended to general
scheduling problems or to planning problems.

In this paper, we describe a framework for integrated
description of both planning and scheduling problems.
This framework is based on our previous works on
modelling scheduling problems enhanced by planning
capabilities (Barták 1999) and (Barták and Rudová 2001)
so time and resources play an important role there. We
have abstracted from a particular scheduling problem to
cover a wider class of problems including pure planning
and pure scheduling problems. This paper is a bit refined
version of our proposal from (Barták and Rudová 2001).
Here, we concentrate on a basic structure of the framework
rather than on particular attributes (even if we mention
some attributes to illustrate how the objects are used). This
gives us a freedom of designing a generic framework that
can be filled by attributes and that way adapted to a
particular problem area. We also describe how such
formalisation can be used to support planning/scheduling.

The paper is organised as follows. In Section 2, we
highlight the main roles of formal models. In Section 3,
we describe basic modelling requirements to capture real-
life planning and scheduling domains and in Section 4 we
specify how to model a particular problem in the given
domain. Section 5 is dedicated to pre-scheduling and pre-
planning techniques that prepare the formal model for
solving.

A Context for Formal Models

The design of a formal model is a crucial step to
understand all the details of the problem and to find a
solution of the problem. However, having a formal model
or more precisely having a modelling language to describe
problems has other advantages. Basically, such modelling
language serves as an interface (see Figure 1).

Naturally, the modelling language forms an interface
between the real problem and the solver. Having such
interface brings several advantages. First, the solver is
independent from the problem description, i.e., it is
possible to exchange the solver for a better one without
changing the problem specification. For example, we can
use a special solver for a particular domain without
changing the user interface of the system or the problem
description. Second, we can have several user interfaces
for modelling different problems and all these user
interfaces may share a common generic solver via the
unified interface. In fact, we can use an automated
modeller that converts the problem description from an
ERP system or, generally, from a database describing the
problem to a formal model. The solver does not need to
know what is the source of the model. To summarise it,
the formal modelling language provides an interface
between various modules in a complete
planning/scheduling system.

Universal description of planning and scheduling
problems brings also the advantage of sharing problem
domains and problems between researchers. Thus, it
simplifies maintenance of benchmark sets. We sketch
some other usages of the formal model later in the paper.

Figure 1. The role of a formal model.

benchmarks

ERP

solvers

a formal model

GUI modelling

machinery

output

23

Domain Modelling

When describing a problem, we can start with the
description of the problem area - a domain. This makes
the model more general, because it simplifies changes of
the model. What is it a domain? Let us start with a real-
life example of industrial scheduling. When scheduling
processes in the factory, the problem description consists
of the description of the factory, i.e. machines and
processes, and the description of demands (orders). In this
case, the domain corresponds to the description of the
factory and the particular problem consists of the domain
and a set of demands. We can say that the domain is a
static part of the whole problem that is not changing or the
changes are less frequent.

We propose the model for a domain to consist of three
basic elements: activities, resources, and recipes. Activity
is a basic scheduled/planned object that usually occupies
some time and space. Resources define space for
processing the activities and recipes describe direct
relations between the activities.

Resources
Resource is an object that defines space for processing the
activity. We will speak about connection between resource
and activity later, so let us now concentrate on resource-
only features.

Life of the resource, i.e., evolution of the resource in
time can be described using a sequence of states. For
example, the resource oven uses four states load - heat -
unload - clean and these states are repeating in a cycle.
Some resources, e.g. classroom in timetabling, have only
one state. We expect that resource is an object (machine,
room etc.) so consumable resources like fuel are modelled
using a tank etc. The resource appears in a single state at a
given time so the schedule for the resource consists of the
sequence of non-overlapping states.

Basically, the model of resource consists of the set of
states and transitions among the states (see Figure 2). The
transition describes how the resource can change a state.
Typically, information about timing is included so we can
define minimal and maximal duration of the state,
working time for the states, and transition time.

Figure 2. A state transition diagram for the resource.

Because the resource defines a space for activities, we
should describe how much space is available in each state
- a state capacity. The state capacity restricts the number
of activities that can be processed together. We can also
restrict the alignment of activities in the state. Basically,

we distinguish between parallel processing, where there is
no restriction about the alignment of activities, and batch
processing, where the overlapping activities must start and
complete at identical times (see Figure 3).

Figure 3. Parallel (left) vs. batch (right) processing.

To summarise the above discussion, the model of resource
consists of the states with some attributes and the
transitions between the states (see Figure 4).

Figure 4. A basic structure of the resource model.

Activities
Activity is a basic scheduled/planned object so when
modelling the problem we should specify which activities
can be used in the solution. The basic attribute of the
activity is its duration, i.e., time occupied by the activity.
We can also use time windows to restrict when the activity
can be processed.

In many cases, the activity requires some resources for
processing. For example, a lecture in timetabling requires
a classroom and a teacher, a heating activity in industrial
scheduling requires an oven, and a moving activity in
transport planning requires fuel. So for each activity we
can assign a set of resource requirements. In the resource
requirement we describe the way of using the resource.
Some resources are consumed or produced, we call them
consumable resources, and some resources are just used,
we call them renewable resources (see Figure 5).

Figure 5. Renewable (top) and consumable (bottom) resources.
Dashed lines indicate start and end of the activity.

time

re
so

ur
ce

time

re
so

ur
ce

resource

states

transitions

loading

heating unloading

cleaning

cooling

time

fr
ee

 c
ap

ac
ity

time

fr
ee

 c
ap

ac
ity

time

fr
ee

 c
ap

ac
ity

24

Naturally, we should also describe what capacity of the
resource is consumed/used/produced. We can also describe
what state of the resource the activity requires. Note that
the states with batch processing are meaningful for
renewable usage of the resource only while parallel
processing can be used both for renewable and for
consumable usage of the resource.
When specifying the resource requirement, we usually
have alternative resources that can satisfy the requirement.
Thus we attach a list of resources to each requirement (see
Figure 6).

Figure 6. A basic structure of the activity model.

Recipes
The model of activities and resources can describe an
indirect relation between the activities only. In particular,
the only modelled relation between the activities is via a
shared resource, e.g., two activities cannot run in parallel
if they share a resource with capacity 1. Such modelling is
usually enough for (most) timetabling problems. However,
in planning and scheduling we need to model direct
relations between the activities (and between the
resources), for example a supplier-consumer dependency
or a precedence.

Traditional planning uses STRIPS-like rules (Fikes and
Nilsson 1971) to model relations between the activities:
each activity has some pre-conditions and it generates
some effects that may become pre-conditions of another
activity. If we add some attributes to the pre-conditions
and effects (typically logical terms are used to describe
both pre-conditions and effects) we have a general
mechanism for information passing between the activities.
In HTN (Hierarchical Task Network) Planning (Erol,
Hendler, and Nau 1994) the activities are connected into a
task graph so more constraints can be expressed over the
activities. Moreover, the tasks can be part of another task
graph so planning is done via task decomposition and
conflict resolution.

To simplify description of relations between the
activities we introduce a notion of event. Each activity
requires some events to precede it, we say that the activity
consumes the events, and each activity generates some
other events, we say that the activity produces the events.
We call a triple (activity, consumed events, produced
events) an activity environment. Note that we may have
several environments for a single activity, e.g., there exists
various combinations of input items consumed by the
activity that produces another item. Moreover, we can put
constrains between the event and the activity, for example
to describe the allowed delay between the event and the
activity.

Figure 7. Two activity environments for a single activity;
consumed events are on the left side and produced events are on
the right side. Notice also the timing constraint between the
activity and the produced event.

To provide richer modelling capabilities we propose to
combine activity environments into a recipe. Basically, a
recipe is a DAG (directed acyclic graph) where nodes are
marked by activities and events. The edge goes either from
an activity to an event produced by the activity or the edge
goes from an event to the activity that consumes the event.
In particular there are no direct edges between the
activities and no direct edges between the events. The
activity must be connected to all its produced and
consumed events (for a given activity environment). So an
activity environment forms a sub-graph in the recipe. If
there are more environments for the activity then the
activity may appear more times in the recipe (each
appearance corresponds to one activity environment).
However, there are no duplicate events in the recipe.
There is one exception when the event may appear two
times in the recipe. If the event is produced by one activity
and consumed by another activity and connecting both
activities to the same event node forms a cycle in the
graph. To break the cycle (we require the recipe to be a
DAG) we divide the event into two events, one is used as a
consumed event only and the other one is used as a
produced event only. Let us call such event a broken
event. Such situation may appear if we want to model
recycling or similar features of the real problem (see
Figure 8).

Figure 8. A primitive recipe Heating; the edges goes from left to
right. There is also a broken event "prepared".

In the recipe, there exist three types of events: events that
are both produced and consumed (by different activities),
events that are produced only, and events that are
consumed only. In case of recycling described above, the
broken event is part of both consumed-only and produced-
only sets of events. Together, the recipe behaves like a
meta-activity and thus we can use the recipe within
another recipe like an activity environment (see Figure 9).

During planning we are decomposing the required
recipes to individual activities but we can also connect
different recipes via common events (one recipe produces
the event and another recipe consumes the event). Still
there could be some events that are consumed only (there
is no action that consumes such event); these events may

activity

resource requiremenent

resources

heat •• heatedprepared ••
≤≤ 5 hours

heat •• preparedprepared ••
> 5 hours

heat •• heated
≤≤ 5 hours

heat •• prepared

prepared ••
> 5 hours

25

correspond to purchases of raw material etc. Similarly,
there could be produced only events, e.g. describing
appearance of the final product. We call such produced-
only and consumed-only events one-way events.

Figure 9. A recipe using another recipe (dashed).

If we expect that all the events have unique names then we
can represent the recipe as a set of activity environments
and recipes. In such a representation it is clear how the
activities and recipes are connected via common events.

Figure 10. A basic structure of the recipe.

Problem Modelling

A domain model describes the problem area i.e. which
resources are available, what activity types can be used,
and what are the relations between the activities. To
specify a particular problem we need to describe the actual
activities. This could be done explicitly, like in traditional
scheduling and timetabling, where the set of activities is
given as the input and the task is to allocate the activities
to resources respecting the resource and recipe
(precedence) constraints. In traditional planning, the input
consists of some events and the task is to generate the
activities in such a way that the events are connected via
activities i.e. the activities in the plan are described
implicitly via the events. In our framework, we propose to
combine both these ways of input specification, i.e.,
depending on the input we will solve either a pure
scheduling (timetabling) problem or a pure planning
problem or a mixture of both.

Initial data
If we are using resources in the problem, it is a good
manner to describe the initial situation/state of each
resource. In timetabling this is useless because there are
no states. In pure scheduling this is done via specification
of the activity with pre-allocation of the activity to the
resource and to initial time.

In our framework we allow description of the initial
state(s) of each resource as well as specification of
activities that are known before we start scheduling. These
activities may be pre-allocated, i.e., some of the
parameters of the activity are known (like time and used
resources) or the parameters are unknown and the task is
to find their value (allocate the activity to resources and
time). Using such initial data allows us to model pure
scheduling and timetabling problems or to use the system
to complete partially known schedules. In the second case,
new activities are introduced during scheduling to fill gaps
in recipes.

Goals
To further extend the planning features of the framework,
we allow specification of known events in the description
of the problem. Remind that the events make a connection
node between the activities. If there appears an event in
the system then this event must be produced by some
activity and consumed by another activity. Only the one-
way events may have either the consumer or the producer.
To start planning, we can put some initial events to the
system and the system will try to cover them, i.e., to find
an action that produces the event and/or the action that
consumes the event. Introduction of the action may cause
introduction of new events and the task is to cover all the
events. As we said above it means that there must be an
action producing the event and an action consuming the
event. A missing action (producer or consumer) in a one-
way event is substituted by including the event among the
initial events. Note that this process is similar to STRIPS
planning where we have to find activities generating the
final effects using the initial pre-conditions.

It is possible that some one-way events are introduced
during the process of planning and these events are not
included among the initial events. For example we can
introduce an event describing a purchase of raw material.
To allow such situation we can mark some one-way events
as free events. Then, we can introduce a free event during
planning if some activity requires it even if the event is
not among the initial events.

To summarise the above paragraphs, the problem is
described by specifying the domain (a problem area) and
by describing some objects in the final schedule, namely
some activities and initial events. The task is to fill the
gaps in the schedule following the recipes and respecting
the resource constraints (see Figure 11). It means that the
resulting plan consists of the activities allocated to
resources and connected with other activities via events.

•• processed

•• purchased

≤≤ 5 hours

•• prepared

•• heated

•• final

process&test

process

test

prepare

Heating

recipe

activity environments

recipes

26

Figure 11. Gantt charts - from the problem description (top) to
the solution (bottom).

Before Planning/Scheduling

When the problem is described formally, the next step is
to solve the problem. However, we can look in data and
insert some addition steps that may simplify the process of
problem solving. Basically, we distinguish three steps that
could/should be done before we start solving the problem:
• data checking that reports errors in data,
• data pre-processing that simplifies the model,
• data analysing that finds useful information for the

solver.

Data Checking
The modelling framework may provide a formal language
for problem description. This language is typically based
on some underlying language like LISP or Prolog so we
can use tools of the underlying language to ensure
syntactic soundness of the model. Nevertheless, syntactic
soundness does not guarantee that the model is
semantically correct, i.e., that there are no bugs
prohibiting finding a solution. Especially, when a less-
experienced user designs the model we can expect many
such bugs. Semantic bugs can be discovered during
planning/scheduling but it is often a tough process leading
to a very long computation (the system tries to find a
solution even if "visibly" no solution exists).
Our and others [personal communication to Helmut
Simonis] experience says that it is very important to check
data before we start scheduling. Such data checking can be
automated in some way, for example to discover (some)
clashes in data. Some data-checking can be general, i.e.,
designed for all models. For example, we can check if

resources required by activities are present in the model or
if all states of the resource are accessible from the initial
state. Note also that the data checker may identify parts of
the model that could cause problems, i.e., it is not an error
but it could be an error. For example, the graph of states
for the resource consists of more components that are not
connected etc.

Other data checks may be designed for particular
instances of the modelling framework. Assume that time
windows are defined for activities and for states of the
resources. We can check if the activity can be processed by
a given resource in a given state by comparing time
windows of the activity and the state.

We mentioned just few data checks, many other
checking techniques can be proposed for a particular class
of models. Generally, data checking is not a complete
technique that guarantees existence of the solution;
otherwise complete data checker includes full
planner/scheduler which is not the goal of data checking.
The point is that as much as possible (polynomial) data
checks should be done before we start (exponential)
planning or scheduling.

Data Pre-processing
When the developer designs a formal model of a non-
trivial problem then he or she should take in account the
details of the solving algorithm. Sometimes the modelling
language guides the user to design "reasonable" models
but if the modelling framework is general like our
framework then it is hard to integrate all good modelling
skills into the modelling language itself. Moreover, the
end users prefer the models that are close to what they
know in reality rather than the models with "low-level"
tricks that make the model easier for scheduling. Finally,
the formal model of the problem may be designed
automatically from an ERP system or a database
describing the domain. All in all, the pure formal models
may contain features that are sound but that make
scheduling more complicated.

To remove "bad" features of the pure model we can
smooth it out by applying some pre-processing techniques
that change the model into a model easier for scheduling.
The only requirement about the pre-processed model is
that it must be equivalent to the original model. Such
equivalence is defined in the following way: the post-
processed schedule of the pre-processed model is a
schedule of the original model (see Figure 12).

Figure 12. Using pre- and post-processor

Some pre-processing techniques change significantly the
model, e.g. by using different structure of activities. For
example, when the end user describes a resource using

original model

clean model

pre-preprocessing
solution

schedule

post-preprocessing

solving

•

• • •

re
so

ur
ce

s

time

• °

• • •

re
so

ur
ce

s

time

• initial events
c initial activity

° a new free event
g new activities
→ used recipes

27

states, he or she tends to describe all possible states, e.g.
loading - processing - unloading. Or all these states are
saved in a database describing the resource so it is natural
that they appear in the automatically generated model as
well. It implies that there must be loading, processing, and
unloading activities as well. However, if such sequence is
unique, then the experienced modeller abstracts from these
states and uses just one abstract state/activity to describe
the situation. Visibly, using just one activity is easier for
scheduling then using three activities. Moreover, if we
substitute such activity by a triple of activities in the final
schedule then we get a schedule for the original problem
so the conversion is sound.

Other pre-processing techniques are less invasive and
they just remove some unfeasibility from the model.
Assume that time windows are defined for activities and
for resources (their states). If we know that some resource
must be selected from the set of alternative resources then
we can make an intersection of the time window for the
activity with the union of the time windows of these
resources to get a new time window for the activity. It
means that some values may be removed from the time
window for the activity, which decreases the search space.

Note finally that pre-processing is closely related to data
checking so both techniques can be applied together.

Data Analysing
When we have a sound and complete formal description of
the problem, there remains one "small" step - to solve the
problem. There exist many solving algorithms for
particular classes of planning, scheduling, and timetabling
problems; the hard job is to choose the one that best fits
the problem or to extract some information from data that
the solver can use.

At top level, by analysing the data we can decide
automatically whether the problem belongs to traditional
planning (no resources and time), to traditional scheduling
(all activities are known), or if it requires both approaches.
In case of traditional problems we can further classify the
problem. For example, in traditional scheduling there
exists a Graham's classification of scheduling problems
and a catalogue of efficient algorithms for solving these
problems (Brucker 2001). Theoretically, if we classify the
problem, which can be done by analysing the data, then
we can find a solving algorithm automatically.
Unfortunately, Graham's classification is rather academic
so we can hardly expect that a real-life problem fits into a
category in this classification. Still, it is possible to find
sub-problems that can be solved using existing efficient
algorithms and the rest of the problem is solved using
some generic technique like constraint satisfaction.

Note that data analysis may be used also to find
additional information for the solving algorithm. For
example, we can go beyond simple activity joining
described in the previous section and we can identify some
required dependencies between the activities, so called
landmarks (Porteous and Sebastia 2000). A planning

algorithm can then use information about landmarks to
improve its efficiency.

Conclusions

In the paper we describe an integrated framework for
modelling planning and scheduling problems. We
concentrate on an informal description of such a
framework rather than on a precise specification of all the
attributes and solving algorithms.

This paper extends the work from (Barták and Rudová
2001) in the way of more precise specification of objects,
in particular recipes. We also separated the model of
domain from the problem and we put our framework into
a context of existing frameworks for planning (like HTN,
STRIPS) and scheduling (resources). Finally, we showed
how such a formal framework might automate some data
processing before we start planning/scheduling.

Acknowledgements

The research is supported by the Grant Agency of the
Czech Republic under the contract no. 201/01/0942. The
author would like to thank Hana Rudová, Roman Mecl,
and the team of VisOpt Ltd. for useful discussions
concerning modelling real-life scheduling and timetabling
problems. The author is also grateful to Ondrej Cepek for
proof-reading of the paper draft.

References

Barták R. 1999. On the Boundary of Planning and
Scheduling: A Study. In Proceedings of the 18th Workshop
of the UK Planning and Scheduling SIG, 28-39,
Manchester, UK.

Barták R. and Rudová H. 2001. Integrated Modelling for
Planning, Scheduling, and Timetabling Problems. In
Proceedings of the 20th Workshop of the UK Planning and
Scheduling SIG, 19-31, Edinburgh, UK.

Binh Do M. and Kambhampati S. 2000. Solving
planning-graph by compiling it into CSP. In Proceedings
of AIPS 2000, 89-91.

Brenner M. 2001. A Formal Model for Planning with
Time and Resources in Concurrent Domains. In
Proceedings of IJCAI-01 Workshop Planning with
Resources, Seattle.

Brucker P. 2001. Scheduling Algorithms. Springer Verlag.

Coddington A., Fox M., Long D. 2001. Handling Durative
Actions in Classical Planning Frameworks. In
Proceedings of the 20th Workshop of the UK Planning and
Scheduling SIG, 44-58, Edinburgh, UK.

Erol K., Hendler J., and Nau D. 1994. UMCP: A Sound
and Complete Procedure for Hierarchical Task-Network

28

Planning. In Proceedings of 2nd International Conference
on AI Planning Systems, 249-254.

Fikes R. and Nilsson N.J. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 2: 189-208.

Fox M. and Long L. 2001. PDDL 2.1: An extension to
PDDL for expressing temporal planning domains.
Technical Report, Department of Computer Science,
University of Durham, UK.

Ghallab M., Howe A., Knoblock C., McDermott D., Ram
A., Veloso M., Weld D., Wilkins D. 1998. PDDL - The
Planning Domain Definition Language, Tech Report CVC
TR-98-003/DCS TR-1165, Yale Center for Computational
Vision and Control.

Kingston J.H. 2001. Modelling Timetabling Problems
with STTL. In Proceedings of The Practice and Theory of
Automated Timetabling, 309-321, LNCS 2079, Springer
Verlag.

Koehler J. 1998. Planning under Resource Constraints. In
Proceedings of 13th European Conference on Artificial
Intelligence, 489-493, Brighton, UK.

Laborie P. 2001. Algorithms for Propagating Resource
Constraints in AI Planning and Scheduling: Existing
Approaches and New Results. In Proceedings of 6th

European Conference on Planning, 205-216, Toledo,
Spain.

Nareyek A. 2000. AI Planning in a Constraint
Programming Framework. In Proceedings of 3rd

International Workshop on Communication-Based
Systems.

Porteous J. and Sebastia L. 2000. Extracting and Ordering
Landmarks for Planning. In Proceedings of the 19th

Workshop of the UK Planning and Scheduling SIG, 161-
174, Milton Keynes, UK.

Smith D.E, Frank J., and Jónsson A.K. 2000. Bridging the
Gap Between Planning and Scheduling. Knowledge
Engineering Review, 15(1): 61-94.

Srivastava B. and Kambhampati S. 1999. Scaling up
Planning by teasing out Resource Scheduling. Technical
Report ASU CSE TR 99-005, Arizona State University.

Van Beek P. and Chen, X. 1999. CPlan: A Constraint
Programming Approach to Planning. In Proceedings of
AAAI-99, 585-590.

Wallace, M. 1994. Applying Constraints for Scheduling,
in: Constraint Programming, Mayoh B. and Penjaak J.
(eds.), NATO ASI Series, Springer Verlag.

Wren A. 1996. Scheduling, Timetabling and Rostering -
A Special Relationship. In Proceedings of The Practice
and Theory of Automated Timetabling, 46-76, LNCS
1153, Springer Verlag.

29

Extending TIM domain analysis to handle ADL constructs

Stephen Cresswell, Maria Fox and Derek Long
Department of Computer Science, University of Durham, UK.

{s.n.cresswell,maria.fox,d.p.long}@durham.ac.uk

Abstract

Planning domain analysis provides information which
is useful to the domain designer, and which can also
be exploited by a planner to reduce search. The TIM
domain analysis tool infers types and invariants from
an input domain definition and initial state. In this
paper we describe extensions to the TIM system to al-
low efficient processing of domains written in a more
expressive language with features of ADL: types, con-
ditional effects, universally quantified effects and neg-
ative preconditions.

Introduction

The analysis of a planning domain can reveal its im-
plicit type structure and various kinds of state invari-
ants. This information can be used by domain designer
to check the consistency of the domain and reveal bugs
in the encoding. It has also been successfully exploited
in speeding up planning algorithms by allowing incon-
sistent states to be eliminated (Fox & Long 2000), by
revealing hidden structure that can be solved by a spe-
cialised solver (Long & Fox 2000), or as a basis for or-
dering goals (Porteous, Sebastia, & Hoffmann 2001).
Many other researchers are also interested in domain

analysis. Planners based on propositional satisfiabil-
ity (Kautz & Selman 1998) and CSP (van Beek &
Chen 1999) often require hand-coded domain knowl-
edge, much of which could be derived from domain
analysis. TLPlan (Bacchus & Kabanza 2000) and
TALPlanner (Doherty & Kvarnstrom 1999) rely on con-
trol knowledge which might be inferrable from the un-
derlying structures describing the behaviour of the do-
main. Our analysis produces not just invariants, but
the underlying behavioural models from which they can
be produced. These models provide a basis for further
analysis, giving an advantage over other invariant al-
gorithms, such as DISCOPLAN (Gerevini & Schubert
1998), which do not produce these structures.
The TIM system performs its analysis by construct-

ing from the planning operators a set of finite state
machines (FSMs) describing all the transitions possible

Copyright c© 2002, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

for single objects in the domain. The type structure
and domain invariants are derived from analysis of the
FSMs.
Earlier versions of TIM have accepted planning prob-

lems expressed only in the basic language of STRIPS.
A more expressive language for describing planning do-
mains using features derived from ADL (Pednault 1989)
is in widespread use. The use of these extensions makes
life easier for the domain designer, but it is difficult to
handle them efficiently in planning systems.
In this paper we describe work to extend the lan-

guage handled by TIM to include the main features of
ADL, whilst also attempting to preserve the efficiency
of TIM processing. The features we describe here are
types, conditional effects, universally quantified effects
and negative preconditions.
For example, in the briefcase domain, consider the

move operator, shown below. The operator includes
a universally quantified conditional effect which says
that when the briefcase is moved between locations, all
the portable objects which are inside the briefcase also
change their location. 1

(:action move

:parameters (?m ?l - location)

:precondition (is-at ?m)

:effect (and (is-at ?l)

(not (is-at ?m))

(forall (?x - portable)

(when (in ?x)

(and (at ?x ?l)

(not (at ?x ?m)))))))

A typical invariant that we would like to get from
this domain is that portable objects are at exactly one
location:

∀x : portable · ∀y · ∀z · at(x, y) ∧ at(x, z)→ y = z
∀x : portable · (∃y : location · at(x, y))

TIM

For a full account of the TIM processing, see (Fox &
Long 1998). Here we briefly summarise those parts of
the algorithm which are relevant to the extension to
ADL.

1This encoding of the domain is from IPP problem set.

30

We are concerned with extracting state descriptions
for individual objects. These are described using prop-
erties, which describe a predicate and an argument po-
sition in which the object occurs. For example, if we
have at(plane27, durham) in the initial state, then we
consider the object plane27 to have property at1, and
the object durham to have property at2.
To explain the processing of domain operators by

TIM, we must introduce two kinds of derived struc-
ture — the property relating structure (PRS) and the
transition rule.
The PRS is derived from an operator, and records

the properties forming preconditions, add effects and
delete effects for a single parameter of an operator. For
example, consider the operator fly:

(:action fly

:parameters (?p ?from ?to)

:precondition (and (at ?p ?from) (fuelled ?p) (loc ?to))

:effect (and (not (at ?p ?from))

(at ?p ?to)

(not (fuelled ?p))

(unfuelled ?p)))

The parameters of the operator give us the following
PRSs:

?p
pre: at1, fuelled1
add: at1, unfuelled1
del: at1, fuelled1

?from
pre: at2
add:
del: at2

?to
pre: loc1

add: at2
del:

A transition rule is derived from a PRS, and describes
properties exchanged. Transition rules are of the form:

Enablers ⇒ Start → Finish

where Enablers is a bag of precondition properties
which are not deleted, Start is a bag of precondition
properties which are deleted, and Finish is a bag of
properties which are added. Empty bags are shown as
null, or may be omitted in the case of enablers. The
transition rules corresponding to the above PRSs are:

fuelled1 ⇒ at1 → at1
at1 ⇒ fuelled1 → unfuelled1

at2 → null

loc1 ⇒ null → at2

The part of the TIM processing that we discuss in the
rest of the paper consists of the following main stages:

1. Construct PRSs from operators.

2. Construct transition rules from PRSs.

3. Unite the properties in the start and finish parts
of transition rules, to group properties into prop-
erty and attribute spaces. Property spaces arise
where transition rules define a finite number of pos-
sible states (as the rules involving at1, fuelled1, and
unfuelled1) — these define an FSM. Attribute spaces
arise where transition rules allow properties to be
gained without cost (as for at2) — these spaces must
be treated in a separate way, as it is not possible to
enumerate all of their possible states.

4. Project the propositions from the initial state of the
planning problem to form bags of properties repre-
senting the initial states for each state space.

5. Extend the states in each space by application of
transition rules.

This process derives information that can be used
to extract types and invariants. Each unique pattern of
membership of property and attribute spaces for the do-
main objects defines a type. From the generated FSMs,
domain invariants can be extracted.

ADL extensions to TIM
The original version of TIM (Fox & Long 1998) deals
only with untyped STRIPS domains. We are interested
in extension to a subset of ADL, and our extensions fall
into four areas:

• Types

• Universally quantified effects

• Conditional effects

• Negative preconditions

A generic means of transforming ADL domain de-
scriptions into simple STRIPS representations has been
given by Gazen and Knoblock (Gazen & Knoblock
1997). Although it would be possible to apply this di-
rectly as a preprocessing stage to TIM, an undesirable
feature of this approach is that several stages of the
processing may lead to an exponential blow-up in the
size of domain descriptions or initial state descriptions.
In particular, universally quantified effects lead to an

expansion in the size of the operator proportional to the
number of domain objects that can match the quanti-
fied variable. Conditional effects lead to generation of
multiple operators, with one operator for each possible
combination of secondary conditions.
In the following work, we seek to avoid the combi-

natorial blow-up with a combination of simplifying as-
sumptions, and by avoiding operator expansions which
are irrelevant to the TIM processing.
TIM analysis only needs to work with structures de-

scribing what transitions are available to individual ob-
jects, and what states they can reach. The transitions
generated must capture all possible transitions, and
generate all possible states of individual objects. The
transitions are only partial descriptions of operators,
and the object states are only partial descriptions of a
planning state. This representation does not preserve
or make use of all the conditions present in the original
operator, and could not be correctly used in a planner.
Hence, some of the information which is painstakingly
preserved in the Gazen-Knoblock expansion (e.g. in-
stantiation of forall effects) makes no difference to
the resulting TIM analysis, and can be avoided.
Now we consider the processing of each language fea-

ture in more detail. In most cases, we describe the
conversion by showing a transformation on the opera-
tor and domain description before the standard TIM
analysis is performed on the modified descriptions.

31

In general, the transformations carried out on opera-
tor descriptions will not yield operators that are correct
for use in a planner. They are correct for the TIM anal-
ysis, because they yield all possible legal transitions for
objects in the domain.

Types

Part of the processing performed by TIM is to derive a
system of types for the domain. Clearly, if types have
already been specified in the domain, these should be
taken into account. Type restrictions on the parameters
of an operator are transformed into additional static
preconditions on the operators.
Types declared for the objects in the domain also give

rise to additional propositions in the initial state. Note
that since PDDL allows for a hierarchy of types, each
object must have a proposition for every type of which
it is a member.
The predicates which are automatically introduced

to discriminate will be recognised as static conditions
by TIM, and will then be taken into account when de-
termining the derived types inferred by TIM. Hence, we
can be sure that TIM types will always be at at least
as discriminating as the declared types.

Conditional Effects

Treatment of conditional effects is rather more challeng-
ing, but offers far more scope for interesting results from
the analysis. Consider the following example operator:

(:action A

:parameters (?x)

:precondition (p ?x)

:effect (and (not (p ?x)) (q ?x)

(when (r ?x) (and (not (r ?x)) (s ?x)))))

From this operator we would like to infer (assuming
no other operators affect the situation) that parameter
?x can make transitions p1 → q1 and p1 ⇒ r1 → s1.
This would enable us to identify two potential state
spaces and consequent invariants: p and q are mutex
properties and s and r are mutex properties.
In considering treatment of conditional effects, sev-

eral proposals were examined and these are discussed
in the following sub-sections.

Separated dependent effects One technique by
which we hoped to harness the power of existing TIM
analysis was to construct a collection of standard tran-
sition rules that capture the behaviour encoded in con-
ditional effects. The previous example shows that
this is possible in certain cases. The first proposal
for achieving this was based assuming all (when ...
...) clauses in an operator to be mutually exclusive, in
which case there is no problem with exponential blow-
up. Under this assumption, we can generate a sepa-
rate pseudo-operator for each conditional effect. The
pseudo-operator has the primary preconditions and ef-
fects from the original operator, and the when clause is
absorbed by merging its preconditions into the primary
preconditions, and its effects into the primary effects.

We also create an operator with only the primary ef-
fects. These operators are pseudo-operators because
they do not always encode the same behaviour as the
original operators and could not be used for planning.
However, this does not prevent them from being used
to generate valid transition structures that reflect the
transitions described by the original conditional effects
operators.
Unfortunately, conditional effects do not always sat-

isfy the assumption that at most one conditional effect
is triggered during a single application of an action. In
fact, the assumption required for correct behaviour can
be weakened: it is only necessary that at most one con-
ditional effect is triggered to affect the state of each pa-
rameter of the operator. Even this condition is stronger
than is appropriate for some domains.
An example where the assumption is violated is the

following:

(:action op_with_non_exclusive_conditions

:parameters (?ob)

:precondition (a ?ob)

:effect (and (not (a ?ob)) (x ?ob)

(when (b ?ob) (and (not (b ?ob)) (y ?ob)))

(when (c ?ob) (and (not (c ?ob)) (z ?ob)))))

For an object with initial properties {a1, b1, c1}, this
operator should allow the state {x1, y1, z1} to be reach-
able.
Instead, we actually generate the rules (a1 → x1),

(a1, b1 → x1, y1) and a1, c1 → x1, z1, since the opera-
tor leads to the creation of three pseudo-operators, one
with the pure simple effects of deleting a and asserting
x and the others each taking a precondition from their
respective conditional effect and the appropriate addi-
tional effect. With these rules it is not possible to reach
the state {x1, y1, z1}.
Failure to correctly generate all reachable states leads

to the generation of unsound invariants, so this ap-
proach cannot be used unless it is possible to guarantee
the necessary conditions for valid application.

Separating conditional effects The strong as-
sumption, that at most one of the conditional effects
of an operator will apply, can be replaced with a much
weaker assumption: that any number of the conditional
effects of an operator could be applicable. This as-
sumption can be characterised using the original TIM
machinery by creating pseudo-operators, one with the
complete collection of primary preconditions and effects
from the original operator and one for each conditional
effect, adding the condition for the effect to the pre-
conditions of the original and replacing the effect of
the original with the conditional effect. In the example
above, this would lead to the following transition rules:
a1 → x1, b1 → y1 and c1 → z1.
With these rules it is possible for extension (the pro-

cess by which TIM generates complete state spaces from
the initial state properties of objects) to generate all
the states we want, and more besides. For instance, we
could generate a state {a1, y1, c1}, by applying one of

32

the conditional effects without the corresponding pri-
mary effect.
The weakened assumption leads to correspondingly

weaker invariants, since the opportunity to apply rules
that do not correspond to actual operator applications
allows apparent access to states that are not, in fact,
reachable. More seriously, however, we have separated
the primary and secondary effects of the operator into
distinct transitions which can only be applied sequen-
tially. This does not fit with the intended meaning of
the operator, which is that all the preconditions (pri-
mary and secondary) are tested in the state before the
effects take place. In the previous example this does
not make any difference to the behaviour of the rules.
The circumstances under which it makes a difference

are:

• When any (primary or secondary) effect deletes a sec-
ondary precondition (for a different conditional ef-
fect). This is because sequentialising the rules will
cause the deleted effect to be unavailable for the ap-
plication of the rule with the secondary precondition
if the deleting rule is applied first. However, rules
can be applied in all possible orders so this leads to a
problem only when the second rule deletes a precon-
dition of the first rule, so that applying the rules in
either order prevents them from both being applied.

• When any (primary or secondary) effect deletes a
(primary or secondary) effect (where not both are
primary components or are in the same conditional
effect). In this case, as an operator, the classical se-
mantics (Lifschitz 1986) causes the add effects to oc-
cur after the delete effects and the apparently para-
doxical effects are resolved.

A simple example of the first case is an effect of the
form:

(when (and (q ?y) (p ?x))

(and (q ?x) (not (p ?x))))

(when (and (p ?y) (p ?x))

(and (r ?x) (not (p ?x))))

In both secondary effects, (p ?x) is deleted. If both
when conditions apply, the condition is deleted once.
The proposed compilation of the operators into transi-
tions will not deal with this correctly. The rules created
from these effects (supposing no primary pre- or post-
conditions affect them) will be of the form: p1 → q1

and p1 → r1. It looks as though a p1 property must
given up to gain either q1 or r1, but in fact both can be
purchased by giving up a single p1.
To handle this problem we can identify the common

deleted literal and collapse the rules to arrive at a third
rule: p1 → q1, r1. Notice that we cannot replace the
other rules with this one, since the conditions cannot
be assumed to always apply together. More generally,
we cannot assume that two rules generated from the
same operator that have a common element on their
left-hand-sides will always be exchanging different in-
stances of the property (even if derived from different
variables – the variables could refer to the same ob-

ject). Therefore, such rules have to be combined to
collapse the exchanged property into a single instance.
(It is interesting to observe that the pathological case,
in which the rules derive from primary effects affecting
different variables, can lead to a similar problem in the
original TIM analysis). There is a minor problem in
that the process of collapse could, in principle, be ex-
ponentially expensive in the size of the operator, since
every combination of collections of rules sharing a left-
hand-side element must be used to generate a collapsed
rule (in which the shared collection is collapsed into a
single instance of each property). In practice the size
of these sets of rules is very small and the growth is
not a problem. A more significant problem is that the
combinations of these rules can lead to further weaken-
ing of the possible invariants through over-generation
of states.
An example of the second case is:

(:action A

:parameters (?x)

:precondition (p ?x)

:effect (and (not (p ?x)) (q ?x)

(when (q ?x) (and (not (q ?x)) (r ?x)))))

Notice that in order to delete an effect that is added
by the primary effect of an operator, or another con-
ditional effect, the deleted condition must be a precon-
dition of the effect. The overall behaviour of (A a)
applied to a state in which (p a) and (q a) hold is to
generate a state with (q a) and (r a). This is because
the delete effect is enacted before the add effect, so that
the net effect on (q a) is for it to be left unchanged.
Application of the operator to a state in which only (p
a) holds will yield the state in which only (q a) holds.
The rules generated from this operator using the pro-

posal of this section are p1 → q1 and p1 ⇒ q1 → r1.
Testing the enablers in application of these rules allows
a precise generation of states in both cases. However,
it is generally not possible to consider enabling condi-
tions without compromising correct behaviour. Sup-
pose that the additional primary precondition (s ?x)
and primary effect (not (s ?x)) are added to the pre-
vious operator. Then the rules will become: p1, s1 → q1

and p1, s1 ⇒ q1 → q1. It is now impossible to apply the
rules sequentially to the property space state {p1, s1}
if we take enablers into account, because the first rule
will consume the s1 property and prevent the second
rule from being applied. Consequently, this approach
cannot restrict rule application using enabling condi-
tions and we will therefore be forced to generate the
unwanted states, weakening the invariants.

Conditional transitions The most radical treat-
ment of conditional effects involves a significant ex-
tension of the TIM machinery in order to extend the
expressive power of the rules in parallel with the ex-
tended expressive power of the operators. This is a
less attractive option, since it requires new algorithmic
treatments, but this price must be offset against the im-
proved analysis and the more powerful invariants that

33

can be inferred from domain encodings.
The proposal is to extend the expressiveness of the

transition rules to include conditional transitions. The
conditional component of the transition rule is an addi-
tional transition denoted by the keyword if. Satisfac-
tion of the condition depends on the presence in a state
of both enablers and the start conditions.

a1 → x1

if b1 → y1

if c1 → z1

Generating conditional transitions Firstly, we
must generalise the notion of a PRS into a nested
structure to represent operators including when condi-
tions. We include an extra field cnd to record an em-
bedded PRS for the conditional part of the operator.
op_with_non_exclusive_conditions then yields the
following PRS.

pre : a1

add : x1

del : a1

cnd :

[

pre : b1

add : y1

del : b1

]

[

pre : c1

add : z1

del : c1

]

Now we use the generalised PRSs to generate con-
ditional transition rules. PRS analysis for secondary
conditions is essentially the same as the analysis for pri-
mary conditions, except that only the adds and deletes
of the secondary rule are considered, but all the precon-
ditions of the containing structures must be included.
In general this construction is straightforward, but

there is an important case that presents a minor com-
plication. If a conditional effect deletes a primary pre-
condition then the primary precondition will be seen
as enabling the outer rule, but it will not appear as a
precondition for the conditional effect. One solution is
to simply handle the proposition as if it were a pre-
condition of the conditional effect, so that the prop-
erty appears as a start condition for the conditional
rule. However, this leaves the enabling condition out-
side, apparently required as an additional property for
the application of the conditional transition rule. This
presents the problem that if enablers are used in deter-
mining applicability of rules it will not be clear whether
the rule demands one or two copies of the property to be
applied. One way to solve this problem is to promote
the precondition, so that deleted conditions in condi-
tional effects are always explicit preconditions of the
conditional effects. To achieve this, a new conditional
effect must be added to the original operator, with the
deleted literals as its preconditions and all of the origi-
nal primary effects as its effects. The deleted literals are
now removed from the primary preconditions and added
explicitly as preconditions to all the other conditional

effects. This transformation yields an operator which
is equivalent in its effects on a state to the original,
although it can, in principle, be applied to a larger col-
lection of states (all states in which the deleted effects
are not true – the effect of application is null). Analysis
of this new operator yields a conditional rule with the
correct structure, distinguishing the case where a prop-
erty is genuinely an enabling condition from the case
where it is actually a copy of the deleted condition in a
secondary effect.

Uniting transition rules In TIM the process of
uniting is that of combining the collections of properties
into a partition such that each transition rule refers, in
its start and end components, only to properties in a
single set within the partition. This ensures that the
construction of extensions of states in property spaces
works within a closed subset of the properties used in
the domain and that the initial state properties are
properly divided between the property spaces to seed
the extension process.
In the case of conditional rules, the properties which

change between the start and end of each conditional
component of each rule must be united into the same
subset of the partition, and properties within different
conditional components of the same rule are also com-
bined.

uniters((Ens ⇒ Start → End) + Subrules) =
(Start − End) ∪ (End − Start)∪

⋃

Sr∈Subrules

uniters(Sr)

This form of uniting ensures that the property spaces
remain as small as possible, which improves the qual-
ity of the invariants that can be generated and also the
efficiency of the analysis. It does, however, impose ad-
ditional difficulties in the use of rules, since the same
rule can now affect the behaviour of objects in multiple
spaces (conditional elements might refer to properties
in entirely different spaces to the primary effects of the
rule). Each rule must be added to every space that it
applies to and considered during the extension of each
of those spaces separately.
A further change from the process of setting the ini-

tial collection of property spaces in STRIPS TIM is that
conditional rules can appear to contain attribute rules
when, in fact, they are half of a transition rule that is
completed by a second “attribute” rule in a conditional
effect. For example:

(:action B

:parameters (?x)

:precondition (p ?x)

:effect (and (not (p ?x))

(when (s ?x) (q ?x))

(when (not (s ?x)) (r ?x))))

This operator leads to the rule:

p1 → null
if s1 ⇒ null→ q1

if ¬s1 ⇒ null→ r1

34

which might suggest that p1, q1 and r1 should all be con-
sidered to be attributes and, consequently, have no use-
ful invariant behaviours. However, it would be better
to observe that the behaviour of these properties is ac-
tually equivalent to a pair of transitions: s1 ⇒ p1 → q1

and ¬s1 ⇒ p1 → r1 (exploiting negative preconditions,
discussed below). Although it might be possible to con-
vert the rules automatically, it becomes much harder
to do this in the context of multiple rules referring to
other parameters. It is actually easier to manage the
rules during extension. The important thing, during
initial property space construction, is to avoid labelling
properties as attributes on the basis of the structure of
conditional rules. A decision about which properties to
label as attributes must be postponed to the extension
phase.

The fact that the properties in a property space can
be distributed between primary and conditional rules
creates a complication for uniting: it is not enough
to put together properties in the same rule. Proper-
ties must be combined when they appear in “attribute”
rules such as the previous example. It will be noted,
however, that the example relies on the form of the
conditions of the conditional effects and this feature is
further discussed later in the paper.

Extending the state spaces with the conditional
transitions Extension is the stage most impacted by
the introduction of conditional rules. Conditional rules
must be applied to each state in the property space
containing them in order to generate a set of reachable
states. Thus, the key to exploiting these rules is to un-
derstand how to apply the conditional rules to a state.

When a standard transition rule is applied the start
conditions are removed from the state and the end con-
ditions added to the result to yield the (single) new
state. Conditional rules are applied by removing the
primary start properties and then, for each conditional
rule, continuing expansion under the assumption that
the condition applies and under the assumption that it
does not apply. Therefore, there will be 2n new states
generated for n conditional effects (subject to repeti-
tion of previously visited states). Although this is po-
tentially exponentially expensive, n is typically a very
small value, so that the cost is not a problem. Never-
theless, conditional effects represent a potential source
of considerable cost in the TIM analysis (just as they
can in planning itself). The hope is that we will have
saved significant cost by deferring this combinatorial
aspect to the latest possible time, and some redundant
processing has been avoided.

There are, in fact, several special cases that can be
used to reduce the number of combinations of condi-
tional rule elements that must be considered. Condi-
tional rules can only be applied if the start properties
are present in the state to which they are applied. Con-
ditions that are restricted to propositions concerning
only the variable that is affected by the transition can
usually be restricted by the enabling or start conditions

of the rule. Further, the observations of the next section
provide for an important collection of situations.

Having allowed possible attribute conditional rules
to be entered into property spaces it is extremely
important that the extension process monitors the
possible existence of increasing attributes in a property
space. This possibility also exists in the original TIM
analysis and is handled by checking to see whether
newly generated states are proper super-states of
previously generated states. In such cases, if there
is path of transition rules leading from the sub-state
to the super-state, the difference between the states
represents a collection of attribute properties and they
must be stripped from the property space and its rules
before extension can be continued. This process might
iterate several times before the space settles on a fixed
collection of properties. If this collection is actually
empty then the properties will, in fact, all be attributes
due to the effects of the conditional rules in the space.

Hidden exclusivity In some operators, conditional
effects are mutually exclusive because it is not possi-
ble for their preconditions to hold simultaneously. In
such cases the extension process described above will
generate permissive property spaces and weaker invari-
ants. In order to improve the generation process it is
necessary to avoid allowing rules to be applied simulta-
neously when their conditions will prevent it. Further
improvement can be made by observing that in many
cases the conditional effects are created to ensure that
precisely one effect of a collection will be triggered. For
example:

(:action op1

:parameters (?y)

:precondition (a ?y)

:effect (and

(not (a ?y))

(b ?y)))

(:action op2

:parameters (?y)

:precondition (b ?y)

:effect (and

(not (b ?y))

(a ?y)))

(:action op3

:parameters (?x ?y)

:precondition (p ?x ?y)

:effect (and

(when (a ?y) (q ?x))

(when (b ?y) (r ?x))

(not (p ?x ?y))))

In this example, properties a1 and b1 may only be
exchanged for each other, as illustrated in Figure 1. If,
in the initial state, objects only have at most one of the
two properties, then the two when conditions in op3 are
mutually exclusive.

35

a1 b1
op1

op2

Figure 1: Property space and transitions for properties
a1 and b1.

The generated transitions would be: a1 → b1, b1 → a1,

p1 → null
if null→ q1

if null→ r1

and p2 → null. Failure to observe that the conditional
effects are governed by preconditions of which precisely
one must be true will mean that no invariants can be
generated using the properties p1, q1 and r1. In order
to discover these we need two pieces of information to
be available during extension: the fact that each condi-
tional effect is governed by a property that, in this case,
apply to another parameter and form part of another
property space and the fact that the properties govern-
ing these effects are the two alternative states in that
space. We therefore mark conditional rules with all of
the properties that govern their application. Enabling
conditions that are properties of other parameters are
called aliens. We enclose them in square brackets to dis-
tinguish them from enablers applying to the parameter
governed by the transition rule.

p1 → null
if [a1]⇒ null→ q1

if [b1]⇒ null→ r1

This provides the first piece of information. The second
piece is derived from an analysis of the property space
containing properties a1 and b1. It is important that the
analysis makes the latter space available before the use
of the rule that depends upon it. Therefore, we perform
a dependency analysis to order the property spaces for
appropriate expansion order. Where one state space
depends on another, an order can be imposed between
them that would allow information from the first to be
used in the second. Space z depends on space y if tran-
sitions belonging to space z have enabling conditions
which belong to space y.
Circular dependency amongst state spaces must be

handled carefully. One way is to break the cycle arbi-
trarily and then follow the dependencies that remain.
The first space in the chain will then be expanded with
the more conservative assumption that no invariants
affect the conditions governing the application of con-
ditional effects, possible leading to weakened invariants.
Because these weakened invariants can propagate their
impact up the chain, it would obviously be best to break
the chain in such a way as to minimize the impact that

these weakened invariants might have. An alternative
solution to the problem of cyclic dependency is to carry
out extension on these property spaces in an interleaved
computation, leading to a fixed-point. The approach is
to apply conditional rules relative to the dependencies
on property spaces using the states that have been gen-
erated so far. The extension process must then iterate
around the cycle of interdependent spaces, adding new
states as new enabling states are added to the spaces on
which later spaces depend. This iterative computation
will have to be restarted if any of the properties in a
space is identified as an attribute, as described previ-
ously.

Managing combinations of subrules In this sec-
tion we give more detail about how to use informa-
tion from spaces for which the extension process is al-
ready completed, together with annotation of the sub-
rules with alien enablers, to restrict the combinations
in which subrules of a conditional rule can fire.
For a subrule to fire, we require that for each variable-

space combination occurring as an alien enabler in the
subrule, there is at least one state that satisfies the
enabling property.
The coupling between subrules is captured because

valid combinations of subrule firings are those in which
the enabling conditions can be simultaneously satisfied.
Enabling conditions are satisfied, if, for each variable,
and each space in which it occurs, there is a non-empty
set of satisfying states.
The approach adopted depends on amending the

TIM algorithm with the following steps

1. During rule construction, each subrule is anno-
tated with alien enablers, each consisting of a triple
aliens(subrule) is a set of 〈property, space, var〉,
where var is the variable from which the enabler was
generated in the planning operator.

2. A graph of dependencies between spaces is con-
structed from the alien enablers.

3. Spaces are constructed in order, according to topo-
logical sort of the dependency graph. Cycles must be
broken as discussed above.

Now we define the valid combinations of rule firings
by describing a set of variables, and constraints which
must hold between them.
For each variable-space combination in alien enablers,

we have a variable state(variable, space) whose domain
ranges over possible states of variable in space.

state(var, sp) ∈ states(sp)

For each property-variable-space combination in
alien enablers, we have a boolean constraint vari-
able, sat(property, variable, space), whose value indi-
cates whether the property is satisfied.

sat(prop, var, sp) ∈ {0, 1}

For each subrule, we have a variable f(subrule),
whose domain is {0,1}, which records the whether or

36

not the subrule can fire. Note that since the possible
values remaining in the domain are attached to the vari-
able, we can describe never {0}, sometimes {0,1}, and
always {1}.
Now we attach constraints between these variables as

follows:
Between the sat(property, variable, space) variables,

and the state(variable, space), we require that the
property is satisfied iff var is in a compatible state in
space.

∀subrule ∈ subrules
∀〈prop, var, sp〉 ∈ aliens(subrule).

sat(prop, var, sp)⇔ has prop(state(var, sp), prop)

Between the f(subrule) variables and the
sat(property, variable, space) variables of its alien
enablers, we require that subrule fires iff the conjunc-
tion of its alien enablers is satisfied.

f(subrule)⇔
∧

sat(prop, var, sp)
〈prop,var,sp〉∈aliens(subrule)

These constraints are used to determine which com-
binations of subrules may fire together.

Universally Quantified Effects

Since we are concerned with the transitions made by
individual objects, it is not necessary to expand the op-
erator in advance with every instantiation of the quan-
tified variable, as is done by (Gazen & Knoblock 1997).

(:action one_forall

:parameters (?a - t1)

:precondition (p ?a)

:effect (and (not (p ?a))

(q ?a)

(forall (?b - t2)

(when (r ?a ?b)

(and (not (r ?a ?b)) (s ?a ?b))))))

The effect inside the quantifier may occur as many
times as there are instantiations for the quantified vari-
able ?b.
For ?b itself, we can generate a transition rule exactly

as if it was an ordinary parameter of the operator. The
number of objects making the transition is not relevant,
as any object belonging to this state space experiences
only a single transition. In the above example, analysis
for the variable ?b gives the transition r2 → s2.
Now consider the transitions for the variable ?a. Out-

side the quantifier, ?a undergoes a single transition
p1 → q1. Inside the quantifier, ?a undergoes a tran-
sition r1 → s1, but the number of times the transition
may occur depends on the number of instantiations the
quantified variable can take. This reasoning applies to
any variable occurring inside the scope of the quantifier,
which occurs in an effect together with the quantified
variable.
We must again resort to a new notation to describe

the resulting transition rules. We use ∗ to indicate that

the transition inside the quantifier may be performed
an unknown number of times.
For the variable ?a, we have:

p1 → q1

(r1 → s1)
∗

In the extension process, the interpretation of the
starred rule is that the inner transition may occur any
number of times.
Observe that in this example, the transition inside

the quantifier is an exchange of properties. It may also
occur that the transition inside the quantifier involves
properties simply being gained or lost. Such properties
are considered to be attributes in the TIM system, and
are processed in a separate way. The presence of such
rules otherwise leads to non-termination of the exten-
sion process, as attributes may be added without limit.
Attribute rules are less useful for discovering invariants,
and it is unfortunate if properties are considered as at-
tributes unnecessarily. This is harmful to the TIM anal-
ysis because any property which becomes an attribute
also makes anything for which it can be exchanged into
an attribute.
It is our contention that properties will not be made

into attributes unnecessarily as a result of analysing
the quantified effect. Where properties are exchanged,
the whole exchange will normally take place inside the
quantifier, as in the example above.
An example where a quantified effect correctly gives

rise to attribute rules can be seen in the briefcase move
operator given above. There the at2 properties are at-
tributes — the portables at a location may be gained
and lost without exchange.
An awkward example can be found in the

Schedule domain, in which predicates of the form
(painted ?object ?paint) are typical. All operators
in the domain which mention painted include a dele-
tion which is universally quantified over possible paint
colours, as in the example operator shown below. Some
of the operators also add a single painted effect. Hence
all operators which touch an object’s painted1 property
result in a state with either 0 or 1 instances of the prop-
erty for that object. If this holds also in the initial state,
it is an invariant.

(:action do-immersion-paint

:parameters (?x ?newpaint)

:precondition (and

(part ?x)

(has-paint immersion-painter ?newpaint)

(not (busy immersion-painter))

(not (scheduled ?x)))

:effect (and

(busy immersion-painter)

(scheduled ?x)

(painted ?x ?newpaint)

(when (not (objscheduled))

(objscheduled))

(forall (?oldpaint)

(when (painted ?x ?oldpaint)

(not (painted ?x ?oldpaint))))))

37

It is problematic that the quantified effect makes it
appear that painted1 is a decreasing attribute. In ear-
lier versions of TIM, the appearance of decreasing at-
tribute transitions always led to the creation of a sepa-
rate attribute space. However, if the attribute may only
decrease, it can lead to only a finite number of states, so
it is safe to have rules of this kind in a property space.
It is important to take this approach, as invariants will
otherwise be lost.

Negative preconditions

Our treatment of negative preconditions is currently the
most restrictive described here. We use a similar tech-
nique to (Gazen & Knoblock 1997): for each predicate
that may appear as a negative precondition, we create a
new predicate to represent the negative version of that
precondition. This predicate must exactly complement
the positive use of the predicate and it replaces, in pre-
conditions, the use of the negative literal.
For those predicates which occur anywhere as a neg-

ative precondition, we must do the following to the ef-
fects of every operator:

• Wherever the positive version of the predicate ap-
pears as a delete effect, the negative version must
appear as an add-effect.

• Wherever the positive version of the predicate ap-
pears as an add effect, the negative version must ap-
pear as a deleted effect.

We complete the initial state of the problem descrip-
tion as follows: For each predicate and each object that
may instantiate the predicate, if there is no positively-
occurring fact, we add the negative version of the fact.
In the case of negatively-occurring predicates with

multiple arguments, the completion of initial state is
very expensive, and would, in any case, lead to a much
weaker domain analysis. For our processing we impose
the restriction that only predicates of a single argument
are handled. This also allows the transformation to be
performed, not on the operator itself, but to be pro-
cessed at the level of PRSs.
We believe that predicates with more than a single

argument could be handled efficiently using a represen-
tation in which properties which properties are counted,
but this remains an area of further investigation.

Results

A prototype system has been implemented which suc-
cessfully produces the expected invariants for all the
cases considered in this paper, except those relying on
a full treatment of universal quantifiers. Work on the
handling of universal quantifiers is currently in progress.
Additional computational overheads for handling the
conditional effects are negligible.
In the example of hidden exclusivity between condi-

tional transitions, the system successfully detects that
exactly one of the subrules may fire, and thus extension
does not over-generate states or unnecessarily weaken

p1

q1op3

r1

op3

Figure 2: Property space and transitions for properties
p1, q1 and r1.

the analysis by creating an attribute space. The result-
ing space for the properties p1, q1 and r1 is shown in
Fig. 2.
Directly from the state space, we get that states

in this space allow exactly one of the properties
{p1, q1, r1}, and from this the following invariants are
generated:

FORALL x:T1. (Exists y1:T0. p(x,y1) OR r(x) OR q(x))

FORALL x:T1. NOT (Exists y1:T0. p(x,y1) AND r(x))

FORALL x:T1. NOT (Exists y1:T0. p(x,y1) AND q(x))

FORALL x:T1. NOT (r(x) AND q(x))

Related work

Both the system of Rintanen (Rintanen 2000) and
Gerevini and Schubert’s DISCOPLAN (Gerevini &
Schubert 1998) rely on generating an initial set of can-
didate domain invariants. These are then tested against
the operators to see if they hold after the application of
the operator. Candidate invariants which are not pre-
served are either discarded or strengthened by adding
extra conditions and tested further. In both systems,
discovered invariants can be fed back, to help discover
further conditions.
The current version of DISCOPLAN (Gerevini &

Schubert 2000) has been extended to handle conditional
effects, types and negative preconditions, but does not
handle universal quantification.
An interesting question is whether DISCOPLAN can

detect and exploit the occurrence of mutually exclu-
sive secondary conditions. Our tests with the current
version of DISCOPLAN indicate that it cannot. The
account in (Gerevini & Schubert 2000) discusses the
feeding back of discovered invariants into the process,
by using this information to expand operator defini-
tions. It appears that currently, only the implicative
constraints are fed back in this way. To correctly re-
solve this problem would require XOR constraints to be
fed back into the processing of secondary conditions.

Conclusion

In this paper we have explored the extension of TIM to
handle a subset of ADL features. The features we have
not considered are those that allow fuller expressiveness
in the expression of preconditions: quantified variables
and arbitrary logical connectives. There are significant
difficulties in attempting to handle these features, since

38

the opportunity to identify the specific properties asso-
ciated with particular objects is obscured by the pos-
sibility for disjunctive preconditions combining proper-
ties of different objects, universally quantified variables
that allow reference to arbitrary objects, and nested
expressions that can involve exponential expansion if
conversion to disjunctive normal form is used. We have
also not considered a full treatment of equality and in-
equality propositions, nor of arbitrary negated literals.
The features that have been considered, and for

which there are extensions that allow TIM to extract in-
variants, include conditional effects, quantified effects,
types and a restricted form of negative preconditions.
These features form the core of those used in existing
ADL domain encodings, with the exception of the ADL
Miconics-10 domain used in the 2nd International Plan-
ning Competition in 2000. The most difficult feature
to handle is the use of conditional effects and we have
shown that there are a variety of possible approaches,
each with advantages and disadvantages. The most
powerful approach is the extension of the underlying
TIM machinery, rather than an attempt to preprocess
conditional effects out of the operators in order to reuse
the STRIPS TIM machinery. This extended machinery
complicates the entire sequence of analysis phases con-
ducted by TIM and we have described the effects that
are implied for each stage in turn.
The next stages of this work include completion of

a full implementation of all of the features described
in this paper, a further exploration of the treatment of
negative preconditions and experimentation with the
system on existing ADL domains.

Acknowledgements

The work was funded by EPSRC grant no. R090459.

References

Bacchus, F., and Kabanza, F. 2000. Using temporal
logics to express search control knowledge for plan-
ning. Artificial Intelligence 116.

Doherty, P., and Kvarnstrom, J. 1999. TALplanner:
An empirical investigation of a temporal logic-based
forward chaining planner. In Proceedings of the 6th
Int’l Workshop on the Temporal Representation and
Reasoning, Orlando, Fl. (TIME’99).

Fox, M., and Long, D. 1998. The automatic infer-
ence of state invariants in TIM. Journal of Artificial
Intelligence Research 9:367–421.

Fox, M., and Long, D. 2000. Utilizing automat-
ically inferred invariants in graph construction and
search. In International AI Planning Systems confer-
ence, AIPS 2000, Breckenridge, Colorado, USA.

Gazen, B. C., and Knoblock, C. A. 1997. Combin-
ing the expressivity of UCPOP with the efficiency of
graphplan. In ECP, 221–233.

Gerevini, A., and Schubert, L. K. 1998. Inferring

state constraints for domain-independent planning. In
AAAI/IAAI, 905–912.

Gerevini, A., and Schubert, L. 2000. Extending the
types of state constraints discovered by DISCOPLAN.
In Proceedings of the Workshop at AIPS on Analyzing
and Exploiting Domain Knowledge for Efficient Plan-
ning, 2000.

Kautz, H., and Selman, B. 1998. The role of domain-
specific knowledge in the planning-as-satisfiability
framework. In Proceedings of the 4th International
Conference on AI Planning Systems.

Lifschitz, E. 1986. On the semantics of STRIPS. In
Proceedings of 1986 Workshop: Reasoning about Ac-
tions and Plans.

Long, D., and Fox, M. 2000. Recognizing and ex-
ploiting generic types in planning domains. In Inter-
national AI Planning Systems conference, AIPS 2000,
Breckenridge, Colorado, USA.

Pednault, E. 1989. ADL: Exploring the middle ground
between strips and the situation calculus.

Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On
the extraction, ordering, and usage of landmarks in
planning. In Proceedings of European Conference on
Planning.

Rintanen, J. 2000. An iterative algorithm for synthe-
sizing invariants. In AAAI/IAAI, 806–811.

van Beek, P., and Chen, X. 1999. Cplan: A constraint
programming approach to planning. In Proceedings
of the 16th National Conference on Artificial Intelli-
gence, Orlando, Florida.

39

Abstract
In recent years, the power of
domain−independent planners which
use hand coded domain−specific
control knowledge has been
demonstrated [AIP00]. This
approach, though fruitful in terms of
planner performance, has several
issues asociated with it. Firstly,
control rules need to be hand coded
for each domain. This affords no
scope for reuse, and the control rules
formulated rely on the control rule
writer’s ability to recognise and
exploit structure in the domain.
Secondly, in comparisons between
systems, it is often unclear to what
extent off−line control rule
construction governs the planners
overall performance. This paper
presents a new approach in
automatically instantiating domain
specific control rules from templates,
with the use of existing domain
analysis techniques. Using Generic
Type information concerning the
domain, template rules are
instantiated from a library of
Generic Control Rules. It is hoped
that these instantiated rules may
offer some of the benefits of hand−
coded domain specific knowledge,
but without many of the drawbacks.

1 Domain Analysis

Domain analysis is used in planning ultimately
as a means of reducing the search that is
essentially the burden of the planner. The

concept behind domain analysis is that by
analysing the domain in some way, it is often
possible to recognise unfruitful paths in the
search space (with respect to a problem instance)
without having to actually traverse it. Typically,
domain analysis is in the form of pre−processing
before the planner is invoked, and the
information unearthed by the domain analysis
tool is passed to the planner along with the
domain and problem specifications.

The field of domain analysis has developed to a
point at which it is able to provide planners with
important and valuable information relating to
the structure of certain domains. Existing domain
analysis techniques are capable of discovering a
variety of different forms of information, e.g.
State Invariants (conditions which are necessarily
true of every state reachable from the initial
state), Types (classification of domain objects
according to the states they can be in and the
operators that they can be changed by), etc.;
State Invariants are used to prune any branch of
the search space that violates them (as these are
not reachable states) while Type analysis can can
be used to disregard branches that violate type
restrictions (e.g. those states reached by applying
an operator to badly typed arguments).

Automatic domain analysis has been seen to
recognise structure within a domain that humans
have overlooked. A notable example of this is the
Paintwall domain [FL00], in which the walls can
be seen as traversing a map of locations
represented by different coloured paints. In the
1998 AI Planning Systems competition, the
Mystery domain (an encoding of the Logistics
domain, with alternative object and predicate

Reuse of Control Knowledge in Planning Domains

Luke Murray
Department of Computer Science

University of Durham, Durham, UK
l.c.j.murray@dur.ac.uk

40

names [MD00]) was ’found out’ by a domain
analysis tool, which allowed its planning system
to invoke appropriate transportation heuristics.

2 Generic Types

Notably, the work of Fox and Long (which
covers Type Analysis, Symmetry Analysis and
Generic Type Analysis) in the field of domain
analysis has provided the international planning
community with the notion of Generic Types.
These are higher−order types, populated by types
identified in a given domain, and are identified
by an extension of the type analysis machinery
[FL98], [FL00]. Type classification is carried
out by looking at the planning domain as a set of
finite state machines (FSMs) whose states are
representative of the individual argument
positions in each predicate, and whose transition
rules are governed by the operators described for
the domain. Those domain objects that can
traverse the same FSMs are grouped together
into a type. Generic Type analysis takes this
further and recognises templates or topologies of
FSMs associated with a particular type and
provide us with information relating to the
shared behaviours and properties of types in
totally distinct domains.

Each particular Generic Type has features which
play specific roles in its behaviour. These
features can be described at either the Generic
Type level or at the level of the instance of the
Generic Type. For example, one established
Generic Type is the Safe Portable Object Type
(SPOT). The distinguishing feature of a type
identified as a SPOT is that its members can be
transported between locations (according to
some map) but never have any other role in a
plan (commonly they have a specified goal
location). Safe Portable Objects (SPOs) are
distinguished from other Portable Objects
precisely because it is safe to transport them,
without affecting other processes in the domain.
A SPO (like Portable Objects in general)
changes location by being transported by a
Carrier, which can pickup and deposit the object

at any of the locations on its map.

It is possible to talk about the locatedness
predicate of a SPO, meaning the predicate
(relationship) which relates the SPO to the
location at which it is situated. For instances of a
SPO, such as packages in the Logistics domain,
we can say that the locatedness predicate (or at−
relation) is the at predicate. In the case of the
Gripper domain, where the balls are identified as
SPOs, in−room is the appropriate predicate. The
other features that all members of a SPOT posess
are a contained_in predicate (to show they are
being carried by a Carrier) and the ability to have
load and unload operations performed on them
(to be loaded onto or deposited from a Carrier).
Through these relations, is possible to talk about
either the location or the carrier object to which
the SPO is related in any given state. However, it
is important to remember that a group of objects
is only identified a SPOT if it meets the
requirements; that those objects form a Type and
that members of that type have no other role in
the plan than to be transported between locations.

3 The Language of Control Rules

Control rules can be supplied with the domain
description and problem instance and generally
give planners heuristics for manipulating objects
in the domain more efficiently. They can be
explicitly goal−directed (of the form "if P is in
the goal then do Q"), but need not be. They can
simply offer efficient ways to achieve some
desired state from some known state.

Historically, planners have generally had their
own languages for the purposes of inputting
domain specific knowledge. This is evident in
the recent landmarks of TLPlan [BK00] and
TALPlanner [DK99], both of which had
knowledge expressed in temporal logics. The
following is an example of a control rule for the
Logistics domain, and captures the fact that any
of the packages in the Logistics domain, once at
their goal location, should remain at that
location:

41

(1)
% ∀ X:{package1,package2}. ∀ Y: {bos−po,
pgh−po, bos−airport, pgh−airport} . at(X,Y) /\
Goal(at(X,Y)) => O(at(X,Y))

A proposal has been made to provide a standard
environment for the exchange of domain
knowledge in the form of DKEL [SH00].
However, these languages do not readily provide
support for the proposed Generic Control Rules
(i.e. control rules expressed in terms of Generic
Types). A temporal logic will be proposed for
expressing these control rules.

The logic proposed will incorporate the modal
temporal operators O (Next), in order to be able
to refer to progressions of states, % (Always) to
refer to all states and Goal to refer to the goal
state. The language will be used at three distinct
levels: at the highest level to express Generic
Control Rules as in the library, at an
intermediate level to enable the output of domain
specific logical formulae (resembling existing
control rule logics) and at a low level to provide
object−specific queries for use with planners not
necessarily capable of using general control
knowledge.

4 Generic Types and Control Rules

Where several different types have the same
structure of behaviour (i.e. equivalent states with
equivalent state changing operators), as in
Generic Types, it allows us to abstract any
heuristics relevant to any particular instance to
the abstracted level. This also means that
heuristics can be formulated in terms of the
abstraction, and then interpreted to apply to the
all of the instantiations of those abstractions. It
follows then that performance−enhancing
heuristics can be expressed in terms of the
Generic Type, as opposed to in terms of
instances of that Generic Type. This abstraction
allows the information to be applied in any
instance of the Generic Type that is identified.

This aim has, to some extent, been achieved and
was originally done in an integrated way, in the
domain−analysis/planner partnership of
TIM/STAN [FL98], in which hard−coded
heuristics were triggered by Generic Type
identification. There was no temporal aspect in
the hard−coded control information, though, and
no formalism was presented for the heuristics
expressed. Also, the integrated approach does not
allow the user easy access to the heuristics
themselves, which can be embedded in the
implementation. This makes it awkward to add to
the heuristics, or indeed to add to the Generic
Types that once identified, trigger those
heuristics.

The integrated approach also means that the
information discovered by the domain analysis
tool tends to be in a format tailored for its partner
system (the planner). The introduction of an API
to TIM has begun providing access to parts of the
domain anaylsis, of which Generic Type analysis
is only a part. The work described in this paper
aims to instantiate domain specific control
knowledge (from reusable hand coded templates)
using Generic Type information generated by
existing domain analysis techniques.

5 Generic Control Rules

As outlined earlier, it is proposed that control
rules be written in terms of Generic Types. The
following is an example of a Generic Control
Rule:

(2)
% ∀T: SPOT. ∀X: T. (location_ofT X) == (Goal
(location_ofT X)) => (O (location_ofT X)) ==
(location_ofT X)

This control rule expresses the heuristic that all
members of a Safe Portable Object Type should
remain at their goal location upon getting there.
The antecedent ensures that the location of the
object X in the current state is the same as it is in
the goal state (the state qualification, to check
that the rule is applicable). The consequent

42

expresses that in the next state, the location of X
is the same as in the current state (i.e the
direction for X to stay where it is). The
instantiation of the Generic Control Rule into a
domain specific control rule would involve the
specialisation of (2).

The location_of function is specific to the type
T. This is important as every domain type T may
have its own at−relation, argument positions
within that relation and types associated with
those argument positions. (location_ofT X)
should be able to return the argument that X is
located at, expressed as X and its location in the
at−relation specific to T. So the first step in
instantiating (2) is to identify the appropriate at−
relation (specific to T), with the types and
positions of its arguments (this process becomes
more complicated for relations with arities
greater than two). This enables us to create a
proposition from (location_ofT X), and in the
Logistics domain would look like:

(3)
at(x:T1, y:T2)

where T1 is the domain type identified as a
SPOT, T2 is the domain type identified as the
SPOT’s locations and at is the locatedness
predicate. We can then re−write the rule in (2)
using the substitution of (3) in place of
(location_ofT X), as:

(4)
% ∀X: T1. ∀Y: T2. (at(X,Y) /\ Goal(at(X,Y))
=> (O at(X,Y)) /\ at(X,Y))

Notice that when the equality is evaluated, it is
done with respect to a state (expressions without
a temporal operator have an implicit ’Now’ state
argument,
indicating the current state). Now that we are
dealing with propositions (see (3)) not values,
we want to express that those propositions are
true (in whatever their specified state), as
opposed to equal (which wouldn’t make sense).
As a result, the equalities expressed in (2)
become conjunctions as in (4), where the values
that were bound by the equality are expressed as
instances of the same variable. The introduction

of the second argument in the at−relation (Y)
requires the second quantification, but we have
available to us the type information to do this
(we want quantification over a type). Finally, the
lemma

(5)
A /\ B => A /\ C ≡ A /\ B => C

can be used to reduce (4) further to:
(6)

% ∀ X: T1. ∀ Y: T2. (at(X,Y) /\ Goal(at(X,Y))
=> (O at(X,Y)))

Individual object queries could be posted at this
lower level, for planners not capable of using
temporal control knowledge. This structure could
be queried with domain objects A: T1 and B: T2.
If the antecedent was satisfied then the planner
would know that the consequent should hold (in
the plan, if the heuristic was adhered to).

Of course not all the domain specific control
rules can be expressed in this manner. Rules
which don’t exploit types recognised as Generic
Types cannot be expressed, possibly because
there is no Generic Type currently identified for
that particular structure or possibly because that
particular rule exploits something other than
Generic behaviour. However, as time progresses,
it is expected that more and more Generic Types
will be identified, encompassing increasing
numbers of behaviours. This will allow
increasing numbers of control rules to be
identified for domains exhibiting the appropriate
structure. Caution must be excercised, though, as
the overhead cost will increase with the amount
of work done by the domains analysis tool. This
will have to be weighed against the benefits that
the tool affords, but it is is feasible that the cost
of rule instantiation for large numbers of rules
would outweigh the time benefits in plan
construction. Once there are large numbers of
control rules being instantiated, there may also
be issues regarding the precedence or priority of
control rules. These points will need to be looked
into as the work progresses.

43

6 Generic Control Rule Logics

The logic with which Generic Control Rules are
expressed largely inherits its syntax and
semantics from standard modal logics. However,
there remain some points to note. First let there
be a distinction made between the logic used to
express the rules in their generic form, which we
shall refer to as GCRLogic, and the logic used to
express the rules in their instantiated form,
which we shall refer to as DCRLogic.

DCRLogic is very much a standard modal logic,
whose terms are propositions and whose modal
operators are Next, Always and Goal. Universal
quantification is allowed over domain types (sets
of domain objects). The truth value of a
proposition is determined by whether that
proposition holds in the current (or otherwise
specified) state.

GCRLogic, on the other hand, has a few more
subtleties associated with it. Firstly, the ’of type’
operator (’:’) is overloaded. It can be used on
two levels; to denote an object variable’s
membership in a type and also to denote a type
variable’s membership in a type of types.
Universal quantification over these ’meta−types’
allows us to generalise over types that share
behaviour, i.e. generalise over types that can be
identified as being of a common Generic Type.
In this sense, a Generic Type can be thought of
as a higher−order type, populated by all domain
types that can be shown to exhibit the
appropriate behaviour.

In GCRLogic, the terms are the truth values of
equalities between objects. The objects can be
referred to through variables (introduced through
quantification) or by function application to a
variable. The application of a function to an
object variable is not evaluated at the level of the
GCRLogic. Instead, it is used to refer to an
object that is related, through the relation
expressed by the function, to the variable to
which the function is applied. For example, in
(2), the term

(7)

(location_ofT X)

refers to the object related to X through X’s
location relation. We also want to be able to refer
to objects that have a particular relationship with
the variable in special states, i.e. in the goal state,
the next state or in every state (remembering that
a term unadorned with a modal operator has an
implicit ’Now’ state argument). However, as in
standard modal logics, in GCRLogic modal
operators can only be applied to sentences, not
objects. So in order to refer to, for instance, X’s
location (as in (7)) in the Goal state, formally we
must state

(8)
Goal ((location_ofT X) ==N)

However, it must be noted that a short hand
representation is in use for ease of reading
GCRLogic statements. We allow the use of

(9)
Goal (location_ofT X) == O (location_ofT X)

in order to represent the formally correct
(10)

(Goal (location_ofT X) == N) /\ (O (location_ofT

(X) == N))

NB this short form is applicable for all modal
operators.

7 Control Rule Library

Generic Control Rules will be collected into a
library, which the domain analysis tool will have
access to. As a result, when domain analysis
discovers Generic Types in a given domain, it
can retrieve the relevant rules from the library
and instantiate them with the specifics of the
domain (see Figure 1 for proposed architecture).
It is envisaged that this library will grow over
time (as new Generic Types are described or
additional rules are added for existing Generic
Types), allowing the domain analysis tool to
instantiate more control rules and ultimately
improve the performance of the planner making
use of the domain analysis. It is conceivable that

44

future work could involve the automatic
generation of Generic Control Rules. However,
static domain analysis techniques are not
powerful enough to achieve this; this may
perhaps be attainable through an adaptive tool
(one able to learn through many examples), but
it is not proposed here.

The library of control rules will not remove the
need for control rules to be written, rather it will
allow control rule writers to write reusable
control rules. However, a point worth noting is
that this does involve some standardisation.
Writing the control rules in terms of Generic
Types forces the individual Generic Types to be
standardised. The parts of the Generic Types
must have standard names in order for the
Generic Control Rules to be meaningful. For
example, the Generic Type mobile has a
locatedness predicate, representative of the fact
that mobiles are always located somewhere on a
map of locations. This predicate, and its contents
(i.e. the name of the location involved) must be
accessable in a standard way. A possible solution
is that each Generic Type is supplied with a
prototype, giving the names of all its fields with

some description for the benefit of those using
the Generic Type. The logic for expressing the
control rules must also adhere to a common
standard, in order for the library to be portable.

8 Conclusion

Planners which take domain specific control
knowledge in addition to the domain and
problem descriptions have been shown to
perform well over recent years. Unfortunately
though, the control rules have only yet been
expressed as domain specific, with no possibilty
of reuse. This means that every domain (and to
some extent, every different encoding of a
domain) needs a new set of rules to be
formulated, and then entered, by a human control
rule writer. The control rules written rely on the
writer’s ability to recognise and exploit structure
in the domain and this is not always an easy task
as the names of objects and relationships in the
domain can be misleading (as in the Mystery
domain [MD00]).

Work has been started on imlementing the

Figure 1 Proposed Architecture

45

A First Approach to Tackling Planning Problems with Neural
Networks

S. Fernández, I.M. Galván, R. Aler
Universidad Carlos III de Madrid

Avenida de la Universidad, 30
28911 Leganés (Madrid), España

sfarregu@inf.uc3m.es, igalvan@inf.uc3m.es, aler@inf.uc3m.es

Abstract

Many different machine learning techniques have been
used to learn control knowledge for planning. However,
subsymbolic techniques have not been widely used, in
particular artificial neural networks. In this paper, a
feedforward neural network (FNN) will be used to learn
a heuristic function for improving planning efficiency.
The main aim of this paper is to present a preliminary
study about the issues and the ability to use FNN in
this context.

Introduction
It is well known that domain independent planning,
which is most usually based on search, is not efficient.
In order to make planning efficient, knowledge about
the domain must be injected into the system. A popu-
lar approach in the machine learning field is to supple-
ment domain independent planners with control knowl-
edge learned automatically. A large amount of work
has been done in this area. Please, see (Zimmerman &
Kambhampati 2001) for a very good summary of most
of the relevant work. However, not all machine learning
techniques are equally well represented.

The main aim of this paper is to explore new learn-
ing mechanisms and control knowledge representations
which have not been widely used. In particular, we
study the performance of FNN (Rumelhart, Hinton, &
Williams) to solve this kind of problems.

In this paper we train a FNN to be used as a heuris-
tic function to improve forward search performance for
planning. The network will learn what operator to use
next, from examples that represent planning problems
(i.e. initial and final planning states).

However, control knowledge must be applied to prob-
lems of varying sizes (for instance, in the blocks world,
different problems can have an incrasing number of
blocks). When symbolic representations (like control
rules (Minton et al. 1989, Aler, Borrajo, & Isasi 2001)
or PRS’s (Khardon 1999b, Khardon 1999a)) are used,
this is not a problem. But it presents a challenge if
FNN are to be used, because their inputs are of fixed
size.
Copyright c© 2002, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

In this paper, we have faced this problem by decom-
posing a planning problem in different instantiations.
Every instantiation has constant size and can be fed
into the neural network. Then, the different outputs
of the network must be combined somehow to produce
the final answer. This is similar, in symbolic terms, to
allowing PRS rules to have only a limited number of
variables (Khardon 1999a).

Actually, this problem can be seen in a more gen-
eral way as follows: machine learning techniques which
use the propositional (“attribute and value”) represen-
tation assume problems of fixed size. In the case of
planning (in the blocks world, for instance), this means
that only problems with up to a fixed number of blocks
can be solved. If it is desired to solve problems with any
number of blocks but learning with only simple prob-
lems, it is neccesary to use relational representations,
of the ILP kind. In this paper, we are trying to ap-
ply a propositional representation to solve a relational
problem.

So far, we have done only some preliminary testing
of our approach in the blocks world. Here, we are in-
terested in how the performance of the FNN changes as
problem complexity increases.

The structure of this paper is as follows. In Section
we describe our approach. Section presents somre pre-
liminary experiments.

Description of the Approach

Representing planning problems for neural
networks
In this paper we want to train a FNN to be used as
a heuristic function to improve search performance for
planning. In order to do so, it is necessary to define the
inputs and the outputs of a FNN and how the training
patterns will be codified. In our case, the inputs to
the FNN will represent the current state in the search
process and the goal state to be reached, and the output
will be the instantiated planning operator that should
be applied to the current state, to get to another state
which is, hopefully, closer to the goal state. This process
will be iterated until the goal state is reached.

In the STRIPS formalism, states are represented us-

46

ing predicates and objects. For instance, in a ver-
sion of the blocks world, states are represented us-
ing five predicates (arm-empty, holding(X), clear(X),
on-table(X), and on(X,Y)) and names for the blocks
(A, B, . . .). States in the blocks world can be represented
by instantiating the predicates with all the blocks.
However, the size of a state increases with the number
of blocks. But our goal is that the FNN can be applied
to any world containing any number of blocks. Since
FNN can accept only a fixed number of inputs, we have
introduced the concept of ’variable’: at any time the
FNN will be only aware of a fixed number of variables
which later will be instantiated in all possible ways with
the blocks of the state. For instance, in order to repre-
sent a state containing three blocks (A, B, C) with only
two variables (X, Y), we would have to consider 6 in-
stantiations: (X=A,Y=B), (X=A,Y=C), (X=B,Y=A),
(X=B,Y=C), (X=C,Y=A), and (X=C,Y=B).

Now, all the possible combinations of the predicates
and the variables are computed. With 2 variables and 5
predicates, the combinations are: {on(X,Y), on(Y,X),
on-table(X), on-table(Y), clear(X), clear(Y),
arm-empty, holding(X),. holding(Y) }. Each one
of these predicates is represented with 1 if they are true
in a particular instantiation and as 0 if they are false.
Hence, one instantiation requires 9 bits to be repre-
sented. Therefore, in this case, the input to the FNN is
made of 18 bits, 9 for the initial state and 9 for the goal
state. Given an initial state and a final state, there is
a binary 18-bit input pattern for every instantiation of
the variables.

For instance, let us consider two variables X
and Y, and three blocks. If the initial state is
{on(A,B), clear(A), on-table(B), on-table(C), clear(C),
arm-empty} and the final state is {on(A,B), on(C,A),
clear(C), on-table(B), arm-empty}, the instantiation
(X=A,Y=B) would be represented as:

100110100,100000100

In order to represent an initial and final state pair,
there will be as many 18-bit binary patterns as possible
instantiations depending on the number of variables. In
this case there will be 6 input patterns.

As mentioned previously, the output of the FNN rep-
resents the operator that has to be applied in the cur-
rent state to reach another state wich is closer to the
final state. The output is made of as many bits as op-
erators there are and another extra no-op bit. In the
blocks world, there are four operators ({stack(X,Y),
unstack(X,Y), pick-up(X), put-down(X) }), so the
output consists of 5 bits. The variables of the oper-
ators correspond to the variables of the instantiations.
For every instantiation (X=x,Y=y), if the operator to
apply to the current state is op(X=x,Y=y) then the bit
corresponding to op is set to 1, and the rest of the bits
are set to 0. Otherwise, the no-op bit is set to 1 and the
rest to 0. Table 1 displays the five bits for the output
of the FNN for each one of the possible instantiations,
in case the operator to apply is stack(A,B). In all but

Table 1: Outputs of the network for every instantia-
tion of stack(X=A,Y=B), the 5 bit approach. S=stack,
U=Unstack, PU=Pick-up, PD=Put-down.

stack(X=A,Y=B)
X,Y No-op (1) S. (2) U. (3) PU. (4) PD. (5)
A,B 0 1 0 0 0
A,C 1 0 0 0 0
B,A 1 0 0 0 0
B,C 1 0 0 0 0
C,A 1 0 0 0 0
C,B 1 0 0 0 0

Table 2: Outputs of the network for every instantia-
tion of stack(X=A,Y=B), the 8 bit approach. S=stack,
U=Unstack, PU=Pick-up, PD=Put-down.

stack(X=A,Y=B)
Operator

X,Y S. (1) U. (2) PU. (3) PD. (4)
A,B 1 0 0 0
A,C 0 0 0 0
B,A 0 0 0 0
B,C 0 0 0 0
C,A 0 0 0 0
C,B 0 0 0 0

No-operator
X,Y S. (5) U. (6) PU. (7) PD. (8)
A,B 0 0 0 0
A,C 1 0 0 0
B,A 1 0 0 0
B,C 1 0 0 0
C,A 1 0 0 0
C,B 1 0 0 0

the first of the instantiations, the no-op bit is set to 1
because the variables of the instantiation are different
to the variables of the operator.

Another way we have used to represent the output is
by using 8 bits. The meaning of the first four bits is the
same than in the later paragraph. The other four bits
expand the no-op bit. They represent the operator that
should be used, in case the variables of the instantiation
were the right ones as shown in Table 2.

Obtaining the training patterns
Given an initial situation, a final situation, and the first
instantiated operator that must be applied to reach that
final situation (let us call them a planning triplet), sev-
eral training patterns will be obtained. The number
of training patterns obtained depends on the number
of possible instantiations which in turn depends on the
number of variables. For instance, let us suppose that
we consider two variables and three blocks. Also, we
have the following planning triplet:

• Initial state: all the three blocks on the table
• Final state: a tower made of the three blocks (A on

47

Table 3: Obtaining training patterns.

Input Output
Instantiation Initial state Final state
(X=A,Y=B) 001111100 100010100 10000
(X=A,Y=C) 001111100 000110100 10000
(X=B,Y=A) 001111100 010001100 00010
(X=B,Y=C) 001111100 100100100 00010
(X=C,Y=A) 001111100 001001100 10000
(X=C,Y=B) 001111100 011000100 10000

B, and B on C)
• The first operator to apply is pick-up(B)

From this planning triplet, six training patterns can
be obtained (with a 5 bit output), as it is shown in
Table 3.

There will be many cases where several training pat-
terns with the same input have a different output as-
sociated. That is, they are contradictory patterns. To
deal with this problem we have tried two approaches:

1. OR approach: a single training pattern is obtained
from all the training contradictory patterns by us-
ing the OR function on the output. In that case, a
pattern can have several bits set to 1 at the output.

2. AVERAGE approach: a single training pattern is
obtained from all the training contradictory patterns
by computing the probability of every bit in the out-
put being 1. In this case, the bits at the output are
real numbers between 0 and 1.

Using the network to solve planning
problems
First of all, given an initial and final planning situation,
the set of instantiated operators that could be applied
in the initial situation is obtained. Now, the problem
is to choose one of them. The steps to determine it are
the following:

1. All possible instantiations of the initial and final situ-
ation are obtained. Therefore, a set of input patterns
to the FNN are obtained.

2. For each one of the input patterns, the output of the
FNN is calculated. Therefore, now there is a set of
outputs that need to be combined.

3. Also, for each instantiation and for each operator
that could be applied in the initial situation, the set
of outputs that the network should give are deter-
mined. Then, they are compared with the actual
outputs of the FNN. This is actually done by sub-
stracting the actual output of the FNN and the de-
sired output. The instantiated operator that gets the
minimum value (that is, which is closest to the de-
sired output) is applied and an new initial situation
is obtained.

4. These steps are applied until the final situation is
reached.

Table 4: How the FNN is used to select the next oper-
ator to apply.

Actual output PU.(B) PU.(A) PU.(C)
output output output

X,Y
A,B 0.99 0.00 0.01 0.00 0.00 10000 00010 10000
A,C 0.98 0.10 0.02 0.01 0.10 10000 00010 10000
B,A 0.01 0.12 0.01 0.87 0.00 00010 10000 10000
B,C 0.01 0.12 0.01 0.99 0.00 00010 10000 10000
C,A 0.99 0.00 0.02 0.01 0.00 10000 10000 00010
C,B 0.90 0.00 0.09 0.10 0.00 10000 10000 00010

For example, let us assume that the planning problem
to solve is:

• Initial state: all the three blocks on the table

• Final state: a tower made of the three blocks (A on
B, and B on C)

In this case, the solution is to apply pick-up(B). The
set of operators that could be applied in the initial situ-
ation is: {pick-up(B), pick-up(A), pick-up(C)}. The
way to decide the operator that should be applied is il-
lustrated in Table 4.

From this planning triplet, the following six training
patterns can be obtained (when the output is made of
5 bits):

As it can be seen in Table 4 the instatiated operator
which is closest to the actual output is pick-up(B).

Experimental Results
The experimentation was divided in two parts. First,
we compared different experimental configurations of
the system. And second, we selected the best configu-
ration and then it was tested with some simplified prob-
lems.

Comparing different configurations
We have tested the following configurations (so far, we
have only used the 5 bit approach):

• To compact equal patterns using the OR function

• To compact equal patterns using the AVERAGE fuc-
tion

We generated all the possible planning problems in
the blocks world with 3 blocks and with 4 blocks and
we have trained the FNN according to the following
configurations:

• 3 blocks world using the OR function to compact

• 3 blocks world using the AVERAGE function to com-
pact

• 4 blocks world using the OR function to compact

• 4 blocks world using the AVERAGE function to com-
pact

48

Table 5: Empirical results for the different configura-
tions.

Blocks Var. Outputs Compact Training Testing
error error

3 2 5 OR 0.009 0.052
4 2 5 OR 0.004 0.005
4 2 5 AVE. 0.001 0.001

4/3 2 5 OR 0.005 0.043
4/3 2 5 AVE. 0.004 0.033
4 3 5 OR 0.012 0.105
4 3 5 AVE. 0.033 0.112

• 3 and 4 blocks world using the OR function to com-
pact
• 3 and 4 blocks world using the AVERAGE function

to compact

Configuration were tested using 10-fold cross-
validation. The results are shown in Table .

According with the results it seems slightly better to
compact equal patterns using the AVERAGE approach
insteed of the OR approach.

Testing the FNN
In this subsection the FNN trained with examples from
the blocks world with 3 and 4 blocks and the AVER-
AGE approach has been chosen for testing.

We have considered two kinds of problems. The goal
of the first ones is to stack a block C1 on C2. The
initial situation contains several blocks on both C1 and
C2, that must be unstacked before being able to stack
C1 on C2. For instance, in the following there are 2
blocks on C1 and 0 blocks on C2:

• Final state: ((ON C1 C2) (ON-TABLE C2)
(ON-TABLE C3) (ON-TABLE C4) (CLEAR C1)
(CLEAR C3) (CLEAR C4) (ARM-EMPTY))
• Initial state: ((ARM-EMPTY) (ON-TABLE C1)

(ON C3 C1) (ON C4 C3) (CLEAR C4) (ON-TABLE
C2)(CLEAR C2))

The second kind of problems consist in bulding tow-
ers from an initial situation in which all the blocks are
on the table. For instance, the goal of the following
problem is to build a tower of two blocks:

• Final state: ((ARM-EMPTY) (ON-TABLE C2) (ON
C1 C2) (CLEAR C1))
• Initial state: ((ARM-EMPTY) (ON-TABLE C1)

(ON-TABLE C2) (CLEAR C1) (CLEAR C2))

We have decided to have two different kinds of prob-
lems, which can be easily scalated as a methodological
help for testing the system. This way, it will be possible
to know in which cases the FNN has learned something
useful, and how well it scalates for more difficult prob-
lems. This is not possible if the system is tested only
in randomly generated problems.

So far, we have tested the FNN with the two kind of
problems, in the blocks world with 3, 4, 5, and 6 blocks.
It has been observed that the FNN found the optimum
solution for the first kind of problems. However, it is
also observed that for the second kind of problems, the
system is not very efficient.

Conclusions
In this paper we have used a FNN to be used as a heuris-
tic function to improve forward search performance for
planning. The network will learn what operator to use
next from examples that represent planning problems
(i.e. initial and final planning states).

The preliminary results show that the FNN could be
an appropriate way to approach this problem. How-
ever, the experiments show that more work is required.
We believe that to improve results it is necessary to find
better ways to combine the different outputs of the net-
work to obtain which operator should be applied. Also,
it could be interesting to try different representations
for the network.

Finally, in order to evaluate the system more accu-
rately, it would be necessary to measure how much time
is saved by using the FNN in comparison with a random
search and also other domain independent planners.

References
Aler, R.; Borrajo, D.; and Isasi, P. 2001. Learn-
ing to solve planning problems efficiently by means
of genetic programming. Evolutionary Computation
9(4):387–420.
Khardon, R. 1999a. Learning action strategies for
planning domains. Artificial Intelligence 113:125–148.
Khardon, R. 1999b. Learning to take actions. Machine
Learning 35(1):57–90.
Minton, S.; Carbonell, J.; Knoblock, C.; Etzioni, O.;
and Gil, Y. 1989. Explanation-based learning: A
problem-solving perspective. Artificial Intelligence 40.
Rumelhart, D.; Hinton, G.; and Williams, R. Learn-
ing Internal Representations by Error Propagation in
Parallel Distributed Processing.
Zimmerman, T., and Kambhampati, S. 2001. What
next for learning in ai planning. In Proceedings IC-AI.

49

é�a~ÙWfYZ�rO�¼�����BVq\mVY��a~f¸_Z�]i�WfqÔm]%�Äg[\8Ô_×WZd`lV¨ö�Z�\mZ�U}Ôp��g[UWáB|[�W\^a�à
Ô_VYg[UË]��

¦�§¦±�¤i²[¬ Ò¾��¡/¶ § «[¢�µ}«b¢�¬ � ±�£�µ}��¤m¢ ÉË¡i���¦�}�¦�}© ÉË ^¬º¢��¦�}©
 m¡P¡�±�¡ m¡P¡�±�¡

 � ¥ §6Ó � ¶ �L� Æ � ¶ � ¥ �
¢ � ¥ §6Ó � ¶ �L� ¢ � ¶ �L� ¥
¢ � ¥ �@Ò4Ô�¶ � ¶ �L� � � ¶ �L� �
¢_Õ	 � ¥ §6Ó � ¶ �L� ¥ � ¶ � ¢

¢_Õ	 � ¥ �@Ò4Ô�¶ � ¶ �L� ¢ � ¶ � L
¢ ¥ §6Ó � ¶ � � � � ¶Ç� � ¥
¢ ¥ �@Ò4Ô�¶ � ¶ � L � ¶Ç�L� �

° t¼a~UB`Â¼ÙWfYgl�^Ö]»Õ¸gb_fn`d�B]iVYUW|pÔm×WZs�;òÊ�Ä�WUB��Ô_VYg[U�Ô_gÌ��g[��à
�Ba[��Ô

° t�a~UË`�Â�ÙBfqgl�^Öl]*Õeg[\mfn`��B]iVYUW|ÇÔ_×WZ o:Ñ ��ò o |J�í�Ä�WUB��Ô_VYg[U
Ô_g¼��gb���Ëa[�/Ô
c¸g[UláB|b�W\^a�Ô_VYg[U Õ¸Z�_Z�Ô_Z�]�ÔmZ�` �B]iVYUW| y u~àÁ�ÄgbfY` ��\mgb]m]�à

X�a~fYVY`Ba�Ô_VYg[U@�0é5×BZ�_Z�]i�WfqÔm]>a[_Z�]_×Wg�Õ>UdVqU�é¾a[ÙWfYZ¼�
o ����g[\^`lVYUW|%Õ>VqÔ_×ÌÔm×WZ;_Z�]i�WfqÔm]¸VqÔ5]_Z�Z��p]e]_fqVY|[×}Ô_fYØpÙËZ�ÔiÔmZ�\eÔ_g

��gb�p�Ba[��Ô�Z�è}�Ba~fB�Ba�Ô_Ô_Z�\mUB]��Ë]iVYUW|JÔ_×BZ o�Ñ ��ò o |J�Da[�W�W\mgbab�^×
VYUB]�ÔmZ�Z�`Çg[�@Ôm×WZu�;òRa~�W�W\mgbab�^×	�
Ö $@+,.�/7-�12.��$Á×nØ¾Ø
hPUpÔ_×BVY]¸]i�WÙË]iZ��/Ô_VYg[U�Ôm×WZ*ï0ð*ð�Ô_\^a~VYUWZ�`�Õ>VqÔ_×¼Z�ëWa[���BfqZ�]0�Ä_gb�
Ô_×BZÌÙWfYg�^Öl]JÕeg[\mfY`÷Õ>VqÔ_× ta[UB`aÂÙWfqgl�^Öl]%a[UB`ÞÔ_×WZ o:Ñ �¸ò5à
o |J�âa~�W�B_g}a[�^×�×Ëa[]5Ù6Z�Z�U�^×Wg}]iZ�U��Ägb\5Ô_Z�]�ÔmVqUW|Ë�
óÞZ;×Ba¯X[Z;��gbUB]iVn`lZ�_Z�`�Ô�Õ¸g�Ö}VYUB`W]eg[�@�W\mg[ÙWfYZ��¼]���é5×WZ;|[g}a~f

g~�JÔm×WZáB\^]�ÔÇg[UWZ�]¼VY]ÌÔ_gú]iÔmab�^Ö�aÝÙWfYgl�^Öíc y gbUÊc v �ìé5×WZ
VYUWV¨ÔmVYa[f6]_VqÔ_�Ba~Ô_VYg[UÌ��gbU}Ôma~VYUB]¸]iZ�X[Z�\^a~fBÙWfqgl�^Öl]�gbU¼ÙËg[Ô_×c y a~UB`
c v rBÔ_×Ba~Ô{���B]�Ô;ÙËZ8�WUB]iÔma[�^ÖbZ�`�Ù6Z��Ägb_Z%Ù6Z�VYUW|�a[ÙWfYZ�Ô_gd]�Ô^a[�^Ö
c y g[UÜc v � ïWg[\�VYUB]�Ô^a~UB��Z[r�VYU�Ô_×WZÇ�Äg[fYfqg�Õ>VYUW|ÚÔ_×WZ�_Z�a~\mZ v
ÙWfYgl�^Ö]5gbUc y a[UB`�u�ÙBfqgl�^Öl]5g[Ukc v �
° ï¾VYUBa[fñ]�Ô^a�Ô_Z�� �i�0�;ð c y c v � �7�;ð>àPé o ÿ z � c v �
�0�;ð>àPé o ÿ z � cetb�â�7�;ð>àPé o ÿ z � c)Â}�â�ºc z � o ò+c y �
�¿c z � o òøcetb�;�ºc z � o òøc)Â}�;� o ò»j�àP��jkã¸é6lJ�i�

° hPUWV¨ÔmVYa[fÚ]iÔma�ÔmZV�&�_� o ò»j�àP��jkã¸é6lJ�ì�7�;ð>àPé o ÿ z �&c y �
�0�;ðÊcet8c y �5�0�;ðÊc)Â�cet}�5�¿c z � o òÍc)Â�5�0�;ð>àPé o ÿ z �
c v ���ºc z � o òìc v �i�
é5×WZ%]iZ���gbUB`�ÖVYUB`Çg~�0�W_gbÙWfYZ��¼]>��gbUB]iVn]iÔ5VYU�ÙW�Wfn`lVYUW|�Ô_g�Õ5à

Z�\^]e�Ä\mg[�-a[U�VqUWVqÔ_Vna~f¾]iVqÔ_�Ba~Ô_VYg[U�VYUdÕ>×BVY�^×a~fYfsÔm×WZ�ÙWfYg�^Öl]»a[_Z
g[UÜÔm×WZ�Ôma[ÙWfqZb��ïWgb\ÌVqUË]�Ô^a~UB��Z[r¸Ô_×WZ|bgba~f>g[�*Ôm×WZ�Äg[fYfYg�Õ>VqUW|
�W\mg[ÙWfYZ�� VY]5ÔmgpÙW�WVYfY`�a�Ô_g�ÕeZ�\>g[�@Ô�Õeg�ÙBfqgl�^Öl]��
° ï¾VYUBa[fW]�Ô^a�Ô_Z����i� o ò»jàº�¸jkã�é6l��¸�7�;ð>àPé o ÿ z �Dc v �¸�0�;ðc y c v �J�¿c z � o òìc y �_�
° hPUWV¨ÔmVYa[fÚ]iÔma�ÔmZV�&�_� o ò»j�àP��jkã¸é6lJ�ì�7�;ð>àPé o ÿ z �&c y �
�0�;ð>àPé o ÿ z ��c v �J�¿c z � o òøc y �{�ºc z � o òøc v �_�
óÞZ;×Ba¯X[Z;`lZ���VY`WZ�`¼Ômg�×Ëa¯X[Z»Ô�Õeg�`WV¨ö�Z�\mZ�U}Ô5Ö}VYUB`W]eg[�@�W\mg[Ùlà

fYZ��¼]�rËÕ>×WVn�^×���a~U�Ù6Z%Z�ab]iVYfqØd]_��a~fna�ÔmZ�`da[]»ap�pZ�Ôm×Wgl`lg[fYg[|bVY��a~f
×WZ�fq���Äg[\�Ô_Z�]�ÔmVqUB|{Ôm×WZ>]iØl]iÔ_Z��d��é5×WVn]0Õea¯Øbr�V¨Ô�Õ>VYfqflÙ6Z5�Ëg}]_]_VqÙBfqZ
Ô_g8Ö}UBg�Õ�VYUÌÕ>×WVn�^×Ì��ab]iZ�]0Ô_×WZ{ï�ð{ð�×Bab]�fYZ�a[_UWZ�`p]igb��Z�Ô_×WVYUW|
�B]_Z��Ä�Wf¿rBa[UB`d×Wg�ÕÍÕeZ�fYf	VqÔ*]_��a~fna�Ô_Z�]e�Äg[\>�pg[\mZ�`lVqÛ¼���WfqÔ*�W\mg[Ùlà
fYZ��¼]��¼é5×WVn]JVn]JUWg~Ô��6gb]m]iVYÙWfYZ�Vq�eÔ_×WZ¼]_Ø]iÔ_Z�� Vn];Ô_Z�]iÔ_Z�`÷g[UWfYØ
VYUd\^a~UË`lg[�pfYØ¼|[Z�UBZ�\^a�Ô_Z�`��B_gbÙWfqZ��¼]��

�g��La~\�rÕ¸Z;×Ba¯XbZ*ÔmZ�]iÔ_Z�`ÌÔ_×WZ�ï0ð*ðRÕ>VqÔ_×ÇÔ_×BZ{Ô�Õeg8ÖVYUB`Çg~�
�W_gbÙWfYZ��¼]�r�VYU�Ô_×WZ5ÙWfYgl�^Öl]¾Õeg[\mfn`8Õ>VqÔ_×ptWr,ÂËr�rlrba~UB`sm;ÙWfqgl�^Öl]��
hºÔ¸×Bab]�Ù6Z�Z�U�g[ÙË]iZ�_XbZ�`�Ô_×Ëa�ÔeÔ_×WZJï0ð*ðÍ�Äg[�WUB`ÌÔ_×WZ;g[�WÔ_VY�8�W�
]igbfq�lÔmVqgbUÚ�Ägb\�Ô_×BZ¼áB\^]�Ô%ÖVYUB`Ýg~�>�W\mg[ÙWfYZ��¼]���ç»g�ÕeZ�XbZ�\�r	VqÔ8VY]
a~fn]ig%gbÙB]_Z�\mX[Z�`¼Ô_×Ba~Ô¸�Ägb\�Ôm×WZ�]iZ���g[UË`¼ÖVqUB`�g~�@�B_gbÙWfqZ��¼]�r}Ô_×BZ
]iØl]iÔ_Z�� VY]5UWg[Ô»X[Z�_Ø¼Z�Û¼��VqZ�U}Ô��

ÙÞÐ¸A*Ò N ÑÈ�Ó�Ð�AÈ�
hPUJÔ_×WVn]	�Ba[�ËZ�\@ÕeZ�×Ba¯XbZ��Ë]iZ�`%a>ï0ð*ðDÔmg»Ù6Z��B]_Z�`�ab]	a>×WZ��W_Vn]ià
Ô_Vn�»�Ä�WUË�/Ô_VYg[UdÔmg�VY�p�W_g�XbZ»�Ägb_Õ5a~\^`Ì]_Z�a~\^�^×Ì�6Z�_�Äg[\m�¼a~UB��Z*�Ägb\
�WfYa[UWUWVYUW|B��é5×BZ�UWZ�Ô�Õeg[\mÖ¼Õ>VqfYf	fYZ�a[_U�Õ>×Ba~Ô5gb�ËZ�\ma~Ô_gb\¸Ômg¼�B]_Z
UWZ�ëÔ%�Ä\mg[� Z�ëWa~�p�WfYZ�]%Ô_×Ba~Ô8_Z��W\mZ�]_Z�U}Ô%�Wfna~UWUWVYUW|k�B_gbÙWfqZ��¼]
�ÄV¿� Zb��VqUWVqÔ_Vna~f¾a~UB`�áBUBa[f	�Wfna~UWUWVYUW|¼]iÔma�ÔmZ�]^�/�
é5×WZ{�W\mZ�fYVq�pVYUBa~\mØ�\mZ�]_�WfqÔm]e]i×Bg�ÕâÔ_×Ba~Ô�Ô_×BZ;ï0ð*ð ��gb�Wfn`ÌÙ6Z

a~Uâa~�W�W\mg[�B_Vna�ÔmZÇÕ5a¯ØÝÔ_g a[�W�W\mgba[�^× Ô_×WVn]¼�W\mg[ÙWfYZ�����ç*g�Õ5à
Z�X[Z�\�r[Ô_×WZ;Z�ël�6Z�\mVq�pZ�UbÔ^]�]_×Wg�ÕâÔ_×Ëa�Ô¸�pgb_Z»Õeg[\mÖ�VY]¸_Z�è}�WVq\mZ�`	�
óÞZeÙËZ�fqVYZ�XbZ�Ôm×Ba�Ô�Ô_g;VY���B_g�XbZ�\mZ�]_�Wf¨Ô^]@VqÔ�VY]¾UWZ���Z�]m]ma~\mØ{Ômg*áËUB`
ÙËZ�ÔiÔ_Z�\�Õ5a¯Ø]¾Ômg%��g[��ÙWVYUWZeÔ_×WZ»`lVqö�Z�\mZ�U}Ô�g[�lÔm�W�lÔ^]�g~�6Ô_×WZ>UBZ�Ôià
Õ¸gb_Ö�Ômg�g[ÙlÔ^a~VYUpÕ>×WVY�^×¼gb�ËZ�\ma~Ô_gb\�]i×Wgb�Wfn`�Ù6Z*a[�W�WfYVqZ�`s� o fY]_gBr
V¨Ô���g[�Wfn`DÙ6ZÌVYUbÔmZ�\mZ�]iÔ_VYUW|ÔmgÔ_\mØD`lV¨ö�Z�\mZ�U}Ô8\mZ��B_Z�]iZ�UbÔ^a�ÔmVqgbUB]
�Äg[\5Ô_×BZ�UWZ�Ô�Õeg[\mÖ��
ï�VYUBa~fYfqØbr¾VYUDg[\^`lZ�\JÔ_gZ�X�a[fq�Ba~Ô_Z¼Ôm×WZ�]_Øl]�ÔmZ����pgb_ZÌab�����Wà

\ma~Ô_Z�fYØ[r�VqÔ�Õ¸gb�Wfn`%Ù6ZeUBZ���Z�]_]ma~\mØ{Ô_gJ�pZ�a[]_�W\mZ�×Wg�Õú�8�B�^×�Ô_VY�pZ
VY]�]_a¯XbZ�`JÙØJ�B]_VqUW|»Ô_×WZ5ï0ð*ð�VqU���g[�p�Ba[_Vn]_g[UJÕ>V¨Ôm×�a*\ma[UB`lg[�
]iZ�a~\^�^×Ça~UË`Ça[fY]_gpg~Ô_×BZ�\»`lgb�pa[VqUdVYUB`lZ��6Z�UË`lZ�U}Ô»�Wfna~UWUBZ�\^]��

Qâ=��^=	?W=@A{Ò�=��
o fYZ�\�r;ò%�ÛÚpÿeg[\m\ma~ß�gBr����ÛÚpa~UB`Êh�]ma[]_VÁr;ã0� v ubu y � z Z�a[_UWà
VqUB| Ô_gâ]_g[fYX[Zk�Wfna~UBUWVqUB|ú�W\mg[ÙWfYZ��¼]ÇZ�ÛÌ��VYZ�U}ÔmfqØâÙØí�pZ�a~UË]
g~�J|[Z�UWZ�ÔmVY��B_gb|[\^a~�p�pVqUW|Ë�¯Ü6Ý_Þ�ýÇßlû0àkÞ_á�ü_âgãzä�Þ_å�æ'ßlûPü�û0àkÞ_á
x �kÂ}�g� t wQç	è Â v uB�
æJ×Ba~\^`lgbU	r>ò�� y�xbx[x aW� z Z�a[_UBVqUW| ab�/ÔmVqgbU�]�Ôm\ma~Ô_Z�|bVqZ�]¼�Ägb\
�Wfna~UWUWVYUW|p`lg[�¼a[VqUB]���éÈâ/û0à ê)ë�àLü�ý"ì�áBûPù�ýõýÇàîí}ù�á'ë^ù y[y t � y�v r è6y Â w �
æJ×Ba~\^`lgbU	r�ò%� y�x[x[x Ù	� z Z�a~\mUWVYUW|>Ô_g»Ôma~ÖbZ¸ab�/Ô_VYg[UË]��OïÚü�ëñðOà£á6ù
ò@ù^ü,âgá"à£á*í%t�rW� y ��� r ç	èx uW�
jVYUbÔmg[U	r����ÛÚ�cea~\mÙ6g[UWZ�fqf¿r�óË�ÛÚ�æJUWg[ÙWfYgl�^Ö�r¾c{�ÛÚ���Ô_ô�VqgbUWV¿r����ÛÚ
a~UB`¿|;VYfÁr�l�� y�xbw[x �ñ��ël�Wfna~UBa~Ô_VYg[UlàºÙBa[]_Z�`�fqZ�a~\mUWVqUB|"� o
�W\mg[ÙWfYZ���àP]igbfqXVYUW|{�6Z�\^]_�ËZ��/Ô_VYX[Zb��éÈâ/û0à ê)ë�àLü�ýQìgáËûºù�ýõýÇàîí}ù�á�ëmù�ÂbuB�
ò>�W�pZ�fY×Ba[\iÔ�r��8�iÚ¾ç*VqU}Ô_gbU	r:|��iÚ@a~UË`ÚóíVYfqfYVna~�¼]�r	ò%�sò@ù^ü,âgá"ô
à£á*í~ì�áBûPù�âgá�ü�ý�õ*ù�æ'â_ù�ö�ù�áËûºü~ûGàkÞ,á ös÷�ãøÜ6âgâñÞ_ânù6â=ÞñæBü�í}ü�û0àkÞ_á®à£á
ù>ü_âmü�ýõýqù�ý�úEàûö/ûGâgàk÷�ßlûPùñüuù6â=ÞLëmù�öýögà£á*í[�
ä6VY���pZ�_�¼a~U@r¾éJ�Yr¾a~UË`Þæ�a[�8ÙW×Ba[�p�Ba�ÔmVÁr:�s� v ubu y ��óí×Ba~Ô
UWZ�ëÔ��Ägb\�fYZ�a~\mUWVYUW|JVqUÌa[VW�Wfna~UWUBVqUW|Ë�ËhPU�ù4â=Þ	ë^ù^ùýü_à£áQí_ö6ì,äwôGé�ì/�

50

Design of a Testbed for Planning Systems
Klaus Varrentrapp and Ulrich Scholz and Patrick Duchstein

Intellectics Group
Darmstadt University of Technology

Alexanderstraße 10
64283 Darmstadt, Germany
klaus@varrentrapp.de

scholz@informatik.tu-darmstadt.de
patrick@duchstein.com

Abstract

Conducting computational experiments and analyzing their
results in a sound manner can be tedious. Experiments have
to be organized, i. e. algorithms in various configurations,
with several inputs and repetitions have to be run and results
have to be analyzed from different perspectives, including
statistical evaluation. In this paper we discuss properties of
an ideal testbed for experiments and the statistical evaluation
thereof, which automates recurring tasks and supports scien-
tific soundness. We present a prototypical testbed, which will
realize some of these ideas and which is short of being com-
pleted.

Introduction
Currently, we find many proposals for techniques address-
ing different aspects and phases of the planning process.
The right combination of these techniques is necessary to
fully exploit their mutual strengths and remedy their mutual
weaknesses. However, such combinations mostly have been
realized in monolithic blocks resulting in yet another plan-
ning algorithm. Conversely, the different phases of planning
could be implemented as independent modules with a com-
mon interface. With the ability to assemble these building
blocks freely, complete planning systems could be designed
more easily, yielding greater flexibility and possibly better
performance. With a modular structure of planning algo-
rithms, researchers can compare and combine their work.

Experiments mainly comprise configuration and tuning
of algorithms and comparison of different algorithms and
modules. The process of carrying out computational experi-
ments (experiments in short) of any kind with combinations
of algorithms and modules is challenging. Organization and
realization of experiments require a lot of practical details
with respect of managing the different computation steps,
such as providing input, operating the algorithms, storing
intermediate data, and analyzing the the results. Besides,
appropriate settings of experiments in order to obtain reli-
able results requires some insight in the problems associated
with an empirical analysis of algorithms (McGeoch 1996;
2001; Hooker 1994; 1996; Gent & Walsh 1994; Moret 2002;
Rardin & Uzsoy 2001). Hence, it seems desirable to have an

Copyright c
�

2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

easy to use environment for conducting experiments that au-
tomatically takes care of most of the recurring tasks.

In order to make scientifically sound decisions, one even-
tually has to rely on statistical tests. Consequently, an
environment for experimentation should include a com-
ponent for conducting statistical tests, too. Several re-
searchers, mainly from the field of optimization, have ad-
dressed the issue of statistical testing and identified it as
crucial for future empirical research on algorithms1 (Co-
hen 1995; Xu, Chiu, & Glover 1998; Birattari et al. 2002;
Coy et al. 2000). The need for a testbed unifying experi-
ments for different data sets and schemes has been identified
in the machine learning community before (Garner 1995;
Witten & Frank 2000).

In this paper, we elaborate on the previously mentioned
issues of designing a testbed for experimentation with algo-
rithms – with emphasis on planning algorithms. We propose
our vision of a general modular architecture that will meet
the requirements and address the issue of statistical evalu-
ation. We describe a prototypical implementation of such
a testbed for planning algorithms, which is currently under
development.

First, we define some basic notions. Experiments with
algorithms can consist of a series of runs of one or more al-
gorithms with various parameter settings in an environment
that is under control of the experimenter. Combinations of
various independent algorithms, say several preprocessing
procedures with a planning procedures, can be seen as a (hi-
erarchical) algorithm, too. The purpose of such experiments
is, e, g. to find the best algorithm or the optimal configura-
tion of several algorithms, i. e. the best setting of parameters.

From now on, we will denote with algorithm any single
or composite procedure that is being investigated. With con-
figuration we refer to any distinct setting of components and
their parameters that yield a running entity. The notion of
experiment then denotes a coherent conglomeration of run-
ning an algorithm in different configurations or comparing
a number of algorithms in various configuration in order to
gain insight in the behavior and the relationship between al-
gorithms.

1www-users.cs.york.ac.uk/ � tw/empirical.html

51

Requirements
In this section we identify several recurring processes and
problems that occur when conducting experiments to study
algorithms. Based on these basic processes, we propose
some requirements for a flexible testbed that automatizes
and generalizes the process of experimentation. Subse-
quently, we briefly mention some of the expected advantages
of such a tool.

When studying algorithms empirically, certain recurring
general processes appear:

� Provision of problem instances. All algorithms must op-
erate on some problem instances. These must be supplied
by either enabling access to benchmark repositories or by
including perhaps randomized problem instance genera-
tors.

� Operation and synchronization of the algorithms used
within the scope of an experiment.

� Ensuring proper flows and potentially storage of all data
involved, such as problem instances, algorithm output,
data describing the setting of the experiment, the gener-
ated test instances, and so on.

� Identification of all data relevant to and produced by an
experiment. Delimitation of data from different experi-
ments.

� Processing of raw algorithm output for further analysis.
This involves tasks such as plotting graphs and computing
statistics like mean, variance, and so on.

� Conducting statistical tests to scientifically verify any
statements extracted from the experiment results.

� Supervision, status checking and perhaps modification of
the experiment during execution.

� Recovering from partial crashes. The longer the runtime
of an experiment, the higher the likeliness of malfunc-
tions. Such disruptions should not corrupt the results. In-
stead, improper parts of the experiment should be repeat-
able on demand or even repeated automatically.

Following these general requirements we derive our vi-
sion of more specific demands for an ideal testbed:

� Provision of a user friendly interface. This user inter-
face enables the user to specify experiments, supervise
them, explore immediate results, trigger statistical evalu-
ation, and visualize any required information in this re-
spect. Ideally, all operations of the experiments can be
controlled via the user interface. The interface also en-
ables the user to retrieve any stored data from past exper-
iments, thus allowing easy comparison of earlier results.

� Cooperation with any algorithms and modules and exist-
ing analysis tools. The testbed allows any aspect of an
algorithm to be subject of investigation. Consequently, a
general interface for accessing, controlling and running
algorithms with standardized input and output streams
will be included. This way, arbitrary algorithms and
modules that comply with the interface requirements and
stream data formats can be combined. A role model for
this approach can be seen in scripts and pipes of Unix.

Additionally, provisons for enabling subsequent analysis
of data by statistical packages will be integrated.

� Extensibility and adaptability. Users are given the free-
dom to extent the testbed with individual modules, espe-
cially with their own tools, such as scripts for extracting
data from output-files for plots. This extention will be at
best be feasible without major changes to the testbed. In
the ideal case, only interfaces need to be altered.

� Decoupling of the various processes of experimentation.
Following this requirement, it seems necessary to give the
testbed a fully modular structure as is common in modern
software engineering.

� Coherent storage of all experiment relevant data. Special
attention has to be given to the issue of storing and label-
ing of all relevant data describing all aspects of an exper-
iment. In order to reproduce and compare data, it is vital
to store data describing the setting, such as the version of
operating system and algorithms. Furthermore, it is desir-
able to facilitate future retrieval of all experiment relevant
data, such as raw output data, processed data, and a de-
scription of evaluations and tests performed. Altogether,
the complete data from any experiment should be acces-
sible cohesively and comfortably.

� Flexible specification of complete experiment settings.
All aspects of conducting experiments can be subject to
change by the researcher without any confinement. The
testbed supports this via a general experiment specifica-
tion language, which can be seen as a programming lan-
guage for conducting experiments. It is independent of
the algorithms under investigation. A proper design of
such a language will be crucial to this venture.

Immediate advantages when using a testbed that meets
the previous demands are increased efficiency and the pos-
sibility to reproduce and compare experiments. A modu-
lar object-oriented design with independent building blocks
will enable a heterogeneous and iterative development of the
modules. Necessary refinements, generalizations and ab-
stractions of the everyday problems of empirical experimen-
tation can only appear when using it. Hence, being able to
independently improve the various processes is of greatest
practical use. That way, such an environment can grow with
the experience gained with it.

Having an experiment specification language, general
templates and procedures for conduction experiments could
be extracted and proliferated, putting empirical evaluation
on an even more scientifically basis, since non-experts in
statistics, now, can use these templates to perform a sound
statistical testing. Experimenters can concentrate on the al-
gorithms instead of having to devote energy to the rather
complicated and difficult problem of setting up experiments
properly.

For example, consider a planning algorithm consisting of
several individually parameterized components. The aim is
to fine-tune the parameter setting. Dependent on the results
of earlier runs with some initial parameter values as vali-
dated by statistical tests, later runs can explore more promis-
ing areas of parameter settings. This interaction of runs and

52

analysis of results could be expressed within a specifica-
tion language by some loops and conditional expressions
and thus this process could be automated as done in (Bi-
rattari et al. 2002; Xu, Chiu, & Glover 1998; Coy et al.
2000). Each such imperative description of experiment re-
alization can be viewed as a general template,script or pro-
gram, applicable to other algorithms, too. Generally, any
experimental design such as the Taguchi Design (Roy 1990;
Tsui 1992) can be regarded as a kind of template or script.

Proposed Architecture
In this subsection we further elaborate on our preceeding
reflections and propose a general architecture for a testbed
for experimentation with algorithms, depicted in figure 1.

The envisioned testbed consists of several components or
modules for the specific tasks of experimentation. These
modules are independent to such a degree that they can be
exchanged with newer versions without having to change
the other parts of the testbed. Special care has to be ad-
dressed to the interfaces of theses modules. By interface
we primarily mean part of a module that handles commu-
nication with other modules. Only secondly we denote by
interface the fixed communication protocol used between a
module and one of its interface parts. Interfaces in the pri-
mary meaning are needed to flexibly separate modules. The
independent modules are all controlled by a central control
unit (CCU) with standardized interfaces and with no or little
interaction between the modules. When changing a module,
only the module and perhaps its interface to the CCU has to
be changed.

In case any component fails, the CCU can detect such a
crash and recover it, e. g. by repeating it or by notifying the
user. Modules need not be one single entity but can be a
collection of loosely related small tools that are transpar-
ent to the CCU by means of the interface that controls them
directly. In the simplest case, an interface only relays com-
mands and data. Additionally, we propose to direct all flow
of data via databases. By this, all data including intermedi-
ate data can be stored efficiently and safely. One database,
which will store the experiment specification, can also store
pointers to all experiment relevant data, so this data can be
collected from the various databases and thus be retrieved
afterwards.

The CCU manages all operations that have to be done in
order to conduct the experiment as a whole. Its various in-
terfaces comprise:

� Interface to the user interface (IUI).
� Interface to the unit that runs and controls the algorithms

(IRU).
� Interface that reads a new specification of an experiment

(IES).
� Interface for accessing a database where experiment spec-

ifications and pointers/keys to all relevant experiment data
is stored (DBI).

� Interface to the module that performs statistical process-
ing such as data analysis and statistical testing (ISU).

� Interface to the module computing all displays and graph-
ics presented to the user (IDU).

The modules that belong to the previously listed interfaces
are described next:

Run Control Unit (RCU) This module operates the algo-
rithm in terms of the combination of algorithm compo-
nents subject to the experiment. It invokes the com-
ponents with correct parameter settings, ensuring proper
flow of data between the components, provision of prob-
lem instances as input, and storage of any output data.
As determined by the experiment specification, the CCU
invokes the components in proper sequence with actual
parameter values on the specified instances. This mod-
ule again has certain interfaces to ensure flexibility with
respect to different problem inputs and algorithm compo-
nents. These are:

� Interface to the problem generation unit (IGU). The
problem generation unit (PGU) typically is either a po-
tentially randomized problem instance generator or re-
trieves its problem instances from a benchmark repos-
itory. Generally, the PGU is the module that provides
the experiment input.

� Interface to algorithm components (IAC). Heteroge-
neous algorithm components might have very individ-
ual modes of control and in/output data formats. In
order to give enough flexibility, this interface can be
exchanged and tailored to the concrete algorithm com-
ponents at hand, e, g. by means of wrappers for single
components.

� Database Interface (DBI): This interface stores the out-
put data to the appropriate database.

Display Unit (DU) The DU is responsible for computing
presentations of any data regarding the experimentation
results. These comprise the data from statistics such as
means, variances, confidence intervals, results from statis-
tical tests such as tables from analysis of variance proce-
dures, and any plots and graphs illustrating aspects of the
experiment such as runtime vs. solution-quality trade-off
curves. Typically, this unit will employ plotting programs
such as Gnu-plot.

Statistical Unit (SU) This module computes any statistics
needed by the user. Additionally, it takes care of conduct-
ing any statistical testing. The data it needs to accom-
plish this is retrieved from the database where the ARU
stores the raw output data from the applied algorithms.
Typically, this module comprises a statistical package and
some added tools.

User Interface (UI) The UI provides easy management
and overview of the experiment to the user. It transmits
orders from the user to the CCU and displays feedback
from the CCU. The UI can include provisions for easy
editing and processing of experiment specifications. Ad-
ditionally, the presentation of results of any kind will be
relayed through the UI from the DU and SU, respectively.
Implementing the UI as a web interface permits a central
experimentation facility equipped with appropriate hard-
ware that is shared via the Internet.

53

Unit
Control
Central

IUI IDU

IES ISU

IRUDBI

DB
Raw Data

Unit
Statistical

DB
Statistics

DB
Instances

Unit
DisplayDB

Plots

Control
Unit

Run

Experiment
Specification

User
Interface

Problem
Generation

Unit
IGU

1 2 3

Interface to
Algorithm Components

DB
Specifications

DBI

N. . .

Figure 1: Architecture of a testbed for conducting empirical experiments. (Full lines represent control information, dashed
lines indicate flow of data, and dotted lines indicate optional flow of data.) The central control unit (CCU) controls all processes
of the testbed. It reads the experiment specification through its experiment specification interface (IES) and subsequently
instructs the run control unit (RCU) running the algorithms, the statistical unit (SU) processing the results, and the display unit
(DU) computing display such as plots and tables presented to the user via the user interface (UI). These units are accessed by
the run control unit interface (IRU), the statistical unit interface (ISU), the display unit interface (IDU), and the interface to the
user interface (IUI), respectively. The RCU retrieves problem instances through its problem generation unit interface (IGU)
from the problem generator unit (PGU) which either accesses a database of instances or employs a problem instance generator.
All intermediate data is stored persistently in various databases (DB).

54

This architecture is by no means fixed. It has to be tested
and adapted in practical use of the testbed. Particularly, a
proper design of the interfaces can only be achieved by expe-
rience. So far, the architecture mainly reflects the insight in
the necessity of separating replaceable parts of the testbed.

Statistical Testing
Tuning and comparing algorithms are important aspects
when designing algorithms. Usually, these tasks are per-
formed by running algorithms with different parameter set-
tings on a collection of problem instances. These instances
either come from a benchmark repository or they are gen-
erated on demand, often randomly. On the basis of such
experimentation results, postulations about the behavior and
performance of the tested algorithms are made.

However, empirical results can be quite misleading.
When using benchmarks as instances, for example, exact
postulations can only be formulated with respect to the set of
benchmarks used or with respect to the set of instances that
can be generated by the problem instance generator used.
Generalizations to a bigger set of problems (instances) are
subject to immanent uncertainty. There is always the dan-
ger of tuning for the benchmarks or the problem genera-
tor (Hooker 1996). In fact, the excerpt of instances used for
any experimentation need not be representative of all possi-
ble or of all relevant instances. When using randomly gen-
erated problems, it could happen, that, by chance, the in-
stances generated are quite easy, suggesting the algorithm
tested is very good. However, in this case, the results cer-
tainly should not be generalized, since the tested instances
are too easy, which, unfortunately, is unknown to the exper-
imenter.

There is always some kind of uncertainty about the results
of experiments due to the randomness involved. Generally,
there are two sources of randomness in many computational
experiments. First, any choice of the test set of problem in-
stances effectively is drawn from the underlying set of all
valid or possible problem instances and as such a random
experiment. Second, algorithms can themselves be random-
ized and hence each run is a random experiment, too. It
should be clear that generalizations from the results of ran-
dom experiments have to be handled with care.

A random experiment draws a number of individuals,
called the sample, from a set of possible outcomes, called
population. The aim of statistical inference is to control the
danger of making wrong generalizations beyond the sample,
since generalization from the sample is only valid when the
sample is representative of the population.

The law of probabilities which governs the distribution
of the observed values from a random experiment is called
probability distribution. The random experiment of repeat-
edly throwing a coin observing heads vs. tails, for example,
is distributed according to the binomial distribution with pa-
rameter � indicating the probability of observing heads. The
set of all binomial distributions different only in the value of

� is called the family of binomial distributions. Generally,
families of distribution functions are called parameterized
distributions.

Statistical inference exploits fundamental relations be-
tween the size of a sample, the variance of the observed
values, and the confidence of the conclusions, following the
intuition that the smaller the variance and the bigger the size
of the sample, the more confidence we can have in our gen-
eralizations. Three main questions emerge when analyzing
random experiments. All questions seek confident informa-
tion about the true value of a parameter such as � previously
or about the true value of a function of some parameters such
as �

�
assuming some fixed family of probability distribution:

1. Parameter estimation: What is the value of a parameter
or function?

2. Confidence intervals: What are the bounds of the value
of a parameter or function given a certain confidence is
expected?

3. Hypothesis testing: Does a parameter or function value
fall into a certain interval? How high is the probability it
does?

Consider running two planning algorithms pairwise on
the same problem instances measuring the difference of the
length of the computed plans. Assuming this difference is
distributed according to a normal distribution, examples of
the previous problems are:

1. What exactly is the mean difference for all problem in-
stances? Particularly, is the mean difference positive or
negative (indicating superiority of an algorithm)?

2. What are the bounds of the mean difference with a proba-
bility of 95%?

3. Is the mean difference below � ? How high is the proba-
bility it is?

Statistical inference further can be employed to answer
questions about the magnitude of deviations of observed re-
sults from the expected mean. Further on, statistical infer-
ence can be employed to test whether a set of algorithms
performs equally well or to regress the behavior of an al-
gorithm depending on the problem instance size. Some-
times it is interesting to hypothesize on the underlying fam-
ily of probability distribution. Finally, the influence of
certain factors such as different parameter settings can be
tested. One can test for mutual independence vs. corre-
lation of a set of factors and whether a certain factor has
an influence at all (Larson 1982; Lehmann 1997). When
no assumption about the underlying probability distribution
can be made, these questions can still be answered with so
called non-parametric tests (Siegel 1956). However, they
are less powerful. Existing standard statics package such as
R (Ihaka & Gentleman 1996; Cribari-Neto & Zarkos 1999;
Venables & Ripley 1999) supply these tests and can be used
when employing statistical testing for a experimentation.

When deciding to employ statistical testing to validate
conclusions, a proper design of the experiment in advance
is crucial. Experimental design is concerned with proper
planning of experiments involving statistical evaluation. The
goal is to draw valid and objective conclusions with mini-
mal effort. As such, the main issues of experimental design
are planning of experiments to collect appropriate data and

55

to properly analyze these data by statistical methods (Co-
hen 1995; Mason, Gunst, & Hess 1989; Montgomery 1991;
Dean & Voss 1999). There are several methods that de-
scribe how to properly design efficient experiments such as
the Taguchi method (Roy 1990; Tsui 1992). These methods
can be viewed as kind of template for conducting experi-
ments as referred to previously. A language for specifying
experiments could provide a standardized means to reusably
describe such methods.

Planning Problems and Planning Systems
By now, we presented general properties of testbeds that are
common for a variety of application domains. To demon-
strate these ideas, we are currently working on a testbed for
a specific problem domain: planning. At the time of writing,
the work is about to be completed.

In planning the task is to execute actions in a world to
bring it in a desired state. A world, also called domain, is
defined by the set of its properties and the set of executable
actions. A planning problem is a domain together with an
initial world state and a set of goal states. Its solution is a
sequence of actions that change the initial state into one of
the goal states.

Problem descriptions commonly specify only the bare
minimum of knowledge: The variable features of the do-
main and the available operators. In the problem domains
most often addressed, however, there tends to be a rich struc-
ture “hidden” in the domain description. A planning system,
now, consists of several algorithms that address different as-
pects of this structure. The output of one such algorithm is
the input of the next and the flow of information from the
initial problem to the solution can be quite complex.

To allow the modularization of planning systems, we use
the Domain Knowledge Exchange Language DKEL (Scholz
& Haslum 2000). It is designed to be part of domain
and problem definitions in PDDL (Ghallab et al. 1998;
Bacchus 2000), a widespread language to state planning
problems. DKEL allows to decouple the extraction of do-
main knowledge from its use by augmenting the original do-
main or problem description with domain knowledge, rather
than altering or reducing it right away. This way, the effect
of a single module can be subject of investigation.

DKEL consists of five “general” knowledge forms which
are modest generalizations of the forms of knowledge pro-
duced and used by domain analyzers and planners in exis-
tence today. The following is an example of a knowledge
item for the three-operator blocksworld:

(:replaceable
:optimal

(:parallel-length :nb-operators)
:vars (?x ?y ?z)
:replaced ((move-from-table ?x ?y)

(move ?x ?y ?z))
:replacing

(:empty (move-from-table ?x ?z)))

It states that it is always possible to replace the sequence
of moving a block from the table onto a block and imme-
diately onto another block by moving it directly onto the

second location, at the time step of the second move. This
replacement does not increase the number of operators nor
does it increase plan length for parallel plans.

Prototype of a Testbed for Planning
The prototype testbed is concerned with planning algorithms
composed from a number of planning modules in specific or-
der. The testbed consists of a central control unit (CCU), a
user interface (UI), one relational database for storing all rel-
evant data in several tables, and a statistical unit. The CCU
is directly responsible for handling any modules by starting
the modules in proper sequence and configuration, collect-
ing the results from the runs, and database storage of the
results. Currently, all storage in the database is persistently.
The raw algorithm output is stored in a table of the database,
too, and accessed directly by the CCU to feed the statistical
unit, in our case the R package2 (Ihaka & Gentleman 1996;
Cribari-Neto & Zarkos 1999; Venables & Ripley 1999). The
results are displayed by a web user interface. As problem
generators we use the generators of the FF domain collec-
tion.3 All generated instances are stored in a table.

Any information concerning parameters of modules such
as parameter flags and range of parameter values of a plan-
ning module is stored in a table. This table acts as a de-
scription of the standardized command interface as required
by the testbed. New modules can easily be incorporated by
adding a database entry for the new algorithm or module and
placing the executable into the file system – the only prereq-
uisite is that an algorithm provides a standardized command
interface in the style of Unix. If necessary a wrapper, which
can be regarded as kind of interface, has to be written for a
module to adapt to the previous requirements. The testbed
executes the modules via a system call. It calls the mod-
ules in proper sequence and directs the in- and outputs of
the various modules via files in pipelining fashion, starting
with the input from the table containing the instances, end-
ing with the table containing the results of a run.The user
interface currently accesses the database directly to read in
the available modules and their parameters. So far, the pro-
totype does not recover from partial crashes of any module.

Performing experiments is divided into three independent
parts:

Instance generation The user can choose a domain and
generate new problem instances by specifying several pa-
rameters defining the instance such as the size. Any in-
stance generated that way is stored in a table for future
use.

Specification and Execution The user can specify an algo-
rithm and a configuration to run on a set of problem in-
stances. The results and specifications of each distinct
run are stored in a table and are identified by the name for
the algorithm in its actual configuration, the problem in-
stance identification and a timestamp. Algorithms can be
specified by selecting a number and sequence of modules
and configuring parameter values for each modules. Each

2www.r-project.org
3www.informatik.uni-freiburg.de/ � hoffmann/ff-domains.html

56

algorithm and configuration specification created this way
is named and stored in a table. Instead of specifying
a new algorithm and configuration, the user can choose
among the stored algorithm-configuration pairs. Problem
instances can be selected from all stored instances gener-
ated in the past.

Statistical evaluation Applying statistical tests is per-
formed by first choosing two or more named algorithm-
configuration pairs. Next, a set of run results on a number
of possibly common instances are picked for each pair.
Then, a statistical test has to be choosen which will com-
pare the selected algorithm-configuration pairs on the se-
lected results. Depending on whether the user requests a
test with repeated measures, i. e., tests on the same set of
instances for all tested algorithm-configuration pairs, or
without repeated measures, the tests are performed on the
intersection of the sets of runs with respect to the same
instances, or not, respectively. If the user selected more
than two algorithm-configuration pairs for testing with a
t-test, all possible pairwise combinations are tested. The
results of the tests are displayed by the UI.

The planning modules under construction can be divided
in three classes: Preprocessing techniques, which exhibit
knowledge about the planning problem prior to the search
for a plan, planners, and a module to connect and manip-
ulate the input and output of the other modules in various
ways. The considered planners are a reimplementation of
GRT (Refanidis & Vlahavas 2001) and the planner FF (Hoff-
mann & Nebel 2001), adapted for use with the testbed.

We are implementing three preprocessing modules for
our testbed: RIFO (Nebel, Dimopoulos, & Koehler 1997),
TIM (Fox & Long 1998), and a technique to order
goals (Koehler & Hoffmann 2000). RIFO eliminates irrele-
vant operators and TIM infers types and invariants. These
techniques enrich the planning problem with knowledge
which can be used by subsequent stages of the planning
problem. The technique to order the goals of a planning
problem is somehow different. It gives information how to
divide the planning problem in to smaller ones and how to
combine the partial solutions to a solution of the initial prob-
lem. This information is independent of the planning algo-
rithm used. To account for this independence, we provide a
wrapper for planners that uses the goal-ordering knowledge
in a way transparent for the planner.

The use of a common language for input and output does
not suffice in combining planning modules to a planning
system. Each module has specific requirements that have
to be met by its input, and changing these requirements
can amount to a redesign of its algorithm. To account for
these requirements, we provide a module, called DeDKEL,
to manipulate planning problems in various ways: It allows
to eliminate DKEL statements by either encoding it in the
problem description or by just removing them. Further-
more, it can reduce the complexity of a problem description
by eliminating specific features of PDDL, like negation or
quantification.

DeDKEL has additional features that are useful for test-
ing planing systems: concealment and randomization. In

order to conceal the structure of a planning problem, e. g.
for competitions, it can be helpful to replace identifiers by
meaningless strings. This has been done for the mystery
domain, a concealed logistics domain, which was used for
the first AIPS planning competition. Randomization can be
useful to test whether the performance of a planning sys-
tem depends on the order of interchangeable features of the
problem description.

Conclusion
In this paper, we discussed properties of an ideal environ-
ment to conduct and evaluate computational experiments.
Some of these ideas are about to be implemented in a testbed
for planning systems with a stress on reusability, extensibil-
ity and applicability to a wide range of problem domains.

This is not the first attempt to build such an environment:
Anyone who has conducted a number of experiments on a
collection of test sets will have felt the urge to automate this
task. Likewise, the need for reusability of planning and pre-
processing techniques has long been noticed. For example
the TIM API4 allows to easily include TIM into a planning
system.

For the future, we plan to iteratively extent the testbed
to meet further needs. The general direction was already
outlined during this paper. In this process, the experience
gained with the prototype will yield further insight in which
features are necessary, which degrees of abstraction and gen-
eralization of experimentation processes are useful, and how
much is necessary. This, hopefully, will also furnish us with
more insight about needed features for an experimentation
specification language.

This paper is inspired by our work in the meta-heuristics
network,5 which investigates heuristic search algorithms
that solve combinatorial problems. This network has gained
expertise in experimentation and statistical evaluation and
feels the need for a tool that resembles the properties am-
plified within this paper. We hope that our prototype in the
context of planning helps us on the way to a general purpose
testbed for computational experiments.

References
Bacchus, F. 2000. Subset of PDDL for the AIPS 2000 plan-
ning competition. http://www.cs.toronto.edu/ � aips2000/
pddl-subset.ps.

Birattari, M.; Stützle, T.; Paquete, L.; and Varrentrapp, K.
2002. A Racing Algorithm for Configuring Metaheuris-
tics. Technical Report AIDA-02-01, Darmstadt University
of Technology.

Cohen, P. R. 1995. Empirical Methods for Artificial Intel-
ligence. Cambridge, Massachusetts: The MIT Press.

Coy, S. P.; Golden, B. L.; Runger, G.; and Wasil, E. A.
2000. Using Experimental Design to Find Effective
Paramterer Settings for Heuristics. Journal of Heuristics
7:77–97.

4www.dur.ac.uk/ � dcs0www/research/stanstuff/TIMAPI/int.html
5www.metaheuristics.org

57

Cribari-Neto, F., and Zarkos, S. G. 1999. R: Yet another
Econometric Programming Environment. Journal of Ap-
plied Econometrics 14:319–329.

Dean, A., and Voss, D. 1999. Design and Analysis of
Experiments. New York, NY: Springer Verlag.

Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
Research 9:367–421.

Garner, S. 1995. Weka: The Waikato Environment for
Knowledge Analysis. In Proceedings of the New Zealand
Computer Science Research Students Conference, 57–64.

Gent, I. P., and Walsh, T. 1994. How Not To Do It. Tech-
nical Report 714, University of Leeds.

Ghallab, M.; Howe, A.; Knoblock, C. A.; McDermott, D.;
Ram, A.; Veloso, M.; Weld, D.; and Wikins, D. 1998.
PDDL - the planning domain definition language. Tech-
nical Report CVC TR-98-003/DCS TR-1165, Yale Center
for Computational Vision and Control.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.

Hooker, J. 1994. Needed: An Empirical Science of Algo-
rithms. Operations Research 42(2):201–212.

Hooker, J. 1996. Testing Heuristics: We have it all wrong.
Journal of Heuristics 1:33–42.

Ihaka, R., and Gentleman, R. 1996. R: A language for
data analysis and graphics. Journal of Computational and
Graphical Statistics 5(3):299–314.

Koehler, J., and Hoffmann, J. 2000. On reasonable and
forced goal orderings and their use in an agenda-driven
planning algorithm. Journal of Artificial Intelligence Re-
search 12:338–386.

Larson, H. 1982. Introduction to Probability Theory and
Statistical Inference. New York, NY: John Wiley & Sons,
Inc.

Lehmann, E. 1997. Testing Statistical Hypothesis. Springer
Verlag.

Mason, R.; Gunst, R.; and Hess, J. 1989. Statistical Design
and Analysis of Experiments. New York, NY: John Wiley
& Sons, Inc.

McGeoch, C. C. 1996. Towards an Experimental Method
for Algorithm Simulation. INFORMS Journal of Comput-
ing 8:1–15.

McGeoch, C. C. 2001. Experimental Analysis of Algo-
rithms. In Pardalos, P., and Romeijn, E., eds., Handbook
of Global Optimization, Volume 2: Heurstic Approaches.
Kluwer Academic.

Montgomery, D. 1991. Design and Analysis of Experi-
ments. New York, NY: John Wiley & Sons, Inc., 3rd edi-
tion.

Moret, B. 2002. Towards a Discipline of Experimental
Algorithmics. In DIMACS Monograph in Discrete Math-
ematics and Theoretical Computer Science. Forthcoming.
AMS Press.

Nebel, B.; Dimopoulos, Y.; and Koehler, J. 1997. Ignoring
irrelevant facts and operators in plan generation. In Pro-
ceedings of the European Conference on Planning, 338–
350.
Rardin, R., and Uzsoy, R. 2001. Experimental Evaluation
of Heuristic Optimization Algorithms: A Tutorial. Journal
of Heuristics 7:262–304.
Refanidis, I., and Vlahavas, I. 2001. The GRT planning
system: Backward heuristic construction in forward state-
space planning. Journal of Artificial Intelligence Research
15:115–161.
Roy, R. 1990. A Primer on the Taguchi Method. Van
Nostrand Reinhold.
Scholz, U., and Haslum, P. 2000. Enable your planner! De-
coupling domain analysis and planning. Technical Report
AIDA-00-05, Darmstadt University of Technology.
Siegel, S. 1956. Nonparametric Statistics for the Behav-
ioral Sciences. McGraw-Hill.
Tsui, K. L. 1992. An Overview of Taguchi Method and
Newly Developed Statistical Methods for Robust Design.
IIE Transactions 24(5):44 – 57.
Venables, W. N., and Ripley, B. D. 1999. Modern Applied
Statistics with S-Plus. Springer, 3rd edition. ISBN 0-387-
98825-4.
Witten, I., and Frank, E. 2000. Data mining: Practical
Machine Learning Tools and Techniques with Java Imple-
mentations. San Francisco: Morgan Kaufmann.
Xu, J.; Chiu, S.; and Glover, F. 1998. Fine-Tuning a
Tabu Search Algorithm with Statistical Tests. Interna-
tional Transactions in Operational Research 5(3):233 –
244.

58

Profitable Directions for AI-Planning Research:
A Personal View

Peter Jarvis

Artificial Intelligence Center
SRI International

333 Ravenswood Ave, Menlo Park, California 94025, USA.
Jarvis@ai.sri.com

Abstract
I reflect on the progress that the AI Planning field has made
over the past 30 years and define the directions where I
believe that we should focus our future efforts if we are to
continue as a successful and vibrant scientific field. More
concretely, I argue that Fikes and Nilsson’s original framing
of the planning problem is too far removed from the
requirements of real-world applications. We must accept
that it will not be feasible to obtain complete and consistent
domain theories in the near future and that users will want
to influence the plans they receive in dimensions other than
goal state and shortest path. In light of this, I argue that we
must focus on computer-aided planning instead of
computer-replaced planning. I outline the technical
challenges this course offers and the exciting work already
emerging.

Keywords: Computer Aided Planning, and STRIPS Assumption.

Introduction
“There are three principal means of acquiring
knowledge available to us: observation of
nature, reflection, and experimentation.”

 Denis DiderotDenis DiderotDenis DiderotDenis Diderot (1713–84)

All fields must periodically reflect upon their
achievements, reexamine their goals, and direct future
efforts accordingly. Here, I outline my personal reflection
on the progress made in the AI planning field over the past
30 years and identify where I believe we should focus our
future effort. I highlight some promising directions that
have emerged before setting out some fundamental changes
in research program structure and performance evaluation
that we must bring about if these new directions are to
mature and enable the field to move to a new level of
accomplishment.

My Background
It is important for me to set out my experience in the field
before proceeding. This is not an attempt to proclaim that I
am a great oracle with far-reaching insights; rather, it is

important that you understand the path I have taken so that
you may judge appropriately my experience and bias.
 During my Ph.D. program I focused on applying
planning techniques to civil engineering projects (Jarvis &
Winstanley 1996; Bloomfield et al. 1999) before joining
the O-Plan team in Edinburgh. At Edinburgh, I worked on
a range of applications, including process management for
the chemical industry (Jarvis et al. 2000), army small unit
tactical planning (Tate et al. 2000), and strategic military
planning (Dyke et al. 2000). Since moving to SRI
International, I have worked on air campaign (Myers et al.
2001) and Special Forces problems (Myers, Jarvis & Lee
2001; 2002). I have also worked on incorporating concepts
from fuzzy logic into graph and SAT-based planners
(Jarvis, Miguel & Shen 2000; Miguel, Jarvis & Shen
2000). To summarize, over the last 8 years I have
experienced four large DARPA programs, several
commercial consultancy projects, and a handful of Ph.D.
programs. My goal here is to add what I have learned from
this path to the debate on the directions that we should take
in the future.

What We Have Achieved
AI researchers have worked primarily with Fikes and
Nilsson’s (1971) original framing of the planning problem
for just over 30 years now. Quoting directly from their
paper:

…the problem space for STRIPS [or your planner] is
defined by three entities:

(1) An Initial world mode, which is a set of wffs

describing the present state of the world

(2) A set of operators, including a description of their
effects and their precondition wff schemata

(3) A goal condition stated as a wff

The problem is solved when STRIPS [or your planner]
produces a world model that satisfies the goal wff.

59

The publication mass of the planning field is dominated by
two thrusts:

A Minimize the time a planner takes to find the
shortest operator sequence necessary to produce a
world model that satisfies the goal wff.

B Without damage to progress on thrust A, remove
the (explicit) simplifications made by Fikes and
Nilsson: atomic time, deterministic action effects,
omniscience, and the planning agent being the
sole cause of change.

We have made extraordinary progress over the past 30
years. Today’s planners can solve problems orders of
magnitude more complex than those of a few years ago
(read Weld 1994, then Weld 1999 for an excellent
perspective of how the field changed in those 5 years). We
also have the first fully fielded and well-documented
applications (Muscettola et al. 1998; [a subset of those in]
Knoblock ed. 1996).
 While we have a right to be proud of our
accomplishments, we must continue to move forward with
new and exciting innovations if the field is to remain alive
and funded. I now consider the question of what is missing
from our portfolio.

What We Have Not Achieved
A scientific field must produce concepts that can be taken
on by engineers to produce artifacts of value to society.
While it should not be a field’s only focus, this link to
application is important, as it provides many fascinating
intellectual challenges that help keep scientists grounded
and funding agencies interested.
 As I noted above, our field has recently produced well-
documented applications. This landmark accomplishment
is rightly being celebrated in the literature and at
conferences. My concern, however, is that people planning
military operations still use paper or Microsoft
PowerPoint™ while civil engineers use Artimis™ type
tools. These tools offer benefits in facilitating the
documentation and communication of plans, but they
provide no assistance in the decision-making, specifically
deciding what actions must be included in the plan or
detecting and resolving complex action interactions.
 The question I ask is, will the current focus of our field
produce applications that scale to support the type of large-
scale planning tasks I mention above? It is clear that we
have solutions offering much impact at the physical device
level. Taking a military example, we might soon be able to
comfortably control a tank in achieving goals such as “stay
alive” and “engage the enemy. ” In the next section, I argue
that the field is not tackling with sufficient emphasis the
requirements of large-scale planning problems. Returning
to the military example, I do not see the field’s current
direction leading to a technology capable of supporting a
general’s staff officers in designing the high-level strategy
of a battle.

Where AI Planning Must Focus Its Efforts
I group my opinions on this topic into two sections. In the
first, I consider promising work that seeks to address the
implicit STRIPS assumptions and encourage more work in
these areas. I then turn my attention to the more pragmatic
issues of changes in research program structure and
research evaluation necessary to encourage a broader range
of work under the planning banner.

Relaxing the Implicit STRIPS Assumptions
While Fikes and Nilsson’s explicit simplifying assumptions
(often referred to as the STRIPS assumptions) have been
the focus of much effort, little research has been devoted to
the implicit assumptions in their framing of the planning
problem. My thesis is that the Fikes and Nilsson’s casting
is too restrictive to be of value outside of device-level
application domains. Here I work through the implicit
STRIPS assumptions and promising work in each area.
Only by bringing more effort to bear in these areas will the
AI planning community reach the broad range of
applications that could benefit from tool support.

Complete Operator Sets
Fikes and Nilsson’s assumption that we can build an
operator set that completely covers a domain is proving
most difficult to realize in practice. In applications with
many degrees of freedom, it is impractical to expect full
coverage.
 Consider the military problem of evacuating U.S.
citizens from a hostile country. The number of factors that
must be taken into account is simply enormous. People
charged with planning operations of this type need to bring
around 20 years of domain experience to bear on the
problem. The AI community has long been trying to encode
knowledge in these quantities, but with limited payoff
(Leant & Guha 1990). Why does the AI planning
community believe it can do better than its colleagues?
 Consider planning’s sister activity, design. Much design
is now computer aided, as researchers have sought to
complement rather than replace human designers. Encoding
the knowledge needed to design products is several orders
of magnitude more complex than encoding that required in
assisting a human. Why does the AI Planning community
insist on focusing solely on automated planning when
computer-aided planning could provide tools of social
value in a much closer time scale? Should we balance our
portfolio to provide near as well as long-term payback?
 Exciting work is emerging in the computer-aided
planning direction. Dyer’s SOFTools (GDATS 2002)
provides one extreme on the continuum of computer-aided
planning tools that is already in operational use with U.S.
Special Forces units around the world. SOFTools provides
a simple temporal planning interface with domain-specific
icons. This speeds planning from the users’ perspective, as
it is more focused upon the types of diagrams with which

60

they represent plans while also providing a more structured
representation for researchers to exploit than alternative
documentation aids such as Microsoft PowerPoint (their
previous tool of choice).
 SRI’s CODA system (Myers, Jarvis & Lee 2001; 2002)
integrates with SOFTools to provide a higher level of
computer support. With CODA, users can describe aspects
of a plan where changes are likely to affect them adversely.
CODA automatically generates alerts if another user
changes such an area. This helps human planners
coordinate when distributed in both time and space.
 The mixed initiative paradigm is well suited to computer
aided planning. Ferguson, Allen, and Miller’s TRIPS
system (1996) hooks a person and a planner together to
solve travel problems, where the computer’s role is to
maintain constraints and inform the users when they are
likely to be violated.
 This direction offers significant challenges. For example,
it necessitates that a user be allowed to add structures to a
plan. With such editing allowed, it is no longer possible to
check automatically that a plan is correct (all required
causal links in place and unthreatened, for example) as the
user may have neglected to input some important
precondition or effect. What level of consistency checking
is appropriate and possible in a plan authoring context is an
interesting research question.

Goal Specification
Applications demand the specification of more than just the
goals a plan is to achieve. Users may want to specify the
strategies to use in solving the problem (avoid using F-14s
for combat air patrols or stay in first class accommodation
on the business legs of a trip) or even some of the actions
that must be included in the solution (fly United between
SFO and LAX). Myers has explored both types of user
guidance in the form of Advisable Planners (1996) and
Plan Sketch Completion (1997).
 While Myers’ work is an important step toward
providing comprehensive mechanisms for specifying user
objectives, the work assumes a complete operator base that
as we argue above, is not likely to be available in practice.
Some significant and interesting research challenges are
still to be addressed in this area.

Plan Evaluation
We have assumed that the user of a planning system is
looking for a single plan and that this should be the shortest
plan. In practice, people plan for many reasons. In military
planning (when, as the old adage suggests, no plan survives
first contact with the enemy) planning is often used to
ensure that the course of action committed to is readily
adaptable to a changing situation. Planning in this context
is an exploratory task where multiple plans are produced
under different assumptions or advice directives (use F14s
for Combat Air Patrols (CAPS), don’t use F14s for CAPS)
and compared.

 Myers and Lee (1999) have considered this problem of
generating multiple plans automatically. Again, this work
assumes that complete operator sets are available. Swartout
and Gil (1996) in their INSPECT system provide support
for evaluating a course of action against user-defined
criteria.
 To move forward we must consider in more detail the
need to explore multiple plans, perhaps even combining
parts to form a new option. Open questions remain at many
levels. How can we efficiently reason with large-scale plans
that contain contingency branches? What are the salient
features that users use to choose between courses of action?
How can we present those features to users so that they can
rapidly compare plans?

Flexible Preconditions
In mainstream planning, all an operator’s preconditions
must be satisfied for it to be applicable. This framework
does not support the flexibility in constraint satisfaction
necessary in many applications.
 Consider the military problem of infiltrating a small team
by swimming from a submarine to a beach. The standard
operating procedure for this task contains many constraints.
The submarine must remain concealed under the ocean
surface (minimum operating depth and maximum
illumination from the moon), the swimmer must avoid
hypothermia (function of the distance to swim and sea
temperature), and the infiltration must be completed within
the time frame demanded by the overall mission of which it
is a component.
 It is rare that one can find the right combination of ocean
temperatures, tide, and lunar illumination within the
timescale of an operation of this type. Typically, something
has to be compromised. For example, asking the swimmers
to cover a greater distance keeps the submarine concealed
while reducing the effectiveness of the divers when they
reach their target because of the additional fatigue.
 While there has been much work on looking at the
probability of mission success (send two teams of divers
rather than one) there has been little considering the effect
of constraint violation on plan quality. Miguel, Jarvis, and
Shen (2001) consider this problem. The approach is
preliminary and asks more questions that it answers. In
particular, we take a fuzzy-logic based approach to
reasoning about the damage a violated constraint inflicts on
a solution. Is this the right way to represent the importance
of constraints?

Necessary Environmental Changes
Here, I examine the broader environmental issues that
must be considered if we, as a field, are to produce more
readily applicable technology.

Multidisciplinary Research
The problem with AI Planning research is that AI Planning
researchers have undertaken it! We are focused on
algorithms, as that is what interests us most. What we are

61

not generally interested in is modeling how people go about
solving planning problems and identifying the niches for
tool support. We have rather assumed that in solving Fikes
and Nilsson’s categorization of the problem we will
produce the tool support that people require.
 There are two barriers to carrying out the
multidisciplinary research that I am suggesting. First, we
need to build relationships with people with expertise in
human factors, systems analysis, and cognitive psychology
as these are the types of people who can help us understand
the “as is” situation with human-level planning. We can
then work on generating the “to be” process and finally the
tool support needed for it. Second, we have not sought such
multidisciplinary funding. This might be a function of the
compartmentalization of funding agencies or just the
comfort of working with colleagues with similar expertise.

Planner Evaluation and Planning Competitions
One of the attractions of Fikes and Nilsson’s
characterization is the ease with which progress can be
measured. If Planner A solves problem 1 faster than
Planner B, then we can conclude that Planner A’s
performance is superior. This ease of comparison has
driven the community towards its current focus on planning
competition where the group walking away with the most
prestige from a conference is likely to be the one that
provides the fastest system in the competition track.
 Computer aided planning systems are going to be more
difficult to evaluate. However, we must find appropriate
metrics or will be difficult to determine if progress has
been made. Again, we reach a difficult research question.
How do we evaluate applied research? Who will pay for
the evaluation effort given that it might need access to
many users in controlled conditions?

Good Application Papers
A justifiable criticism raised at much of the previous
applied research is that it is not well documented. Authors
have not always clearly laid out the computational
procedures and domain models that they have used. This
has made it difficult to determine exactly what an
“application” is doing and the compromises that have been
made in its design.
 While omitting this detail is understandable given
funding constraints, it is necessary if the applied
community is to maintain the respect of the more formal
community. We should be careful to take the time to make
our applications assessable by our more formally focused
colleagues.

End the Divide on Search Control Knowledge
The planning field has been divided into the mutually
exclusive “formal” and “applied” camps for too long. The
applied camp has centered on Hierarchical Task Network
(HTN) (Sacerdoti 1974; Tate 1977) techniques that encode
knowledge about the actions available in a domain together
with knowledge about how to go about solving problems in
that domain. The “formal” camp has resisted the encoding

of this search control knowledge as its members correctly
argue that it leads to less flexible solutions.
 There are two points here. First, applied work has been
discounted because it has almost always has made use of
search control knowledge. However, the problems posed
by real applications exist independently of this design
decision. Indeed, I have not had to mention this design
decision until now. Second, HTN approaches couple search
control knowledge tightly with operators. Huang, Selman
and Kautz (1999) show that search control knowledge can
be loosely coupled with the operator base, allowing it to be
swapped in and out more easily.
 We should proceed with the understanding that search
control knowledge should be avoided. However, when we
have to use it we must ensure that it is declarative so that it
may be replaced as search speeds increase or the control
knowledge becomes outdated.

Conclusion
As a field, we must move beyond Fikes and Nilsson’s
characterization of the planning problem and center our
efforts upon a computer-aided rather than computer-
replaced planning process.
 There is no shortage of challenging research questions to
answer on this path. My closing question is, how do we
motivate a field to move in a new direction given that it
will cause significant discomfort in the short term?

References
Bloomfield, D., Faraj, I., Jarvis, P., and Anumba, C., 1999,
Managing and Exploiting Knowledge Assets in the
Construction Industry, In Proceedings of the 8th
International Conference on Durability of Building
Materials and Components, Vancouver, Canada.

Dyke, D., Salt, M., Jarvis, P., and Desimone, R., 2000,
Experimental Results from Integrating Planning Systems
and Simulation Models. In Proceedings of the 2000
Command and Control Research Technology Symposium,
Vienna, VA.

Ferguson, G., Allen, J., and Miller, B., TRAINS-95:
Towards a Mixed-Initiative Planning Assistant. in
Proceedings of the Third Conference on Artificial
Intelligence Planning Systems (AIPS-96), Edinburgh, UK,
29-31 May 1996, pp. 70-77.

Fikes, R., and Nilsson, N., 1971. STRIPS: A New
Approach to the Application of Theorem Proving to
Problem Solving. Artificial Intelligence 5(2). North
Holland Publishing Company.

GDATS, 2002. SOFTools V2.0 User Guide. General
Dynamics Corporation, http://www.gdats.com.

62

Huang, Y., Selman, B., and Kautz, H., 1999. Control
Knowledge in Planning: Benefits and Tradeoffs. Proc.
AAAI-99, Orlando, FL.

Jarvis, P., Miguel, I, and Shen, Q., 2000,
Flexible Blackbox In Proceedings of the Workshop on
Representational Issues for Real-World Planning Systems
held within AAAI-00, Austin, TX.

Jarvis, P., Moore, J., Stader, J., Macintosh, A., and Chung,
P., 2000, Harnessing AI Technologies to Meet the
Requirements of Adaptive Workflow Systems, In J. Filipe
(ed) Enterprise Information Systems, Kluwer Academic
Publishers, pp173-180.

Jarvis, P., and Winstanley, G., 1996,
Dynamically Assessed and Reasoned Task (DART)
Networks. In Proceedings of Expert Systems 1996, the 16th
Annual Technical Conference of the British Computer
Society Specialist Group on Expert Systems, Cambridge,
UK, December 1996, pp92-105. ISBN- 1-899621-15-6.

Knoblock, C., (editor), 1996, AI planning systems in the
real world. IEEE Expert, December, p 4 – 12.

Leant, D., and Guha, R., 1990, Building Large Knowledge
Based Systems. Addison Wesley

Miguel, I., Jarvis, P., and Shen, Q., 2001, Efficient Flexible
Planning via Dynamic Flexible Constraint Satisfaction.
Engineering Applications of Artificial Intelligence, 14,
pp301-327.

Muscettola, N., Nayak, P., P, Pell, P, and William, B,
1998., Remote Agent: to boldly go where no ai system has
gone before. Artificial Intelligence 103(1-2) 5-48

Myers, K., 1997., Abductive Completion of Plan Sketches,
In Proceedings of the Fourteenth National Conference on
Artificial Intelligence (AAAI-97).

Myers, K., 1996., Strategic Advice for Hierarchical
Planners., In Principles of Knowledge Principles of
Knowledge Representation and Reasoning: Proceedings of
the Fifth International Conference (KR '96), Morgan
Kaufmann Publishers, San Francisco, CA.

Myers, K., Jarvis, P., and Lee, T., 2002, CODA:
Coordination of Distributed Human Planners.
In Proceedings of the 6th International Conference on
Artificial Intelligence Planning and Scheduling Systems,
France.

Myers, K., Jarvis, P., and Lee, T., 2001, Active
Coordination of Distributed Human Planners.
In Proceedings of the 6th European Conference on
Planning (ECP-01), Toledo, Spain.

Myers, K., Smith, S., Hildum, D., Jarvis, P., and de Lacaze,
R., 2001, Integrating Planning and Scheduling through
Adaptation of Resource Intensity Estimates.
In Proceedings of the 6th European Conference on
Planning (ECP-01), Toledo, Spain.

Myers, K., and Lee, T., 1999, Generating Qualitatively
Different Plans through Metatheoretic Biases. in
Proceedings of the Sixteenth National Conference on
Artificial Intelligence (AAAI-99), AAAI Press, Menlo Park,
CA, 1999.

Tate, A., Levine, J., Jarvis, P., and Dalton, J., 2000, Using
AI Planning Technology for Army Small Unit Operations.
In Proceedings of the Fifth International Conference on
Artificial Intelligence Planning and Scheduling Systems,
Colorado, USA, April 2000.

Tate, A., 1977, Generating Project Networks, IJCAI, pp
888-893.

Sacerdoti., E., 1974, Planning in a Hierarchy of
Abstraction Spaces. Artificial Intelligence, 5 pp115-135.

Swartout, W., and Gil, Y., 1996, EXPECT: A User-
Centered Environment for the Development and
Adaptation of Knowledge-Based Planning Aids. In
Advanced Planning Technology: Technological
Achievements of the ARPA/Rome Laboratory Planning
Initiative,. Menlo Park, Calif.: AAAI Press, 1996.

Weld, D., 1999, Recent Advances in AI Planning. AI
Magazine. 20(2), pages 93-123.

Weld, D., 1994 An Introduction to Least Commitment
Planning. AI Magazine, 15(4), pages 27-61.

63

	Title page
	Contents page
	Paper 1
	Paper 2
	Paper 3
	Paper 4
	Paper 5
	Paper 6
	Paper 7
	Paper 8
	Paper 9

