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Preface

Most real-world problems demand the consideration of many criteria, such as plan
duration, resource consumption, profit, safety etc, either separately, or in some combination.
In the former case the plans are optimized for a single criterion and the other criteria are
handled as constraints, whereas in the latter case the plans are optimized with respect to an
arbitrary combination of the criteria. In many cases the criteria are in conflict and a trade off
must be identified. For example, in a manufacturing domain the criteria may be to maximize
the work in progress (to maximize the number of orders fulfilled) and minimize inventory (to
minimize the amount of raw materials purchased) but to fulfill a large number of orders a
large inventory must be kept. In addition to resolving conflicts several issues arise when
taking into account multiple criteria, such as defining optimality, expressing preferences,
aggregating the criteria, generating bounds and/or heuristic distance information, guiding
search, pruning branches, trading off planning time and solution optimality, etc.

Dealing with multiple criteria is not a unique problem faced by researchers in Al
planning and scheduling. Evaluating states and solutions based on multiple criteria is a
problem occurring in other fields, in particular, combinatorial game search and multi-criteria
decision making. Researchers in these areas have tended to address these related problems
from a search or operations research perspective, respectively.

During the last few years significant improvements have been made in the capabilities of
planning systems to the point that they are now capable of producing plans with hundreds of
actions in a few seconds. While such performance is commendable, it has been achieved with
very simple action descriptions that would have little applicability on real-world problems.
We believe that it is the time to investigate ways of improving action descriptions and to
handle reasoning with multiple criteria, an area that has been neglected for too long.

The workshop has several goals:

1. to review the current state of the art in reasoning with multiple criteria,

2. to initiate discussions within the Al planning and scheduling communities on how these
problems may be addressed , and

3. to initiate the transfer of applicable techniques, insights and experiences from other
communities such as Operations Research, Uncertainty and Game communities.

The organizers






Multicriteria Evaluation in Computer Game-Playing,and its Relation to Al
Planning

Martin Mdller
Departmentf ComputingSciencelniversity of Alberta
EdmontonCanadal 6G 2E8
mmueller@cs.ualberta.ca

Abstract

Gamesare a populartestbedfor Al research.Many of the
searchtechniquesthat are currently usedin areassuchas
single-agensearchandAl planninghave beenoriginally de-
velopedfor gamessuchas chess. Gamesshareone funda-
mentalproblemwith mary otherfields suchasAl planning
oroperationsesearchhow to evaluateandcomparecomple

states?The classicalpproacthis to ‘boil down’ stateevalua-
tion to a singlescalarvalue. However, a singlevalueis often
not rich enoughto allow meaningfulcomparisonsdetween
statesandto efficiently controla search.

In thecontext of gamegesearcha numberof searckhmethods
usingmulticriteria evaluationhave beendevelopedin recent
years. This papersuneys theseapproachesand outlinesa
possiblejoint researchagendafor the fields of Al planning
andgame-playingn thedomainof multicriteriaevaluation.

Intr oduction

The needfor multicriteria evaluationtechniquesn game-
playing programsis not immediatelyobvious. All popu-
lar gameshave final outcomesthat are scalay be it win-
drav-lossasin chessthe numberof pointsin gamessuch

asGo or Awari, or the amountof mone in casinogames.

In gamesthat are simpleenoughto allow a completeanal-
ysis, the exact value of a game position can be com-
putedby the minimax evaluationrule (von Neumann1928;
von Neumann& Morgenstern1947). However, comple
gamessuchascheswor Gorarelyallow a completeanalysis.
Evaluationproblemsarise quickly whena players knowl-
edgeabouta gameis lessthan perfect. In placeof anin-
tractablecompleteanalysis,gamesare usuallyanalyzedoy
a deepbut far from exhaustve searchusinga scalarvalued
heuristicevaluationfunction.

Anothersourceof compleity aregameswvherethe com-
pletegamestateis not known to a playerbecausef hidden
informationsuchasthecardsin otherplayershandsn most
cardgamespr becausef chanceventssuchasdicethrows
or cardsdravn from adeckduringa game.

In this surwey we will look at severaltechniqueghatuse
multicriteria evaluationin games. We startby summariz-
ing somebasicfactsaboutthe structuresisedin multicrite-
ria evaluation: vectordominanceasusedin multiobjective

evaluations,andgeneralpartially orderedsets.Vectordom-
inancedefinesa specifickind of partial order andin turn
eachfinite-dimensionapartial order canbe representedy
a vector with the samedominancerelationthatis usedin
multiobjective evaluation.

Themainpartof the paperconsistof anoverview of two
topicsthatthe authorhasworkedon: the searchmethodof
partial orderbounding,anda classof gamescalled combi-
natorialgameswhich are basedon a partial order of game
values.We alsobriefly surey otherrelatedwork on multi-
criteriatechniguesn games.

The final, mostly speculatie part of the paperdiscusses
possiblerelationsbetweenthe two fields of gameplaying
and Al planning. How canmulticriteria planningmethods
be usedin gameprograms?And how cantechniqueslevel-
opedfor gametreesearchbe usedin multicriteriaplanning?

Background

In this sectionwe describethe sum-of-featuresnodel for
scalarevaluation,give definitionsof multiobjective andpar
tial order structures,and point out their close correspon-
denceatleastin theory

The standard scalar approach: weighted sum of
features

In the standardmodel of computergame-playingposition
evaluationis atwo stepprocessThefirst stepmapsagame
positionto anabstractepresentationA numberof relevant
attributesarecomputedandcollectedin a high-dimensional
featurevectorv. Within sucha vector singlefeaturesare
usually of a simpletype suchas0-1 (boolean),integer, or
real. Givenafeaturevectorv andaninteger or real-valued
weightvectorw, a scalarvaluedevaluationis computedas
theweightedsumeval(v) = Y w;v;.

The weightedsumapproacho evaluationhasbeenvery
successfuln practice. It hasprovento be a usefulabstrac-
tion mechanismwith mary desirableproperties,suchas
simplicity, andeaseof usein efficient minimax-basealgo-
rithms. Furthermorejn somegamesghereis a naturalmap-
ping of positionsto a numericalevaluation,for examplethe
expectednumberof capturedcbiecesin Awari or thebalance
of territory in Go. In gameshatendin a simpleroutcome
suchaswin, lossor draw, a scalarevaluationcanbe inter-
pretedasa measuref therelative chanceof winning.



Despitethe greatsucces®f the weightedsumapproach
to evaluation,the methodhasquite a few weaknessesand
mary of the alternatve methodsdiscussedn the suney
(Junghannsl998) were designedto addresssuch weak-
nesses.The main dravback of using a single numberfor
evaluationis thatinformationis lost. All kinds of features
areweighted addedandcomparedeventhosefor which ad-
dition and comparisondo not really makesense.Problem
topics include unstablepositions, long term stratgic fea-
tures,andclose-to-terminapositions.For adetaileddiscus-
sionsee(Miuller 2001b). It is thereforenaturalto consider
richerevaluationstructuressuchaspartialorders.

Partially Ordered Sets

Ourdefinitionsfollow standardonventions.For moreinfor-
mationseetextbookssuchas(Stanley 1997; Trotter 1992).

A partially ordered setor posetP is a set(alsocalled P)
togethemwith areflexive, antisymmetri@andtransitive binary
relation<. Thedualrelation> is definedby z > y <«<—
y < z. Two elements: andy of P arecalledcompaableif
z < yory < z, otherwiser andy arecalledincompaable
Therelationz < yisdefinedbyz <y <= z <y Az #
y, andz > y is equivalentto y < z. A nonemptysubset
A of P is calledanantichainif andonly if ary two distinct
elementof A areincomparable.

Multiobjective Evaluation

Thestandardpproacho evaluationin multiobjectivesearch
(Stewart & White 1991; Harikumar& Kumar 1996; Das-
gupta, Chakrabarti,& DeSarkar1996b;1996a)usesa m-
dimensionalectorof scalarvaluesiromdomainsy; . . .Y;,.
A partial orderon suchvectorsis definedby thefollowmg
vectordominanceelation:

y<y ey <y Viel,...m

In partialorderterminology the posetdefinedby the vec-
tor dominanceelationis the direct(or cartesianproductof
thetotally ordereddomainsy; ® ... ® Yy,.

While it is clearfrom the definitionthateachmultiobjec-
tive evaluationis a partial order the corverseis alsotrue,
in the following sense: Any poset P of finite dimension
dim(P) canberepresentedsthedirectproductof dim(P)
total orders(Ore 1962). However, it might be intractableto
find sucha representatioffior a given poset. Currentalgo-
rithmsfor constructinga multiobjective representatiofor a
given partial orderare practicalonly for posetsof “modest
size” (Yanez& Montero1999).

Any partial ordertechniquecanimmediatelybe usedin
a multiobjective framework, whereasmultiobjective tech-
niguesthatrely on the vectordominancen their algorithm
only work for the generalkcaseif a suitablevectorrepresen-
tationcanbefound.

Approachego Multicriteria Evaluation in
Computer Game-Playing

In this sectionwe investigateproblemsof combiningpartial
orderevaluationswith minimaxsearch We discusshow par

tial orderevaluationsarisein games,and somealgorithms
for dealingwith them.

Goalsof Partial Order Evaluation Themaingoalof par
tial orderevaluationis to makecomparisondetweenposi-
tions only whenthey are meaningful. In contrast,standard
scalarevaluationsareappliedandusedto comparepositions
regardlesof whetherthe underlyingpositionsarecompara-
ble. By refrainingfrom judgmentin doubtful casespartial
orderevaluationaimsatincreasinghe confidencen theva-
lidity of betterandworsejudgmentderivedby search.

The Fundamental Problem of Using a Partial
Order Evaluation in Minimax TreeSeaich

When using partially orderedevaluations,the result of a
minimax searchcannotbe just a single valuefrom the par

tially orderedset, becausecomputingminima andmaxima
of suchvaluesis anill-defined problem. A totally ordered
setsuchasthe integersor realsis closedunderthe applica-
tion of the operatoraminandmax if =y, ..., z, arevalues
from atotally orderedsetT’, thenbothmin(z4, . .., z,) and
max(z1, ..., z,) areagainelementof 7', with the proper

tiesmin(zy,...,z,) < 2; andmax(zy,...,z,) > z; for

all 1 < i < n. Furthermorethe minimum andthe maxi-
mum coincidewith oneof thesevalues. For valuesfrom a
partially orderedset,it is nolongerpossibleto definea min
or maxoperatomith theseproperties.

Solutionsfor SpecialCases

Several differentapproacheso overcomethis fundamental
problemhave beentried. In somespecialcasesit is possi-
ble to definemeaningfulminandmaxoperatorsvith similar
but morerestrictedproperties Onepossibleapproachin the
casewhenthe posetis a lattice is to definethe leastupper
(greatestower) boundof a set of incomparablevaluesas
the maximum(minimum) of thesevalues.(Ginsbeg 2001)
developssucha searchmodel and appliesit to the imper
fectinformationgameof Bridge. For generalattice-valued
evaluations,that do not possesshe specialsemanticused
in Ginsbeg’s model,this approacHosesinformation,since
propagatingsuchboundsby atreebackupleadsto comput-
ing boundsof boundsof boundsetc., which makesthe ap-
proximationweakerandweaker

Another approach(Dasgupta,Chakrabarti,& DeSarkar
1996b) keepstrack of a setof nondominatedsetsof out-
comes. This canleadto high compleity in the casewhen
thereare mary incomparablevalues. A viable searchpro-
cedureseemso requireextra assumptionssuchas totally
orderedprivate preference®sf the players,sothis approach
doesnotseemto be usedin practice.

Approximating Scalar Values

Onenaturalway in which partial ordersarisein gamestate
evaluationis uncertaintyaboutthe true value of a scalar
value. Intenals, “fat values” suchas triples containinga
lower bound, a realistic value and an upperbound (Beal
1999), and probability distributions (Baum& Smith 1997)
are prominentexamples. Differentkinds of partial orders



canbe definedover suchstructures Onenaturalinterpreta-
tion of anintervaliis asa pair of upperandlower boundson
the unknown true value. The correspondingpartial orderis
avectordominanceorder An exampleof arelatively strong
orderingof probability distributionsis stodhasticdominance
(Russell& Norvig 1995).

(Lincke 2002)studieshe problemof building anopening
book for a game,that can containboth exact and heuristic
minimax scores. He definesa new type of min and max

operatorsfor “fat values” that keep value representations

compactyet can presere someinformation aboutchoices
betweenexact and heuristicplays. He further extendsthe
modelto dealwith draw valuesarisingfrom positionrepeti-
tion.

Partial Order Bounding (POB)

Partial orderevaluationsare usefulsincethey aremore ex-

pressie than scalarevaluations. One practical problemis

that mary partial ordersearchmethodstry to backup par

tially orderedvaluesthroughthe tree. Dependingon the
methodused, this leadseither to potentially huge setsof

incomparableoptions,or to a lossof information, or both.
In addition,somemethodsare applicableonly to restricted
typesor specificrepresentationsf partialorders.Partial or-

der bounding(POB) (Muller 2001b)avoids suchproblems
by separatinghe comparisonof partially orderedevalua-
tionsfrom thetreebackup.

Partial order boundingis basedon the ideaof null win-
dow searcheswhich have alreadybecomevery popularwith
scalarevaluationthroughsearchmethodssuchas SCOUT
(Pearl1984)and MTD(f) (Plaatetal. 1996). Ratherthan
directly computingminimax values,null window searches
areusedto efficiently computeboundson the gamevalue.
In SCOUT, the purposeis to prove thatothermovesarenot
betterthanthebestknown move, while in MTD(f) the mini-
maxvalueis discoreredby aseriesof null window searches.
Thegoalof asinglenull window searclis to establishanin-
equalitybetweena given fixed boundandthe evaluationof
anodein thesearchree. POB extendsthis ideato the case
of partialorderevaluation.

In the caseof a posetP, aboundB C P canbe given
by anantichainin P thatdescribeghe minimal acceptable
outcomesa playerwantsto achieve.

The successetof B in P is definedby S(B) = {z €
P|3b € B: z > b}, andthefailure setof B in P is the
complemenbf thesuccesset,F(B) = P — S(B).

Thesuccessetcontainsall valuesthatare*good enough”
with respecto thegivenbound B, while thefailure setcon-
tains the remaininginsufficient values. Minimax searchis
usedto decidewhetherthe first playercanachieve a result
z € S(B), or whetherthe opponentcan prevent this from
happening.In the exampletree shavn in Figure 1, leaves
have beenevaluatedby pairs of integers. The usualvec-
tor dominanceorderis used. In the diagram,squaregep-
resentMAX nodesand circles MIN nodes. For illustra-
tion, we considerthe following two out of the large num-
ber of possiblebounds: B; = {(5,7), (10,3)} and B, =
{(5,8),(6,4)}. In thisexample, MAX canobtainthebound
B; but fails to obtainthe bound B;. Leaf evaluationsand

backed-upvaluesare shownn in the figure, with a plus sign
representingsuccessand a minus sign representindailure
for MAX. Notethat MAX would not succeedy selecting
oneof thetwo single-elemensubset®f B; in thisexample.

B12 +

(11,5 (5,7 (6,8) (7.3)
Bll + Bll + Bll + B]Z -
Bzi + Bzi - Bzi + Bz: -

Figurel: Exampleof searchusingPOB

In POB,thecomparisorof partially orderedvaluesis sep-
aratedfrom the valuebackupproceduren the gamegraph.
This simplifiesthecomputatiorcomparedvith previousap-
proachessincethereareno setsof incomparablevaluesthat
mustbe computedstored,andbackedup.

Partial order bounding can be combined with ary
minimax-basedearchmethod,suchasalpha-betar proof-
numbersearch(Allis 1994). A partial orderevaluationcan
beaddedo asophisticatedtateof theartsearctenginewith
minimal effort. Themethodhasbeensuccessfullyappliedto
solving capturingracesin thegameof Go (Muller 2001b).

The next topic, decompositiorsearch representsa very
differentapproachto minimax gameanalysis,which leads
to a partialorderevaluationaswell.

Combinatorial Gamesand DecompositionSeaich

Decompositiorseach (Muller 1999) finds minimax solu-
tionsto gameghatcanbe partitionedinto independensub-
games.Themethoddoesnot usetraditionalminimaxsearch
algorithmssuchasalpha-betaput relies on conceptsrom
combinatorialgametheoryto do locally restrictedsearches.
The result of eachlocal searchis an elementfrom the
partially ordereddomainof combinatorialgames(Conway
1976; Berlekamp,Conway & Guy 1982). In a last step,
combinatorialgamesarecombinedo find a globalsolution.
This divide-and-conqueapproachallows the exact solution
of muchlargerproblemshanis possiblewith alpha-beta.

Combinatorial GameTheory

Combinatorial game theory (Conway 1976; Berlekamp,
Conway & Guy 1982) breaksup game positions into
smaller piecesand analyzesthe overall gamein terms of
thesdocal subgames.

Eachmove in agamecorrespond$o a move in onesub-
gameand leaves all other subgamesinchanged.A game
endswhenall subgamesave ended,andthefinal outcome
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Figure2: A threeheapNim positionandits subgames

of thegamecanbedeterminedrom thesubgameutcomes.
A well-known example of a combinatorialgameis Nim,
shawvn in Figure 2, which is playedwith heapsof tokens.
At eachmove, a playerremoresan arbitrary numberof to-
kensfrom a singleheap andwhoeverrunsout of movesfirst
loses.EachNim heapconstituteonesubgameWhile win-
ning a singlesubgameas trivial, winning the sumof several
heapgequiresitherexhaustve analysis,or, muchmoreef-
ficiently, a computatiorusingthe calculusof combinatorial
games.

This theorycanbe seenasbotha generalizatiorandasa
specialcaseof classicaminimaxgametheory It is agener
alizationbecauséocally, eachplayercanmove in eachpo-
sition, whereasn classicalminimaxgamesonly oneplayer
hasthe move. On the otherhand,from a global viewpoint
combinatorialgamesare a specialcase becausenly some
gamesllow a decompositioninto subgames.

DecompositionSearch

Decompositionsearch(Muller 1999) is a framework for
solving gamesthrough decompositionfollowed by a par
ticularkind of local searcnamedocal combinatorialgame
search (LCGS)andthe analysisof the resultinglocal game
graphsthroughcombinatorialgametheory
Let G beagamethatdecomposemto a sumof subgames

G1+ ...+ G,. Letthecombinatorialgameevaluationof G
beC(G). Decompositiorseach is definedasthefollowing
four stepalgorithmfor determiningoptimal play of G:

1. Gamedecompositiorand subgamedentification: given
G, find anequialentsumof subgamess; + ... + G,,.

2. Local combinatorialgamesearch(LCGS): for eachG;,
performasearchto find its gamegraphG G (G;).

3. Evaluation: for eachgamegraphGG(G;), evaluateall
terminalpositions thenfind the combinatoriagameeval-
uationof all interior nodesJeadingto the computatiorof
C(Gy).

4. Sumgameplay: throughcombinatorialgameanalysisof
the setof combinatorialgamesC'(G;), selectan optimal
movein Gy + ...+ G,.

We describesteps2 and 4 furtherin the following para-
graphs. For further details on the theory the algorithm,
andits applicationssee(Berlekamp,Conway & Guy 1982;
Muller 1995;1999).

Local Combinatorial GameSearch Localcombinatorial
gamesearchLCGS)is themaininformationgatheringstep
of decompositiorsearch.lt is performedindependentlyor

eachsubgame LCGS generates: gamegraphrepresenting

all relevantmove sequencethatmight be playedlocally in
the courseof a game. LCGS works differently from mini-
maxtreesearchin a numberof ways, includingmove gen-
erationandrecognitionof terminalpositions.

The gamegraph built by LCGS also differs from the
tree generatecby minimax search. In the caseof mini-
max, playersmove alternately so eachpositionis analyzed
with respectto the player on move. In contrast,thereis
no playerto-move-net in a subgame. All possiblelocal
move sequencesnustbe includedin the analysis,includ-
ing sequencesvith several successie moves by the same
player becaus@layerscanswitchbetweersubgamest ev-
ery move.

Another differenceis the treatmentof cycles. Classical
combinatorialgameevaluation is definedonly for games
without cycles. However, similar methodsbasedon a
techniquecalled thermogaphy are being developed that
can deal with cyclic subgamess well (Berlekamp1996;
Fraser2002;Miller 2000).

Sum Game Play

To find anoptimalmove in asumgame thefinal stepof de-
compositionsearchselectsa move which mostimprovesthe
position. This improvementis measuredby a combinatorial
gamecalledtheincentiveof a move. The incentivesof all
movesin all subgamearecomputedocally. If oneincentive
dominatesall others,anoptimalmaove hasbeendetermined.
This is the usualcasefor gameswith a relatively strongly
orderedsetof valuessuchasGo.

Sinceincentives are combinatorialgamesand therefore
only partially orderedjt canhapperthatmorethanonenon-
dominateccandidatenove remains.In this case anoptimal
move is found by a more comple procedurdanvolving the
combinatoriasummatiorof gamegConway1976).

Sincesucha summationcan be an expensve operation,
thereis no worstcaseguaranteghat decompositiorsearch
is alwaysmore efficient than minimax search.In practice,
it seemdo work muchbetter The algorithmpresentsnary
opportunitiesfor compleity reductionof intermediateex-
pressiongluring local evaluationaswell asduring summa-
tion.

Even though all searchand most analysisis local, de-
compositionsearchyields globally optimal play, which can
switch back and forth betweensubgamesdn very subtle
ways,asin theexampleof Figure3.

An optimal 62 move solutionsequenceomputedby de-
compositionsearchis shovn in Figure3. On a stateof the
art system4 yearsago,the completesolutiontook only 1.1
secondsFull-boardalpha-betaearchevenwith furtheren-
hancementthatexploit locality, hasno chanceo solve this
kind of problems.It requirestime thatis exponentialin the
sizeof thewhole problem wheread CGS’ worstcasetime
is exponentialin thesizeof thebiggesisubpoblem If thelo-
cal combinatorialgameevaluationsgeneratediuringLCGS
canbecomputecandcomparedvithouttoo muchoverhead,
asusuallyseemdo bethe casein the Go endgamenvesti-
gated,adramaticspeedupesults(Muller 2001a).
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Figure3: An optimalsolutionto problemC.11

Game Search Techniguesin Multicriteria
Planning

This sectionpresentssomepreliminary ideasfor applying
gamegamnethodsn Al planning. The authorhopesthatthey
will becomepartof the emeging researctagendan multi-
criteriaplanning.

Partial Order Bounding

Theideaof usingmary simpleyes/noquestiongo approach
acomple problemis intuitively appealing.Canit be made
to work in the domainof multicriteria Al planning? Many
planning systemsare slowed down by their manipulation
of complec structuresduring the search. The challengeof
developinga plannerbasedon partial orderboundingis to
transformthe planning probleminto a seriesof decision
problemsthat can be efficiently searched.One successful
exampleof a similar approacharethe existing methodsfor
compiling planningproblemsinto SAT instances.

DecompositionSearch

Combinatorialgametheoryusesoneof the fundamentahp-
proachedor dealingwith compleity: divide andconquer
The unique point of this approachis the rich partially or-
deredstructureof combinatorialgamesthat can be used
on anintermediatdevel, to represensolutionsto subprob-
lems. Furthermorea powerful mathematicahpparatusan
be usedto combinepartial solutions.

An analogouspproachin Al planningcouldwork asfol-
lows:

¢ Splitaplanningprobleminto subtasks.

¢ Uselocal searclon eachsubtaskwhichis parameterized
by the possibleexternalcontets in which it might be ap-
plied.

¢ Find a partial orderstructureto representhe parameter
izedsolutionsto subtasks.

¢ Define a global combinationoperatoy which might be
basednacombinationof: high-level searchandknowl-
edgeaboutthe partial orderstructureof sub-solutions.

To giveamoreconcretexample thesubtaslof transport-
ing somegood(G from A to B mighthave apartially ordered
solutionspacethat is parameterizedby the resourcesised,
suchasfuel, time and personnel.lt canbe further param-
eterizedby the resultsachieved, suchasthe quantity of ¢
transportedtherisk of failure andsoon. Theideais a“plan
library” with multiattribute annotation®f subtasksandso-
lutions.

Multicriteria Planning in Gamesand Puzzles

Adversarial planning is more comple than single-agent
planning, since normal planning usually assumesan un-
changingervironmentundercompletecontrol of the agent,
whereasin adwersarialplanningall possiblehostile oppo-
nentactionshave to be takeninto accountaccordingto the
minimaxprinciple.

Go

Gois anintricategamewhich requiresa complex evaluation
(Bouzy & Cazenae 2001;Miuller 2002). Most successful
Go programautilize a complec hierarchyof objectsto rep-
resentthe stateof a Go board,andvery selectvely generate
movesthat pursuegoalsrelatedto theseobjects. The basic
evaluationin Go is a scalarmeasuringthe balanceof ter-
ritory, often obtainedby summingup a valuein the range
between+1 (surepoint for player) and -1 (sure point for
the opponent)or all pointson theboard. Even so, in prac-
tice mary othercriteriaareusedto modify this value(Chen
2000).

In termsof planning,high-level plansfor objectson the
boardareused.(Hu & Lehner1997)proposesereralmodels
for combininglocal plansin a Go framework, taking into
accountthe overall minimax evaluationprinciple aswell as
the questionof keepingthe initiative while executingone
plan,which allows a playerto starton thenext planaswell.

Multicriteria planningappeargo be a naturalframewvork
for this kind of ervironment.A situationcanberepresented
asa setof plansfor eachplayer During a game,plansare
in differentstagesf completion andrepresentlifferentde-
greesof local succes®r failure for eachplayer Eachmove
playedin agameof Gotypically haseffectson mary levels
andon mary differentplans.Someof theseeffectsaregood
for the player while othersare detrimental. This naturally
leadsto a partial orderevaluationstructure.

Planning in Sokoban

In ongoingwork with Adi Botea and JonathanSchaefer
(Botea 2002), we investigatean abstractmodel for plan-
ning in the puzzleof SokobanJunghann4999). This work
roughly follows the decompositiorsearchplanningmodel
outlined abore. A Sokobanpuzzleis split into subprob-
lemscalledroomsandtunnelsrepresentingartsof theover
all maze. Several staticand search-basednalysesre per
formedon the subproblems.This resultsin a compactin-
termediaterepresentatiof the possiblelocal solutionsto



eachsubproblemThehigh-level globalplanneris now able
to work on the muchreducedabstractedlanningproblem
insteadof the original maze.
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Algorithms for Routing with Multiple Constraints

Anuj Puri* and Stavros Tripakis'

Abstract

In this paper, we study the problem of routing under multiple
constraints. We consider a graph where each edge is labeled
with a cost and a delay. We then consider the problem of
finding a path from a source vertex to a destination vertex
such that the sum of the costs on the path satisfy the cost con-
straint and the sum of the delays satisfy the delay constraint.
We present three different algorithms for solving the problem.
These algorithms have varying levels of complexity and solve
the problem with varying degrees of accuracy. We present an
implementation of these algorithms and discuss their perfor-
mance on different graphs.

Introduction

Finding paths in a graph with respect to multiple criteria is a
fundamental problem, with applications in many areas. For
example, one such application might be finding routes in a
communication network, with respect to different quality-
of-service criteria (delay, cost, packet loss, etc). Another
application is to find the shortest-delay route in a given map,
while avoiding critical (say, unsafe) regions in the map.

In this paper, we reconsider the problem of finding paths
satisfying multiple constraints. We simplify our presentation
by considering only two constraints (which we call delay
and cost, for simplicity), and we discuss at the end of the
paper extensions to more than two constraints. Our objective
is to find a path from a given source node in a graph to a
given destination node, such that the sum of all delays on the
path is less than a given D, and the sum of all costs is less
than a given C'. Solving this problem exactly is well known
to be NP-Complete (Garey and Johnson 1979), (Jaffe 1984),
(Hassin 1992).

We present three different algorithms for solving the
problem. The first algorithm is a pseudo-polynomial
time algorithm which solves the problem exactly in time
O(|V||E|min{C,D}) where |V| is the number of vertices
and |E| is the number of edges in the graph. The algorithm
either reports back with a path satisfying the constraints or
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states that no such path exists. The second algorithm solves
the problem approximately but with an error of at most
e. That is, either it states that no path satisfying the con-
straints exists, or it finds a path such that the sum of costs
on the path is at most C' - (1 + ¢€), and the sum of delays
is at most D - (1 + €). The complexity of this algorithm is
O(|[V|*|E|(141)). The third algorithm finds a path with an
error of at most € = 1. This algorithm requires a solution of
the shortest path problem on the given graph. Although most
of the paper is focused on dealing with two constraints, the
first two algorithms generalize in a straightforward manner
to more than two constraints.

Relationship to other work The routing problem with
more than one constraint has been studied by several re-
searchers. It is well known that the problem is NP-Complete
(Garey and Johnson 1979), (Jaffe 1984), (Hassin 1992). An
explicit proof of this is provided in (Wang and Crowcroft
1996). In (Jaffe 1984), a pseudo-polynomial time algo-
rithm is presented for exactly solving the problem with
complexity O(|V[*maz{C, D}log(|V|maz{C, D})). By
a more careful analysis and using the data structures in a
more clever manner, we show that the complexity of our
algorithm (which is similar to the one of (Jaffe 1984)) is
O(|V||E|min{C,D}). In (Jaffe 1984), an approximation
algorithm that solves the problem with approximation error
€ = 1 using the shortest path algorithm is also presented.
Although this is similar to our shortest-path based algo-
rithm, our algorithm in general will perform better because
we solve a series of shortest path problems, each obtaining a
better solution than the last one. In (Hassin 1992), several al-
gorithms are presented for approximating the solution to the
problem for acyclic graphs. The complexity of the two ap-

proximation algorithms are O(loglogB (@ + loglogB))

and O(|E |@log(%)) where € is the error of the approxi-
mation and B = maz{C, D}. Our approximation algorithm
works for all graphs and has complexity O(|V|?|E|(1 + 1).
The algorithms also use somewhat different techniques. Our
algorithm is essentially a generalization of the Bellman-Ford
algorithm where we keep track of errors during the iteration.

The multi-constrained cost-delay routing problem is also
considered in (Salama et al. 1997), (Chen and Nahrstedt
1998a), (Chen and Nahrstedt 1998b), (Orda 1999). In (Chen
and Nahrstedt 1998a), the authors propose an algorithm pa-
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Figure 1: A Simple Network

rameterized by an integer z, where if a solution is found then
that solution is feasible in the original problem. On the other
hand a solution might not be found even if it exists. The
complexity of the algorithm is O(zV E). The larger z, the
higher the chances to find a solution if it exists, but it is not
clear how to choose z, although some sufficient conditions
are provided for z. In (Salama et al. 1997), a distributed
heuristic algorithm is proposed with complexity O(|V|?).
No bound on the error of the algorithm is given, but simu-
lations are provided which show that error is within 10% of
the optimal. In (Orda 1999), an e-approximative algorithm
is proposed for a particular class of hierarchical networks
where the topology must satisfy a number of conditions.
A comprehensive review of work on different QOS unicast
and multicast routing problems, including multi-constrained
routing is given in (Chen and Nahrstedt 1998b).

Problem Formulation

We consider a directed 2-weight graph G = (V, E), where
V is the set of vertices and FE is the set of edges. An edge
e € Eis e = (v, w, ¢, d) where the edge goes from v to w,
and has delay delay(e) = d and cost(e) = c. We write this

as v (Cl; w. When there is no confusion, we may also write
the edge as (v, w) and say the edge is labeled with (¢, d).

: 4 d ,d n>dn
A pathisp = vy (cL.dy) vy (cz2,d2) v3 (ca.dg)  (enydn)

vpn+1. The cost of a path is cost(p) = Y., ¢; and its delay
is delay(p) = >, d;.

Given a path p and cost constraint C' > 1 and delay con-
straint D > 1, we say p is feasible provided cost(p) < C
and delay(p) < D. The problem of routing under two con-
straints is, given G = (V, E), cost constraint C' and delay
constraint D, a source node s € V and a destination node
t € V, find a feasible path p from s to ¢, or decide that no
such path exists.

Example 1 Consider the 2-weight graph of Figure 1. Each
edge is labeled with (c, d) where c is the cost of the edge and
d is the delay of the edge. For example, the edge from vertex
1 to vertex 2 has cost 3 and delay 1. Suppose the source
vertex is 1, the destination vertex is 4, the cost constraint is
C = 5 and the delay constraint is D = 2. Then, the path

1 (3—1; 2 (2—12 4 is feasible, whereas 1 (1—2>) 3 (1—2; 4 is not

(since it violates the delay constraint).
The reader can check that if C = 4 and D = 3, then there
is no feasible path.

Rather than checking to see if a graph has a feasible path,
it is sometimes useful to try to minimize the following ob-
jective function

maz{cost(p),C} maz{delay(p), D} )
C ’ D '
Observe that for any path p, M(p) > 1 and M(p) = 1
iff p is feasible. But even if a feasible path does not exist or
is hard to find, by trying to minimizing M (p) we can get a
path that comes “close” to satisfying the constraints.
Formally, we define the error of a path p as

M(p) — M(p")
M(p¥)

where p* is the path which minimizes M (in case more than
one paths minimize M, we pick p* arbitrarily among them,
since the minimal value M (p*) is the same for all of them).

Notice that error(p) > 0 and error(p) = 0 iff p is feasible.
Also note that if cost(p) < C'- (1 + €) and delay(p) < D -
(1 + €) then error(p) < e. Indeed, the two above conditions
imply that M (p) < 1 + € and, since M(p*) > 1, we get
error(p) < e.

In case it is too difficult to find p*, we look for a path
p for which error(p) is small. We next present algorithms
for finding a feasible path and for finding paths for which
error(p) is small.

M(p) = maz{

error(p) =

Complexity
The multiple-constraint routing problem is known to be NP-

complete. For completeness of the paper, we provide a proof
here as well.

Theorem 1 The routing problem with two constraints is
NP-Complete.

Proof: We will provide a reduction from the knapsack prob-
lem. Recall that in the knapsack problem, we are given pos-
itive integers cy, ca,...,cp, and N, and the objective is to
find a subset S C {1,...,n} suchthat } 7, s c; = N.
From the knapsack problem, we construct a graph with
vertices {1,...,n}. There are two edges from vertex i to
vertex 7 + 1: edge (4,7 + 1,¢;,0) and edge (7,7 + 1,0, ¢;).
Figure 2 shows the scenario. Our objective is to find a path
from vertex 1 to vertex n with cost constraint IV and delay
constraint Y -, ¢; — N. It is easy to check that there is a
path that satisfies the constraints iff there is a solution to the
knapsack problem. ]

A pseudo-polynomial algorithm

In this section, we propose an algorithm for the problem of
routing under two constraints with worst-case complexity
O(|V] - |E| - min{C, D}). That is, the algorithm is poly-
nomial on the size of the graph (quadratic on the number of
vertices and linear on the number of edges), but also linearly
depends on the smaller of the bounds C and D. Therefore,
it is a pseudo-polynomial algorithm.

Let us begin by making a safe hypothesis. Given a 2-
weight graph G = (V, E), where |V| = n, let costynq, =
maz{c | (-,-,¢,-) € E} and delay,,,, = maz{d |
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(5, -,d,-) € E} be the maximum cost and delay associated
with any edge of G. Now, assume that n - cost,,q, < C.
Then, given u,v € V, there exists a feasible path from u to
v iff there exists a path p from « to v such that delay(p) < D.
Given this observation, finding a feasible path in G from u to
v comes down to finding the smallest-delay path from u to v,
that is, the path p that minimizes delay(p). This can be easily
done using a shortest-path algorithm, with cost O(|V| - | E|).
Since this is less than O(|V| - | E| - min{C, D}), this case is
not interesting. The case where n - delay,,,,., < D is sym-
metric.

So, from now on we assume that n - cost,,,, > C and
n-delay,, ., > D. We also assume that the greatest common
divisor of {C, cost(e) | e € E}is 1, and similarly for the de-
lays (otherwise we could just divide all costs/delays by their
greatest common divisor, without affecting the problem).

Informally, our algorithm works as follows. For each
vertex w, we compute a set of cost-delay pairs F,,. Each
(c,d) € F,, will represent the cost and delay of a possible
path from w to the destination vertex v. To keep the size of
F,, manageable, we eliminate from F}, all elements corre-
sponding to infeasible paths (i.e., all (¢, d) such that ¢ > C
or d > D). Moreover, we eliminate from F,, all redun-
dant elements, that is, all elements with both cost and delay
greater from some other element. Let us make these more
precise below.

Cost-delay sets

A cost-delay set for a vertex w is a set Ff,, € N x N. An
element (¢, d) of F,, is called infeasible if either ¢ > C or
d > D. An element (c, d) of F, is called redundant if there
exists a different (¢’,d") € F,, such that ¢’ < cand d’ < d.

A cost-delay set F' is said to be minimal if it contains no
infeasible or redundant elements. The following properties
hold (assuming C and D fixed):

Proposition 1 If F is minimal, then |F| < min{C, D}. To
every cost-delay set F' corresponds a unique greatest mini-
mal subset F' C F.

We write minim(F') to denote the greatest minimal subset of
F.

Figure 3 displays the typical structure of a cost-delay set
and its minimal. Black and grey bullets are infeasible and
redundant elements, respectively.

Minimal cost-delay sets admit an efficient canonical rep-
resentation as sorted lists. Consider a minimal set F' =
{(e1,d1), (c2,d2), ..., (cn, dr)} and assume, without loss of

(c,.0)
\_/
0, ¢p)
delay ‘ delay
O,.‘ Q
®.
o} ®. o,
O o
C  cost C  cost

(a) (b)

Figure 3: A cost-delay set (a) and its minimal (b)

generality, thatcy < cp < --- < ¢,. Then,dy > dy > -+ >
d,, must hold, otherwise there would be at least one redun-
dant element in F'. Consequently, F' can be represented as
the list (¢1,d1) (e2,d2) -+ (cn,dy), sorted using cost as
the “key”. This representation is canonical in the sense that
two minimal sets F, F5 are equal iff their list representa-
tions are identical.

The algorithm works with minimal cost delay sets and
uses two operations, namely, union and translation with re-
spect to a vector (c,d) € N2. We present these operations
and discuss how they can be implemented using sorted-lists
and preserving the canonical representation.

Given minimal (i.e., feasible and non-redundant) Fi, Fb,
the union Fy U F» is always feasible, but not necessarily
non-redundant. In order to compute F' = minim(F; U F5)
directly from the list representations Ly, Lo of Fy, Fo, we
can use a simple modification of a usual merge-sort algo-
rithm on lists. The latter takes as input Ly, Lo and produces
L, the list representation of F'. In order to guarantee the
absence of redundant points in L, it compares at each step
the heads (c1,d1) and (c2,d2) of (the remaining parts of)
Ly, Ly. If ¢y < ¢y and dy < dy then (cg,ds) is redundant
and is skipped. If ¢z < ¢; and dy < d; then (c1,dy) is
skipped. Otherwise, the pair with the smallest c; is inserted
in L and the head pointer move one element ahead in the
corresponding list L;. It is easy to see that this algorithm is
correct. The cost of the algorithm is ny + ng, where n; is
the length of L;. Therefore, from Proposition 1, the worst-
case complexity of computing the union of cost-delay sets is
O(min{C, D}).

Translation is defined on a cost-delay set F' and a pair
(c,d) € N2

F+(c,d) € {(c +cd+d)|(,d)e F}

If F is minimal, then F' + (¢,d) is non-redundant, how-



ever, it may contain infeasible points. These can be easily
eliminated, however, while building the list L’ for min(F +
(c,d)): the list of F is traversed, adding (c, d) to each of
its elements, (¢;,d;); if ¢; + ¢ < D and d; + d < D then
(ci + ¢,d; + d) is inserted at the end of L', otherwise it is
infeasible and it is skipped. At the end, L’ will be sorted by
cost. The complexity of translation is O(min{C, D}).

The algorithm

The algorithm iteratively computes the (minimal) cost-delay
sets of all vertices in the graph. Let FJ denote the cost-delay
set for vertex w at iteration j. Initially, all vertices have
empty cost-delay sets, F2 = (), except v, for which F
{(0,0)}. Ateach iteration, each vertex updates its cost-delay
set with respect to all its successor vertices. Computation
stops when no cost-delay set is updated any more. We now
present the operations performed at each iteration at each
vertex w.

Let wy,...,wi be the successor vertices of w, that is,

irdg . .
w (C—>) w;, for ¢ = 1, ..., k (note that wy, ..., wi might not

be distinct). Then, the cost-delay set of w at iteration j + 1
will be:

k
Fitl = minim(Fg, U U (Fi, + (Ci’di))>
i=1

ey

That is, we add to the possible cost-delay values for w all
values obtained by taking an edge to some successor vertex
w;, and then continuing with a possible cost-delay value for
w;j.

The following proposition proves termination and correct-
ness of the algorithm.

Proposition 2 (Termination) The updating of the cost-delay
sets will stabilize after at most |V | iterations, that is, for any

vertex w, ELVHl = F,‘le. (Correctness) A feasible path
from w to v exists iﬁ‘FqLV‘ # 0. For any (c,d) € FY
there exists a path p from w to v such that cost(p) = c and
delay(p) = d.

Worst-case complexity of the algorithm

Proposition 2 implies that the algorithm stops after at most
|V| iterations. At each iteration, the cost-delay set of each
vertex is updated with respect to all its successor vertices.
Thus, there are at most | E/| updates at each iteration. Each
update involves a translation and a union, both of which have
complexity O(min{C, D}). Therefore, the overall worst-
case complexity of the algorithm is O(|V|-|E|-min{C, D}).

Incorporating routing information

As defined, cost-delay sets do not contain any routing infor-
mation, that is, at the end of the algorithm, we know that a
point in F, represents the cost-delay value of a possible fea-
sible path from w to v, but we do not know which path. This
information is easy to incorporate, at the expense of associ-
ating to each (c,d) € Fy, the edge e = (w,wy,,d’), and
a pointer to the element (c;,d;) € Fy,,, from which (¢, d)
was generated. The edge and (c1,d;) element are unique,
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and come from the operation F,, U (Fy, + (¢/,d")). In or-
der to reconstruct the path from w with cost-delay (¢, d) we
follow the edge e to wy, then look for the path from w; with
cost-delay (c1, d;), and so on.

A bounded-error approximative algorithm

In this section we give an approximative algorithm for the
problem of routing under two constraints. The algorithm is
approximative in the sense that, it might not yield a feasible
path, even if such a path exists. However, the error in the
path p returned by the algorithm can be bounded: error(p) <
€, where ¢ is an input parameter. The algorithm has worst-
case complexity O(|V|? - |E| - (1 + 1)), which implies that
it is worth using only when |V is (much) smaller than 5 -
min{C, D}. Otherwise, the pseudo-polynomial algorithm,
being exact and less expensive, would be preferable. In the

rest of this section we assume that |V| < £ - min{C, D}.

Minimal-distance cost-delay sets

The approximative algorithm is similar to the pseudo-
polynomial algorithm, with the additional fact that it elim-
inates elements of cost-delay sets which are “too close” to
some other element. More formally, for (¢, d1), (c2,d2) €
N2, define:

ll(e1, ), (cz, do)|| % maz{|er — col, |dy — do|}

Then, a cost-delay set F' is said to have minimal
distance § iff for all distinct (cy,dy),(ce,d2) € F,
[[(c1,d1), (c2,d2)|| = 6.

Given a cost-delay set F' and some § > 2, we would like
to find a subset F' C F, such that:

1. F' has minimal distance J, and

2. forallz € F — F', there exists y € F' such that ||z, y|| <
d.

Condition 2 ensures that no elements of F' are dropped un-
necessarily (were condition 2 to be missed, the trivial subset
F’ = () would satisfy condition 1). A subset F/ C F sat-
isfying the above conditions is called a maximal §-distance
subset of F'. In general, there may be more than one maximal
d-distance subsets of a given F' (any one of them is good for
our purposes). We now give a procedure to compute, given
F, a maximal J-distance subset I’ C F'.

The procedure takes as input the list representation L of F'
and generates as output a list L'. Assume L = (21, ..., Z,,).
Initially, L' = (x1). Let y denote the last element of L', at
each point during the execution of the procedure. For each
i > 2,if ||z;, y|| > 6 then x; is appended at the end of L' and
y is updated to x;, otherwise, x; is skipped. It can be shown
that the list built that way represents a legal J-distance subset
of F'. From now on, we denote this set by min_dist(d, F').

Definition 1 We define the step error, d., to be %

The algorithm

The approximative algorithm is obtained from the pseudo-
polynomial algorithm with the following modification.
Given € € [0, 1], instead of keeping a minimal set F;, for
each node w, we keep a set B,, such that:



1. B, has no redundant elements,

2. for each (¢,d) € By, c < (1+¢€)-C,d < (1
(that is, the feasibility region is extended by (e

+¢€)-D
C,e- D),
3. B, has minimal distance §..

That is, in the approximative algorithm, the fix-point
equations are as follows:

Bift = min_dist<5€, minim(BZ) VUi (B, + (e di»))

As in the case of the exact algorithm, termination of the ap-
proximative algorithm is ensured in | V| steps.

Proposition 3 Consider a graph G, nodes u,v of G, and
cost-delay constraints C, D. Then, for given e:

(1) If By, = 0 at the end of the approximative algorithm,
then no feasible path from u to v exists.

(2) If By # 0, then for each (c,d) € By, there exists a
path p from u to v such that cost(p) = ¢, delay(p) = d and
error(p) < e.

Proof (sketch):

Let w be a node and F,,, B,, be the final cost-delay
sets computed for w by the exact and approximative algo-
rithms, respectively. The result is based on the fact that,
for any (c,d) € F,, there exists (¢',d’) € B, such that
[|(c,d), (¢/,d")]| < |V]|-b. This is because at most d. “error”
accumulates at each step of the algorithm, when eliminating
pairs during the min_dist operation.

By definition of d., we have that ||(c,d), (¢, d')]|
min{C, D} - e. Then, assuming (c,d) to be the cost and
delay of an optimal path p* and (¢, d’) the cost and delay
of a path p computed by the approximative algorithm, it is
easy to prove that error(p) < e. For (1), notice that if p* is
feasible then ¢ < (14 ¢)-Cand d < (1 +¢€) - D, This
means that (¢, d') is indeed “inside” the extended feasibility
region, thus, is not eliminated from B,, during the approxi-
mative algorithm. [ ]

Worst-case complexity

The only difference from the pseudo-polynomial algorithm
is in the worst-case size of the cost-delay sets B,,. Since
the latter have minimal distance J. and are bounded by
the feasibility region ((1 + €) - C, (1 + €) - D), we have
|By| < (1“)'"3%. By definition of J., we get | By, | <

@\V\ The union, translation and min_dist operations
can be implemented using sorted lists to represent the sets
B,, (the canonical representation is not affected by minimal
distance). The cost of the operations is, as previously, linear
on the size of the lists, which yields an overall worst-case
complexity of O(|V|? - |E| - (1 + 1)).

Satisfying constraints by using the shortest
path algorithm
In this section, we consider an algorithm for finding a path
which satisfies the two constraints by using the shortest path

algorithm. Our objective will be to use the shortest path
algorithm to find a path p which minimizes M (p).
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For the rest of this section we assume that we have nor-
malized the costs and delays by dividing the costs by C' and
the delays by D.

A path is feasible in the new graph if cost(p) < 1 and
delay(p) < 1. Note that a path is feasible in the new graph
iff it was feasible in the original graph. Furthermore, M (p)
is the same in both graphs.

To find a path satisfying two constraints by using the
shortest path algorithm, we choose an 0 < a < 1 and re-
place the cost ¢ and the delay d associated with an edge with
the weight ac + (1 — a)d. We then use the shortest path
algorithm to find a path with the smallest weight. We re-
fer to this path as SP(G,«). As the next lemma shows,

p = SP(G, ) has an error error(p) of at most 1 for a = 1.

2
Lemma 1 For a graph G = (V,E), M(p*) < M(p) <
2M (p*), where p = SP(G, ) and p* is the path which

minimizes M.

Proof: Recall that for all paths p’, M (p') > 1. If M(p) = 1
then clearly M (p) < 2M (p*). So assume M (p) > 1. Then
M(p) < cost(p) + delay(p) < cost(p*) + delay(p*) <
14+1< M(p*)+ M(p*) = 2M(p*). n

The previous lemma shows that by choosing o« = 2, we
can obtain a path p with error(p) < 1. We now present
an algorithm that minimizes M (SP(G, a)) by choosing the
appropriate a.

The algorithm uses binary search: assume we know that
the optimal value of « lies in the interval [I,u]; we find

= SP(G,a) for a = l+“; if cost(p) < delay(p), we
ehmmate the interval (4%, u] from consideration, other-

wise, we eliminate [I, ). The algorithm terminates when
SP(G,l) = SP(G, u)
The reason that half of the interval can be eliminated fol-

lows from the following lemma.

Lemma 2 Suppose p = SP(G, a) and cost(p) < delay(p).
Then for o/ > a andp’ = SP(G,a'), cost(p’) < cost(p)
and delay(p’) > delay(p).

Proof: There are four cases:

1. cost(p’) > cost(p) and delay(p’) > delay(p)

2. cost(p') < cost(p) and delay(p') < delay(p).

3. cost(p') > cost(p) and delay(p') < delay(p).

4. cost(p’) < cost(p) and delay(p’) > delay(p).

Case 1 is not feasible because then path p improves on
p' = SP(G, ). Case 2 is not feasible because then path p’
improves on p = SP(G, a) Case 3 is not feasible because
acost(p’) + (1 — a)delay(p ) > acost(p)+(1—a)de|ay(p)
and (o' —a)cost(p’)+(a—a')delay(p’) > (o/ a)cost(p)+
(a—a')delay(p), and hence a’cost(p’)+(1—a')delay (p )
o/cost(p) + (1 — o')delay(p) — a contradiction since p’
SP(G,a'). Therefore, 4 is the only feasible case. [

Now assume we found p = SP(G, ) and delay(p) > 1
and cost(p) < delay(p). Then from Lemma 2, for o/ > «,
for p' = SP(G,a'), cost(p’) < cost(p) and delay(p’) >
delay(p). Therefore M (p’) > M (p), and hence the interval
(c, u] can be eliminated from consideration. By similar rea-
soning, if delay(p) < cost(p), then the interval [I, &) can be
eliminated.

Here is a more formal statement of the algorithm:

!
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Figure 4: A graph for which the error is error(SP(G, ) =
l1—€eforall0<a<1

Algorithm to find « to minimize M (SP(G, )):
=0
u=1
D= SP(G, )
Py = SP(G,u)
Repeat
@ o
Po = SP(G, )
if (cost(p) < delay(p) )
=«
Pi = Pa
else
U=«
Py = Pa
Until (p; = pu)

Theorem 2 The above algorithm terminates in polynomial
number of steps, and the o* computed by the algorithm sat-
isfies M(SP(G,a*)) < M(SP(G,a)) for a € [0,1].

Notice that, although error(SP(G, *)) < 1 (Lemma 1),
there are “bad” examples where the error can be arbitrarily
close to 1.

Example 2 Consider the example in Figure 4 where the cost
constraint is C = 1 and the delay constraint is D = 1. It is
easy to check that for any 0 < a < 1, error(SP(G, ) =
1—e

A Linear Programming solution to a relaxed
problem

In this section, we relax the requirements of our problem.
Rather than asking for a single path that satisfies the cost
and delay requirements, we allow for the data to be routed
over multiple paths. But we require the average delay and
average cost to satisfy the constraints.

Let us define f. to be fraction of the data from the source
to the destination that flows over the edge e. We then have
the following constraints ( out(v) are the outgoing edges
and 4n(v) are the incoming edges of a node v ):

Foreach e€ E,f. >0

Z fe:]-

e€out(s)

@

12

Y fe=1 3)
e€in(t)
For v#s and v #t, Z fe= Z fe
e€in(v) e€out(v)

> fecost(e) < C ®)

ecE
> fe delay(e) < D (©6)

ecE

Equation 2- 4 are the balance equations for the nodes.
Equation 5 states that the average cost must be less than the
cost constraint C, and Equation 6 states that the average de-
lay must be less than the delay constraint D.

A feasible solution of the above linear program tells us
how the data should be routed from the source to the destina-
tion so that average cost and delay constraints are satisfied.

Example 3 Consider again Example 1 and Figure 1 with
cost constraint 4 and delay constraint 3. If we formulate
the above set of linear constraints for this problem, we note
that fo = % for each edge e is a solution. This means that
half of the data from the source is routed to node 2, and
the other half to node 3. The average delay corresponding
to this solution is 5(2 + 2 + 14 1) = 3, and the average
costis £(3+ 2+ 1+ 1) = 3.5. Notice that even though
the average cost and delay satisfy the constraints, individual
paths may not (e.g., the path (1,3)(3,4) does not satisfy the
delay constraint).

If we restrict ourselves to integer solutions of the above
linear program (i.e, a integer programming problem), then
each solution represents a single path that satisfies the de-
lay and cost constraints. Of course, checking feasibility of
integer linear programs is NP-complete.

Other Extensions

In this section we discuss the extension of the problem to
the case with more than two constraints. We also discuss
a somewhat different, but sometimes more useful problem
in practice, where we minimize the cost subject to a delay
constraint.

More than two constraints

In a problem with %k constraints, we are given a k-
weight graph, where each edge is labeled with a k-tuple
(c1,¢2,...,cr). We are required to find a path such that
the sum of the ¢th weight along the path is less than a bound
Ci.
By a straightforward extension of the pseudo-polynomial
and bounded-error algorithms, it is easy to show that we can
get an exact algorithm with complexity O(|V||E)| Hle ),
and a bounded-error approximative algorithm with complex-
ity O(|V|*|E|(1 + 1)), where € is the maximum error al-
lowed. The basic idea of the extension is that cost-delay sets
now become general Pareto sets containing k-tuples of the
form (ay,...,ax). Such a tuple in the Pareto set associated
with some vertex w means that it is possible to get from w to



the destination vertex along a path in which the sum of the
ith weight is a;.

It is also possible to extend some parts of the shortest-
path based algorithm It is possible to obtain a path with error
€ = k — 1 for a problem with k constraints by solving the
shortest path algorithm. But it is not clear how to extend the
algorithm which iterates over shortest path problems to the
case with more than two constraints.

An alternative formulation

An alternative and sometimes more useful formulation is
when a bound is given on the delay, and subject to this, we
are required to minimize the cost. The pseudo-polynomial
and bounded-error algorithms can be straightforwardly ex-
tended to solve this problem. In the final cost-delay set of
the source node, we find the pair (¢;,d;) with the smallest
c;. This corresponds to an optimal path to the destination
with minimal cost c;.

To be able to solve this alternate formulation, we also aug-
mented the shortest-path based algorithm. To find a path
which meets the delay constraint D and has minimum cost
C, we solve a problem with delay constraint D and cost con-
straint C' where C' is initially chosen to be large. We then
find the minimum cost by performing a binary search on C.

In the experimental results presented below, this alterna-
tive formulation of the problem is solved.

Experimental results

We have implemented in C the bounded-error approxima-
tive algorithm and the shortest-path based algorithm. In this
section, we report results obtained by applying the algo-
rithms on a number of multi-weight graphs. Our objective
was to see how well the algorithms perform on graphs of
medium to large size. Also, to check how sensitive the algo-
rithms were to different parameters (e.g., number of weights,
source/destination pairs, step-error).

The graphs were obtained by translating elevation maps
of physical landscapes . A landscape of dimension n; x n
resulted in a graph with ny - ny vertices and approximately
4 - ny1 - no edges (central vertices having four successors,
“north, south, east, west”). The cost c of an edge was taken
to be the difference in elevation between the destination and
source vertices. The “delays” dy and d» (the second delay
was used only in 3-weight graphs) were generated randomly
according to a Gaussian distribution. Figures 6, 7, and 8
present the results. The notation used in these tables is ex-
plained in Figure 5. A result of the algorithm is shown in
Figure 9.

From Figures 6 and 7, the following observations can be
made:

o The shortest-path algorithm is two or more orders of mag-
nitude faster than the bounded-error approximative algo-
rithm, while at the same time producing paths which are
both feasible (w.r.t. d1) and as good as the paths produced
by the bounded-error algorithm (w.r.t. ¢).

'Te., 2-dimensional arrays, the 7, j-th element giving the alti-
tude of the longitude-latitude point corresponding to coordinates

1,].
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Number of vertices

Number of edges

Execution time (CPU) in seconds

“Cost” of path

“Delay 1” of path

“Delay 2” of path

Step-error for bounded-error approximate algorithm

?&SQWSS

Figure 5: Notation for tables 6 and 7.

e The bounded-error approximative algorithm is sensitive
to the step-error parameter, d.. Reducing . by one or
two orders of magnitude resulted in dramatic increases in
running time.

e The algorithms are not very sensitive on the particular
source/destination pair.

1st source/dest. pair

0.=10"% [6.=10"° [ 6.=10"°
graph 1 t="70 t =413 t=1274
n = 4641 c=1532
m=4-n dp =2.15%
graph 2 t = 56 t=1278 [ ¢t =16740 |
n = 36417 c = 4152
ma4-n d; = 0.2% d; = 0.15%
graph 3 t =725 t=3503 | t=9971 |
n = 225680 c = 9409
ma~4-n d1=0.01%| d1:0%

Figure 6: Results of the bounded-error approximative algo-
rithm on 2-weight graphs.

st source/dest. pair | 2nd source/dest. pair
graph 1 t=0.94 t =048
n = 4641 c = 1564 c=1723
m~4-n dl = 1.27% dl = 0.14%
graph 2 t=7.16 t=3.48
n = 36417 c = 4220 c=1184
ma~4-n d1=0.04% d1=0%
graph 3 t =47.96 t = 31.56
n = 225680 c=9411 c = 4487

Figure 7: Results of the shortest-path algorithm on 2-weight
graphs.

From Figure 8, we see that adding one more
weight/constraint to the problem dramatically increases the
execution time of the bounded-error approximative algo-
rithm, with respect to 2-weight graphs. Whereas we have
been able to execute the algorithm in 2-weight graphs of
size up to 225680 vertices, why we could only treat 3-weight
graphs of relatively small sizes (up to 1700 vertices).

Conclusion

In this paper, we have presented several different algorithms
for solving the routing problem with multiple constraints.



S =101 5. =1077° 5. =107°
graph 4 t=1.49 t =1.80 t=1.85
n="777 c="T720

dy = 6.43%
graph 5 t=4.25 | t = 153.97 | t = 6095.42
n = 1178 c =994
ma~4-n di = 1.79%%

do = 5.39%
graph6 | £ = 135254 | ¢ = 1763151 | ¢ = 20274.12
n=1722 c = 1024
ma~4-n d1 = 3.68%

dy = 4.66%

Figure 8: Results of the bounded-error algorithm on 3-
weight graphs.

Figure 9: An output of the bounded-error approximative al-
gorithm on a map translated into a 2-weight graph: the solid
black line depicts the path; red dots are “high-delay” zones;
the grey scale background represents the elevation variations
of the landscape (white: high, black: low).
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These algorithms vary in their complexity and the accuracy
of their solutions. Our contributions mainly consist in im-
provements in the complexity of previously existing algo-
rithms. We have also implemented our algorithms and ex-
amined their performance on different graphs of relatively
large size.

References

S. Chen and K. Nahrstedt 1998a. On Finding Multi-
Constrained Paths, International Conference on Communi-
cations (ICC’98).

S. Chen and K. Nahrstedt 1998b. An Overview of Quality-
of-Service Routing for the Next Generation High-Speed
Networks: Problems and Solutions, IEEE Network, Special
Issue on Transmission and Distribution of Digital Video.
M.R. Garey and D.S. Johnson 1979. Computers and In-
tractability — A Guide to the theory of NP-Completeness,
Freeman, San Francisco.

R. Hassin 1992. Approximation Schemes for the Re-
stricted Shortest Path Problem, Mathematics of Operations
Research, Vol. 17, No. 1.

J. M. Jaffe 1984. Algorithms for Finding Paths with Multi-
ple Constraints, Networks, Vol. 14, pp. 95-116.

A. Orda, Routing with End-to-End QoS Guarantees in
Broadband Networks 1999. [EEE/ACM Transactions on
Networking.

H. F. Salama et. al. 1997. A Distributed Algorithm for
Delay-Constrained Unicast Routing”, IEEE INFOCOM’97,
Kobe, Japan.

Z. Wang and J. Crowcroft 1996. Quality-of-Service Routing
for Supporting Multimedia Applications, IEEE Journal on
Selected Areas in Communications, Vol. 14, No. 7.



Integration of a Multicriteria Decision Model in Constraint Programming

F. LeHuédé"?, P. Gérard!, M. Grabisch!?, C. Labreuche' and P. Savéant!
1. THALES Research and Technology FRANCE, domaine de Corbeville, 91401 Orsay cedex
2. Laboratoire d’ Informatique de Paris VI, université Pierre et Marie Curie (UPMC) 8, rue du Capitaine Scott 75015 Paris
{philippe.gerard;christophe.labreuche; fabien.|ehuede; pierre.saveant } @thal esgroup.com
Michel.Grabisch@lip6.fr

Abstract

In this paper we propose an integration scheme for the
modeling of preferences with a fuzzy measure and the
Choquet integral in Constraint Programming (CP). In
order to use the Choquet integral as an objective func-
tion in CP, we define the C hoguet global constraint and
present the principles of the algorithms that can be used
to enforce arc-B-consistency on this constraint during
the search. Finally we give some preliminary results of
the propagation of the Choquet constraint on the ex-
amination timetabling problem.

I ntroduction

Multicriteria Decision Making (MCDM) models subjective
preferencesin order to automate the determination of a pre-
ferred solution out of a set of alternatives. Constraint Pro-
gramming (CP) solves combinatorial optimization problems
and provides methods to implicitly explore the solutions
space and determine an optimal solution with respect to an
objective function. Our objective is to combine the pref-
erence modeling capacities of MCDM methods with CP
search techniques. Indeed, from the multicriteria point of
view, the set of alternativesto evaluate is sometimes implic-
itly described and its construction can be extremely compli-
cated by the complexity of the problem or the size of the set.
On the other hand, CP has been designed for the solving of
large combinatorial problems. However, classical objective
functions do not permit to model complex subjective prefer-
ence.

In this paper, we propose the Choquet constraint to in-
tegrate preference modeling with fuzzy measures and the
Choquet integral in a CP solver. In order to be ableto tackle
large combinatorial problems, we introduce a propagation
algorithm to reduce the domains of the variables involved
in the constraint and thus, reduce the search space. A first
evaluation of this constraint is realized on the examination
timetabling problem.

Background
Inthis section, weintroduce some basics on preference mod-
eling with fuzzy measures and the Choquet integral as well
as the main principles of Constraint Programming.
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Preference modeling with fuzzy measures and the
Choquet integral

During the last decades more and more interest has been
given to multicriteria decision models. In this paper we fo-
cus on the fuzzy measure based modéd first introduced by
Sugeno (Sugeno 1974). This model uses the MultiAttribute
Utility Theory (MAUT) framework (Keeney & Raiffa1976).
It aims to represent interaction phenomena among criteria
thanks to fuzzy measures. The overall evaluation of a so-
lution is realized by the aggregation of the criteria and the
fuzzy measure with the Choquet integral.

The MAUT framework

The MultiAttribute Utility Theory methodology is mainly
concerned with the construction of additive utility functions.

Let us denote by NV = {1,...,n} the set of criteria
We suppose to have a set of solutions or alternatives S
among which the decision maker must choose. Each so-
Iution is associated with a vector x € 2 of which compo-
nentsz; € Q;,i € {1,...,n}, represent the points of view
to be taken into account in the decision making process. A
component z; is called attribute of a solution. Typicaly, in
a multiobjective optimization context, each attribute would
correspond to the value of an objective function. The model-
ing of the decision maker preferences > is realized through
an overal utility functionwu : Q — IR such that:

Va,y € Oz =y < ul@) > u(y).
Classically, this overall evaluation function is split into
two parts (Keeney & Raiffa 1976):

e the utility functions, u;(x1),...,u,(z,), Mmap each at-
tribute to a single satisfaction scale £ which is areal in-
terval. This ensures commensurateness among criteria

¢ the aggregation function aggregates the values returned
by uy,...,u, and establishes the overall evaluation:;

Vx € Q,U(-’L’) = F(Ul(ml); v ,’U,n(l’n))

wherewu; : Q; - Eand F : €™ — &£. u;(z;) is caled
utility or score of the alternative = on the criterion i. Ensur-
ing commensurateness among criteria is an important step.
However, when using compensatory aggregators (such as
the weighted sum), we have to use utility values that cor-
respond to a scale of difference. This means that not only



utilities must correspond to the ranking of some alternatives
upon different points of view, but aso the difference be-
tween two values have to make sense. This allows to treat
comparable values even when the attributes of aproblem are
given in different units. In our study the satisfaction scale
& istheinterval [0,1]. The MACBETH (Bana e Costa &
Vansnick 1994) methodology is used to construct the utility
functions.

The aggregation function may be of various kinds (Gra-
bisch 1996), one of the most commonly used being the
weighted sum. Nevertheless, it has to be consistent with
the decision maker preferences. For instance, when using
a weighted sum to model preferences, the contribution of
one criteria to the overall evaluation of an alternative does
not depend upon the other criteria. Actualy, most of the
timewhen an expert evaluates an aternative, he analyzesthe
weakest and strongest points of the alternative. The way he
takesinto account the satisfaction degrees depends on which
criteriaare well-satisfied and which are the flaws. To model
this, more powerful aggregators than the weighted sum are
needed.

Fuzzy measures and the Choquet integral

In order to generalize the weighted sum, (Sugeno 1974)
proposes to assign weights not only to each criterion sepa-
rately, but also to any codlition of criteria. These weights
correspond to a set function that is called “fuzzy measure”.

Definition 1 (Fuzzy measure (Sugeno 1974))

Let P(N) be the power set of \. A fuzzy measure x on
Nisafunction i : P(N) — [0, 1], satisfying the following
axioms.

(i) u(@) =0, pN) = 1.
(i) AC BcC N impliespu(A) < u(B).

In this context, u(A) represents the degree of importance of
the subset of criteria A C N. First, the fuzzy measure is
established in order to complete the model of the decision
maker preferences (Grabisch & Roubens 2000). Then, the
uni-dimensiona utilitiesu, . . . , u, are aggregated with the
Choquet integral to produce the overall evaluation of an al-
ternative.

Definition 2 (The Choquet integral (Choquet 1953))

Let 4 be afuzzy measureon N, and u = (ug,...,u,) €
[0, 1]™. The Choquet integral of u with respect to p is defined
by:

Cpuu, .. yun) = Y upp(Ag) — n(Aun)l, @)
i=1

where (i) indicate a permutation on N'such that u) <
e < U(n), A(i) = {(Z), RN (n)} and A(n+1) = 0.

The combined use of the Choquet integral and fuzzy mea-
sures allows very precise preference models to be built.
In particular it allows to reach non supported solutions
(i.e., Pareto optimal solutions that cannot be reached by a
weighted sum, whatever the weights may be), and to model
various decision making behaviors (tolerance, veto, etc.).
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Many usual examples of aggregation functions are partic-
ular cases of the Choquet integral, e.g., weighted sum, min,
max, ordered weighted sum (Grabisch 1995).

Numerous practical applications and theoretical works
(Marichal 1998) have shown that fuzzy measures combined
with the Choquet integral were particularly appropriate to
aggregate utilities in amulticriteria decision problem.

Basics of Constraint Programming

The Constraint Programming (CP) paradigm has been de-
veloped in order to model and solve combinatorial optimiza-
tion problems (Van Hentenryck 1989). CP languages pro-
videanatural framework to model a problem with variables,
each one associated with a set of possible values called the
domain, and constraints, which express relations between
the variables. The solving process uses a branch and bound
approach where the solutions space is reduced at each node
of the search tree thanks to propagation algorithms.

The Constraint Satisfaction Problem

CP uses the Constraint Satisfaction Problem (CSP)
(Mackworth 1977) framework to model combinatorial op-
timization problems.

Definition 3 (Constraint Satisfaction Problem)

Let P = (X,D,C) beaCSP It is defined by:

e aset X = {xy,...,x,} of m variables,

easetD = {dy,...,d,} of m finite domains (usually,
intervals over integers). Each variable z; is associated
with its domain d;,

e aset C = {cy,...,cp} of p constraints between the vari-
ables.

A constraint on a set of variables expresses which com-
binations of values are alowed for the variables. It can be
defined either intentionally (e.g., using a predicate such as
x < y) or extensionally by the set of tuples that satisfy the
constraint. A solution to a CSP is an assignment of all vari-
ables such that all constraints are satisfied. Once an instance
of the CSP has been defined, one can desire to find one solu-
tion, al solutions, or an optimal solution with respect to an
objectivefunction.

Constraint propagation

A major principle of CP is that each constraint can be ac-
tively used to deduce reductions of the search space and thus
decrease the computational effort needed to solve the prob-
lem. Thisprocessiscalled constraint propagation. The CSP
being N"P-complete, constraint propagation algorithms per-
formonly partial deductionsto reducethe variables domains
within an acceptable computation time. Thus, constraint
propagation algorithms ensure that each constraint indepen-
dently of the other one is consistent with the domain of its
variables. This property is called arc-consistency.

Definition 4 (Arc-consistency)

Given a congtraint ¢ over g variables zy,...,z,, and a
domain d; for each variable z;, ¢ is said to be “arc-
consistent” if and only if for any variable z; and any value



v; in d;, there exist values vy,...,v;_1,Viq1,...,94 IN
dl,...,di_l,di+1,...,dq SUChthatC(Ul,...,Uq) holds.

Maintaining arc-consistency on a constraint means to re-
move from the domains of each variableinvolved in the con-
straint, the values for which no tuple of values can be found
in the other variables domains such that the constraint is sat-
isfied.

Global constraints (Beldiceanu & Contejean 1994; Régin
1994; Baptiste, Le Pape, & Nuijten 2001) model particular
kind of constraintsthat are often met in combinatorial prob-
lems such as scheduling and vehiclerouting problems. They
implement their own propagation algorithms, exploiting the
particular structure of a problem to make further deductions.
In general, global constraints are based on dedicated algo-
rithmsissued from Operations Research that are particularly
efficient to solve specific problems.

Consistency techniques for numeric CSPs

Numeric CSPs are specia cases of the CSP where the
variables are associated with discrete or continuous do-
mains. In numeric CSPs, the domain of a variable z is rep-
resented by the interval [z, Z] where z denotes its smallest
value and T denotes its largest value. A common way to
propagate constraints on numeric CSPsisto maintain arc-B-
consistency (Lhomme 1993),i.e., arc-consistency restricted
to the bounds of the domains.

Definition 5 (Arc-B-consistency)

Given a constraint ¢ over ¢ variableszy, .. ., z,, and a do-
main d; = [z;,T;] for eachvariablex;, cissaidto be* arc-
B-consistent” if and only if for any variable z; and each
of the bound values v; = z; and v; = T, there exist val-
Ueswvi,...,Vi—1,Vit1,---,Uq in d17-~-adi—ladi+17-~-adq
suchthat ¢(vy, ..., v,) holds.

I ntegrating preference modeling in CP

This section presentsthe schemethat has been chosen for the
integration of the multicriteriamodel presentedin section in
a CP solver.

M otivation

The main objective of the study is the integration of the
fuzzy measure based multicriteria model in CP in order
to perform multicriteria optimization. Beyond preference
modeling and problem solving, two aspects of the tech-
niques to be integrated have to be considered:

e A strong advantage of CP is the great flexihility it of-
fers for modeling and solving combinatorial optimization
problems. This flexibility is mainly due to the separation
between problem definition and problem solving.

e Various models can result from a preference modeling
process and they can be very different depending on the
problem.

In the framework of our integration we expect to keep as
much as possible of the flexibility of CP as well as the pos-
sibility to use various models.

The multicriteria model is composed of attributes, util-
ity functions, the Choquet integral and its associated fuzzy
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measure. An attribute is a feature of a solution that is used
to evaluate its quality according to some point of view (cri-
terion). For example, in scheduling, the makespan and the
max tardiness are both attributes of a schedule. A utility
function is constructed for each attribute to express its de-
gree of satisfaction and to ensure the commensurateness be-
tween the criteria. Finally a criterion is defined by an at-
tribute and a utility function which models a preference re-
lation. The value of a utility function for a given solution is
called the utility or the score of the solution upon acriterion.
We can note that:

o Attributes in MCDM generally correspond to objective
functionsin CP,

e The utility functions constructed by the MACBETH
methodol ogy are often piecewise affine functions.

All this leads us to propose the following integration
scheme.

Integration scheme

Overall evaluation

01

Piecewise-linear
constraints

FD

Problem
variables and
constraints

Figure 1: Integration scheme

To keep as much flexibility as possible we propose the Fig-
ure 1 example of design for the modeling of a multicriteria
optimization problem. We introduce new variables:

e y € [0,1] correspondsto the overall evaluation,

e uy,...,u, € [0,1] are the scores of a solution over each
criterion,
® ay,...,a, arefinitedomain variables, they model the at-

tributes of the problem,

e 11,...,x, aethefinite domain variables of the combi-
natorial problem.

The combinatorial problem is modeled as usual in CP
with variables and constraints. For better representation,
we have extracted the attributes from the problem model.
They areequal to objectivefunctionsdefinedonz 4, ..., z,,.
On the multicriteria model side, each attribute a;,i €
{1,...,n} isconnected to ascoreu; by its associated utility
function. In the case of piecewise linear functions, this con-
nection can be realized in a global constraint as described
in (Milano et al. 2001; Refalo 1999). Finadly, the variable



y to maximize must be linked with the scores uy, ..., u, in
order to establish therelationy = C,,(u1, . .., up). Thisre-
lation depends on the fuzzy measurethat has been cal culated
during the preference modeling process.

In the following, we propose the Choquet global con-
straint to efficiently enforce this relation.

The Choquet constraint

This section presents the Choquet constraint. First, we de-
fine the semantics and the signature of the constraint. Then
we establish some conditions to check arc-B-consistency
on the constraint. Finally, we focus on the properties of
these conditions to set the basis of a propagation algorithm
to maintain arc-B-consistency on the constraint during the
search.

Definition

We consider the n variables uq,...,u, € [0,1] andy €
[0,1]. We aim to establish and propagate the equality be-
tween the y variable and the Choquet integral of uq,...,u,
with respect to afuzzy measure u. Mathematically, we want
to enforce:

y=Culur,...,u,)

that isto say:

n

y =Y upu(An) — nlAuen),

i=1

where (') indicate a permutation on {1,...,n} such that
U S SUn ={(@@),...,(n)}and A1) = 0.
To achleveth|s we defme the Choquet constraint:

Definition 6 (The C'hoguet constraint)

Let V' be a set of n criteria, let {y}J{ui,...,un}
be a set of variables ranging over [0,1] and let M =
{u(0), u(1), w(2), ..., u(1,...,n)} bethe values of a fuzzy
measure p for each element of P(N'). The Choguet con-
straint enforcesthe relationy = Cp,(uq, ..., uy) and is de-
noted Choquet(y, {u,...,u,}, M

Arc-B-consistency of the Choquet constraint

Let us denote respectively x and z the minimum and max-
imum values of the domain of a variable z. The arc-B-
consistency of the C'hoquet constraint is given by the next
proposition:

Proposition 1 (Arc-B-consistency of the Choquet con-
straint)

Let C = Choquet(y,{u,...,up}t, M) be a Choguet
constraint. C' is Arc-B-consistent if and only if the following
four conditions hold:

(D) y>Cu(ur,... un)

(2 7<Cu(ur,...,un)

(3 VEe{l,...,n} :

Cu(u_la'"7uk717%7uk+17"'7m) ZQ
@) VE e {1,...,n} :
Cu(ﬂa"'auk—lau_kauk-i-la"'aun) Sy
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These conditions directly result from Definition 5 (arc-B-
consistency).

The propagation of the Choquet constraint results from
the four conditions of Proposition 1. Conditions (1)
and (2) dlow to compute easily a new domain for y:
[maz(y, C,(w)), min(g,Cy(w))]. Nevertheless, deducing
domain reductions for the variables uq, . . . , u,, from condi-
tions (3) and (4) is not straightforward.

Computing a new minimum

Here we present the cal culation of the lower bound of avari-
able uy, k € {1,...,n}, that can be deduced from condi-
tion (3) in Proposition 1. We denote @, thisvalue. It is such
that :

Cu(u——k: ﬂ,k) =Yy

For sake of concision, we will use the following notations
in the remaining of the paper:
Cu(u) = Cp(u, ..., un)
Cu(ﬂ) = Cu(u_la e 7u_n)
u(u——ka Uk) = C,u(u_la o

C g 7uk—17%7uk+17'~'7u_’n)
Cu(u—k, Uk) = Cu(ua,. ..

s Uk —1, Wy Uk 1y - -+ 5 Up)

LetC¥ :[0,1] — [0, 1] bethefunction suchthat C' (x) =
C,(u=, ). We denote T the permutation of @1, . .., ug_1,
Uktl,---,Up SUCh thatr(l) < o < Uror. Wewill
consider u, gy = 0 and u,(,) = 1. In addition we define the
set A ) = {r(i), . (n - 1)}

Flgure2 g|v05m exampleof the shape of C" Itisanin-
creasing p| ecewise linear function whose edges correspond
to the points where z is equa t0 0,7 (), - - -, Ur(n—1), L.
The first step of the calculation of 4, consi sts in determin-

k
G

K
Cu@‘c(i‘ﬂ) )
] E—
CM(UT(i'))

I
I
l/ —
ey Uy Yrgrey Yrnny 1 X

o
cl

A

G
cl

Figure 2: Shape of C/\ (x)

ing on which piece of the curve relies the solution. This
segment is defined by theinteger i* € {0,...,n — 1}, such
that C (u-)) < y < Ck(u--71)).- Wearethen ableto

educe:
Y- C ( Ur(i*) )

p(AL L Ok — (A )

@

Uk = Ty ) +



The calculation of an upper bound @, for the variable
ug can be derived similarly from condition (4). We are
thus able to compute a new interval for any variable uy, :
[max(’aka%)a min(ﬂk, U_k)]

Example 1 (Propagation of the Choquet constraint)
Let y,u1,u2,us be four variables and let M =
Ui, ..., 123} beafuzzy measure such that:
y € [0.4,1],u; €[0,0.2],uy € [0,0.8], us € [0,0.2] and
po =0
Hi12 = 0.5 H13 = 0.2 M23 = 0.6
pi23 =1
If we set the constraint Choquet(y, {u1,us,us}, M), we
obtain the following propagations:
Propagations on the y variable:

C,.(0,0,0) = 0 and C,,(0.2,0.8,0.2) = 0.2 x (1—0.6) +
0.2x(0.6—0.4)40.8x 0.4 = 0.44. Therefore fromcondition
(2) of Proposition 1 we can concludethat y € [0.4, 0.44].
Propagationson u :

Let w; be the lower bound of u; that can be de-
duced from Proposition 1, condition (3), i.e, such that
C,(41,08,0.2) = 04. We have already calculated
C,(0.2,0.8,0.2) = 0.44. Therefore we can conclude that
@ € [0,0.2) and from Equation (2):

{Ho,

0.4—C,(0,0.8,0.2) 0.4—0.36
=55 =01

Uy =

H123 — H23

Considering the calculation of an upper bound for uq,

we can notice that we have reduced y such that 7 =

C,(ur,wz,u3). It followsthaty > C, (a1, uz,us). There-

fore condition (4) of Proposition 1 is verified and we can
conclude that w7 will not be reduced.

If we follow the same reasoning for us and u3, we finally

obtain: u; € [01,02], Uz € [07,08] andug € [012,02]

Maintaining ar c-B-consistency

Domain reduction calculations for the variables uq, ..., u,
have a relatively high computation cost with respect to the
frequency of their invocation. For the calculation of new
lower bounds, thevariablesty, . . . , u,, haveto be sorted and
the Choquet integral may haveto be computed several times.
However, we have seen in Example (1) that it was possible
to save some calculus, either by re-using a value of the Cho-
quet integral previously calculated or by identifying some
relations between the conditions of Proposition 1.

In this section, we present some useful propertiesin or-
der to design agorithmsfor the propagation of the C' hoquet
constraint and to reduce useless calculus.

Again, the following properties are deduced from the in-
creasingness of C,. The objectiveisto show that some con-
ditions of Proposition 1 cannot be violated simultaneously
and that in conseguence some bound calculations can be
avoided.

The following properties show some incompatibilities on
the simultaneous violation of conditionson y and conditions
onug,...,Un:
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(i) Condition (1) and (3) cannot be violated simultane-
oudly. Indeed:

y<Cuu) = Vke{l,...,n},Cu(u"x,ux) >y
and a
Fke{l,...,n},Cu(@%,ux) <y = y > Cpu(u).
Similarly, condition (2) and (4) cannot be violated
simultaneously:

7> Cu@) = Vke{l,...,n},Cu(u_y,ux) <7
and

3k € {1,...,n},Culut, @) > 7 = 7 < Cu(a).

A lesstrivial property shows the same kind of incompati-
bilities on conditions on different score variables:

(iii) For al pair of distinct variables u;, u;, condition (3)
on u; and condition (4) on «; cannot be violated si-
multaneoudly. That isto say, Vi, j € {1,...,n},i #
J» we have necessarily:

Cu(=i,w) <y = Culu—;,uj) <y
and
Cu(u—j, @) >7 = Cu(@=,w) > y.

(i)

In CP, propagation algorithms are said to be “event
driven”: the constraint is awaken by a modification on the
domain of one of its variable and triggers an appropriate al-
gorithm, depending on the kind of modification (increasing
of alower bound, decreasing of an upper bound, removing of
avalue from a domain, assignment of avariableto avalue).
Properties (i), (ii) and (iii) allow to trigger only appropriate
calculus for the propagation of the Choquet constraint and
establish necessary and sufficient conditions to ensure that
arc-B-consistency is maintained although not all conditions
of Proposition 1 have been verified.

Experimentations

The Choquet constraint has been implemented in the Eclair
solver (Laburthe et al. 1998) and has been evaluated on the
examination timetabling problem.

The examination timetabling problem

Given a set of examinations, a set of students each enrolled
to a given list of examinations, a set of rooms of fixed ca-
pacities, and a set of periods, the examination timetabling
problem consists in assigning a period and a room to each
examination such that (i) two examinationsthat are given to
a same student cannot be planned on the same period and
(i) the capacity of aroom cannot be exceeded. We assume
that aslong as constraints (i) and (ii) hold, several examina-
tions can occur in the same room at the same time but that
the number of students attending an examination cannot be
distributed over several rooms.

A simple multicriteriamodel has been constructed based
on three attributes: the total duration of the examinations,
the number of rooms used and the number of students that
have two consecutive examinations.

Data sets

Small scenarios have been constructed in order to evaluate
the pruning realized by the constraint. These scenarios are
briefly described in the following table:



Number of Number of | Number of | Number of
periods exams rooms students
Sc. 1 6 7 2 5
Sc. 2 6 7 2 29
Sc. 3 9 10 3 38

The results presented here compare the solving of the sce-
narios using a basic propagation from the scores uq, us, u3
to the overall evaluation y, to a solving where arc-B-
consistency is enforced at each node of the search tree. To
have a good vision of the impact of the propagation on the
performance of the algorithm, the search tree is constructed
using a static chronological 1abeling strategy. The variables
that model the date of the exams are ordered following the
number of digunctions between exams and the number of
enrollmentsto each exam. The performanceof the algorithm
is given by the number of backtrackings realized during the
search and by the completion time.

Basic propagation Interval consistency
Number of | Resolution | Number of | Resolution
backtracks time (ms) backtracks | time(ms)
Sc. 1 68 30 63 20
Sc. 2 287 130 145 120
Sc. 3 41594 17300 15837 8600

As can be seen for the first and second sets of data, main-
taining arc-B-consistency may be costly on small problems
although the constructed search tree is smaller. Neverthe-
less, the propagation seems to be advantageous when con-
sidering larger problems. Note that in both cases, the solv-
ing seems to be long with respect to the size of the prob-
lems. However, a quite naive approach has been used to
model room capacities. This could be greatly improved us-
ing the Cumulative global constraint as described in (Boizu-
mault et al. 1995), but this constraint is not yet available in
Eclair. Furthermore, when handling multiple contradictory
criteria, it is highly probable that with a standard labeling
strategy, good solutions are spread over the search tree. Our
future work will focus on the development of specific la-
beling strategies that could perform well in a multicriteria
optimization context.

Conclusion

In this paper we proposed an integration scheme for the
modeling of preferenceswith afuzzy measure and the Cho-
quet integral in CP. In order to use the Choquet integral
as an objective function in CP, we defined the C'hoquet
global constraint and presented the principles of the algo-
rithms used to enforce arc-B-consistency on this constraint
during the search. Finally some preliminary results of the
propagation of the Choquet constraint were given to solve
the examination timetabling problem. We can observe that
although the constraint propagation performs a considerable
pruning, still awide area of the search treeis explored. This
is usually tackled in constraint programming by defining ef-
ficient labeling strategiesin order to quickly guidethe search
toward good solutions. The next step of our study will con-
sist in determining how the preference model can help to the
construction of such strategies.
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Abstract

This paper describes an approach for optimizing over inter-
dependent planning goals. Most planning systems allow
only simple, static dependencies to be defined among goals
where these dependencies remain constant between different
problems. However, in many domains, goals are related
through detailed utility models that may significantly
change from problem to problem. For instance in one
problem, a particular goal’s utility may increase if other
related goals can be achieved. In another problem, this
utility increase may differ or actually decrease if the same
combination of goals is achieved. To address these types of
problem situations, we have implemented a methodology
for representing and utilizing information about
interdependent goals and their related utilities using the
ASPEN planning and scheduling system. We show through
experimental results that this approach significantly
increases overall plan quality versus a standard approach
that treats goal utilities independently.

Introduction

As the sophistication of planning techniques grows, these
systems are being applied to an increasing number of real-
world problems. Planning and scheduling techniques are
currently being applied with great success to handle
problems in manufacturing, logistics, and space
exploration. In a typical application, a planner is given a set
of goals, and it then constructs a detailed plan to achieve
the goals where the plan must respect a specific set of
domain rules and constraints. A limitation of most planning
systems, however, is that they define relationships between
input goals in a simple, static manner, which cannot be
easily adjusted for different problem situations. In many
domains, goals can be related in complex and varying ways
that are best represented through utility metrics. These
metrics are hard to include as part of a standard domain
definition, since they are often dependent on current data
and can vary widely from problem to problem.

When planning for NASA spacecraft or rover missions,
planning goals are often dictated by science data that has
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just been collected. Goal utilities and dependencies for new
science measurements are often dependent on a current
data model and on what new science opportunities are
available. Goal interdependencies can be seen in other
domains as well. For instance, consider a travel-planning
domain where we are planning a business trip for several
people to the same location. Thus, all travelers need to
arrive at the same destination and in the same general
timeframe. In most cases, they would all prefer to arrive on
the same day and time, however, plans that have some
travelers arriving one day earlier are still valid and would
still be considered. Furthermore, preferences for when
people arrive could change from trip to trip. On one trip it
may be important that a certain set of people arrive on the
same day to attend a particular meeting. On other trips this
criteria may be less important or apply to a different set of
people. Representing such information in current planning
systems would be difficult since most goal dependencies
cannot easily change between problem instances based on
new preference information.

Approaches to goal handling and representation vary
widely among planning and scheduling systems. In some
approaches, all goals must be achieved for the planner to
even reach a solution. In other approaches, goals can be
given different priorities or utilities, and the planner will try
to create a plan that achieves the highest utility score where
some goals may not be added to the plan. Other approaches
enable a planner to accept both goals and other quality
objectives, such as minimizing makespan, avoiding missed
deadline costs, or minimizing the usage of a particular
resource (Williamson and Hanks, 1994; Joslin and
Clements, 1999; Rabideau, et al, 2000). However, even in
approaches that allow the usage of more flexible
optimization metrics, goal relationships are pre-defined in a
domain model and typically remain relatively constant
between problem instances. Furthermore, it is difficult to
define utility metrics that involve specific goal instances as
opposed to a general quality concept that applies to a
certain class of goals (e.g., increasing the number of orders
filled).

Most planning systems do allow you to define some
types of static dependencies between goals. For instance,
two goal or action types could be defined as related in a
domain model, perhaps through a decomposition of a



Goal Num Target Description Location (x,y,2) Reward
1 Spectrometer read for rock type x (3.4,-34.6, 2.0) 10
2 Spectrometer read for rock type x (162.3,43.9, 1.1) 10
3 Spectrometer read for rock type x (-4.1, 145.8,0.4) 10
4 Spectrometer read for rock type y in area A (104.3,-12.1, 1.5) 12
5 Soil sample from area A (103.5, -13.4,0.2) 15
6 Rock image for rock type y in area A (104.3,-12.1, 1.5) 10
7 Dust collection experiment from area A (105.1, -13.7, 1.5) 12

Table 1: Example sets of science goals given to planning system

parent activity. In a travel domain, you might want to tie a
“board-plane” action with a “deboard-plane” action, since
both will commonly occur in the same plan. Some static
dependencies may also be defined automatically through
other parts of the model definition. For instance, pre- and
post-conditions links can relate certain goals. A domain
model does typically allow goals to be linked in optional
ways (e.g., a goal that could decompose to several different
sets of actions or goals), however, these options are usually
limited to several commonly-seen combinations. Encoding
a large number of dependency options in a domain model
would be intractable both for modeling ease and search
complexity. No current planning systems enable dynamic
dependencies among goals, i.e. dependencies that
significantly vary from problem to problem, that can be
easily utilized and defined as part of the problem
specification instead of the domain model.

This paper presents a method for handling
interdependent planning goals while performing plan
construction and optimization. In this approach,
interdependencies between goals can be formulated
dynamically and provided to the planning system as part of
the goal input. The planning system can then reason about
these dependencies and incorporate them into the overall
objective function it uses to rate plan quality and direct its
search process.

This is particularly important when attempting to
optimize a plan relative to multiple criteria. One approach
to planning with multiple criteria is to combine the
different objective functions into a single metric
representing overall plan quality. However, for many
domains, these objectives will interact in complex (e.g.
nonlinear) ways making it difficult to improve plan quality.
Our approach represents a step toward addressing this
problem by providing the planner with an explicit
representation of the interdependent relationships among
the individual criteria that contribute to overall plan
quality. Our planner uses this information to guide its
search toward higher quality plans.

This optimization approach has been implemented on
top of the Automated Scheduling and Planning
Environment (ASPEN) (Chien, et al.,, 2000). ASPEN
already has a base optimization framework that we have
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extended to handle this class of problems (Rabideau, et al.,
2000). This new approach has been tested on a series of
problems based on a team of rovers performing geological
experiments in a new terrain. Even with our current
implementation’s relatively simple objective function and
search technique, experimental results show that by using
information about related goals, our approach is able to
significantly improve plan quality.

Planning for a Multi-Rover Domain

In recent years, NASA has begun to focus on missions that
utilize rovers to perform exploration and understanding of
planetary terrains. Future missions will likely send teams of
rovers to autonomously explore planetary surfaces.

To produce plans for a team of rovers, we have
adapted a version of the ASPEN planning system (Estlin, et
al., 1999). ASPEN automatically generates the necessary
activity sequence to achieve a set of input goals. One of
the main algorithms used to produce this sequence is a
local, early-commitment version of iterative repair (Minton
and Johnston, 1988; Zweben et al., 1994), which classifies
plan conflicts and attacks them individually. For the
experiments presented in the paper, planning is performed
in a centralized fashion, where one planner controls
multiple rovers. In future work, these techniques will be
migrated to operate in a distributed planning system, where
each rover has a separate onboard planner controlling its
operations (Estlin, et al., 2000).

Plan Optimization

ASPEN provides an optimization framework that allows
the representation of continuous soft constraints (i.e.,
preferences) (Rabideau, et al., 2000). In contrast to
traditional hard constraints, soft constraints do not have to
be satisfied for the plan to be valid. However, satisfying
them will improve the quality score for the plan.

In ASPEN, a preference is defined as a mapping from a
plan variable (e.g. resource level, goal count, etc.) to a
quality metric. Specifically, a preference indicates whether
the score is monotonically increasing or decreasing with
respect to the plan variable. The overall plan score is the
weighted sum of individual preference scores.



An iterative optimization algorithm, similar to iterative
repair, is used to improve plan quality. For each defined
preference, an improvement expert automatically generates
modifications that could potentially improve the preference
score. In the following sections we illustrate how we
extended ASPEN’s optimization framework to deal with
interdependent goal combinations.

Interdependent Goals and Utilities

Historically in planning and scheduling systems, goal
selection has been a linear process in which goals are
independently selected and prioritized based on their
expected reward. However, in some applications, this
model is insufficient to correctly characterize the utility of
a plan. For instance, in the case of performing science
experiments in a new planetary terrain, goal priorities
should be determined by the expected scientific gain, which
is dependent on data already collected and available
science targets. There are many situations in this type of
domain where the value of a science goal will be increased
if other related science goals can also be achieved. For
instance, collecting images of a particular rock from
different angles and distances often increases the value of
all images taken of that rock, since a better overall analysis
of the rock can be done. Conversely, there are situations in
which it is very important to achieve one of a set of goals,
but having accomplished one in the set, the others become
less important. For instance, we may want a rover to collect
one or two more samples of a particular rock type but there
are a large number of possible targets from where to collect
such a sample. In this situation, we would like to direct the
planner to collect a couple samples and then move on to
other science experiments. If samples were collected at all
target sites, this data would be overly redundant and
somewhat lower the utility of the overall set since time had
been wasted collecting unneeded data.

To represent a goal’s value, we have extended a typical
goal-utility representation (where goals can have individual
rewards representing their importance) so that complex
interdependencies and their relevant utilities can be
represented and utilized by a planning system.
Furthermore these interdependencies and utilities can
change between problem specifications without requiring
any changes to the planner domain model. In our
representation, a list of goals and goal combinations are
provided to the planner. A utility value is also assigned to
each goal and to each specified goal combination. As an
example, consider the spectral measurement and image
goals shown in Table 1, which are from the previously
introduced rover domain. Let’s assume these goals are
interdependent in several ways. First, Goals 1-3 are for
spectrometer readings for the same type of rock and it has
been deemed necessary to obtain only one such reading and
any more would add little value to the current set of
collected data. Second, Goals 4-7 are for the same rock or
rock area and it has been determined desirable to obtain all
of those observations. However, if only a few can be
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obtained that data would still be beneficial but not provide
as much scientific value as the entire set.

These types of goal combinations are difficult to
represent in standard planning-optimization approaches. As
mentioned previously, a number of systems represent goal
rewards in the form of utility functions or preferences,
however, these approaches typically try to maximize a
certain goal type or minimize usage of a certain resource.
For instance, a utility function may try to minimize the
amount of fuel used in transporting objects, or may try to
maximize the number of factory orders that can be filled.
This type of representation is limited in that it prefers to
decrease or increase the number of goals or activities of a
general type, where each goal or activity is viewed as
relatively equal (or interchangeable). The goal inter-
dependencies required for deducing many scientific
hypotheses are often much more complex since each
individual goal may play a different role in the overall
success of an experiment.

We can visually represent goal inter-dependencies
between a set of two goals by using a graph structure where
vertices represent individual goal rewards and edges
represent interdependent goal rewards. For example,
Figure 3 shows two goals that have individual rewards
(represented by G; and G;) and a combined reward
(represented by R;,). There may also be dependencies
between larger sets of
goals, and thus the graph
may contain hyperedges
linking several goals to

G,

their combined value.
Table 2 shows Ry,
interdependent goal

rewards for the goals
introduced in Table 1.
Goal combinations for
goals 1-3 are given
slight negative rewards
to show that achieving
more than one goal in
this set actually has less value than just achieving one. The
goal combination for goals 4-7 shows that achieving all of
the goals in that set has a large bonus reward.

G,

Figure 3: Two related goals

Plan Optimization for Interdependent Goals

We extended the ASPEN optimization system to support
the inclusion of goal interdependencies with a planning
problem description. The extension consists of two main
components: an objective function to compute the value of
the plan with respect to the goal interdependencies and an
optimization framework for selecting goals to achieve and
coordinating optimization with plan repair.

Objective Function

As is the case with most planners, the ASPEN problem
specification includes a description of the goals that must
be achieved to accomplish a particular problem. In



Goal Combination Reward
<Goal 1, Goal 2> -5
<Goal 1, Goal 3> -5
<Goal 2, Goal 3> -5
<Goal 4, Goal 5, Goal 6, Goal 7> 60

Table 2: Goal interdependencies and corresponding
rewards

addition, ASPEN can accept a set of optional goals that,
while not required, will increase the quality of the plan as
more of these goals are accomplished. This is useful when
the planner is given more goals than are feasible to achieve
given its resource constraints. In this case, ASPEN will use
an objective function to try to find a subset of goals that
result in a valid, high quality plan.

Our extended version of ASPEN also takes as input a set
of goal interdependencies specified as a graph of goal
nodes as described in the previous section. The graph
consists of a set of vertices V where each vertex
corresponds to a goal that can be added to the plan,
including both mandatory and optional goals, and a set of
edges E. Each edge consists of a tuple of vertices: <vy, v,,

. Vp>.  For each vertex and each edge, there is an
associated weight Wy v, ... vn> indicating the value that will
be added to the plan if the plan includes these goals. This
representation allows us to express singleton goal values,
that is a goal whose contribution to the plan does not
change as other goals are added, and any n-ary goal
relationship to indicate the value that combination of goals
add to the plan.

We use a simple objective function to calculate the plan
quality with respect to these optional goals. Let G be the
set of goals that occur in the plan. The value of plan P is
then given by Equation 1. This function sums up the values
of all goals that occur in the plan along with the weight for
each edge for which all of the edge's vertices occur in the
plan.

Do( =V VpenV, ¥)

=Vy Vy ...,V =0E

O(P)=> 0o(<v>)+

VgV eV > if {Vl,Vz,...,Vn} oP

O(xVa VoV >):{ 0 otherwise

Equation 2: Objective function for calculating plan
utility when using interdependent goals

Optimization Framework

The next step is to provide an improvement expert that can
suggest what changes ASPEN should make to the plan to
increase this score. Clearly, the improvement expert for
interdependent goals should suggest adding more optional
goals to the plan. However, adding a goal will likely result
in conflicts in the plan. Therefore it is also necessary to

24

coordinate the process of improving the plan score with
ASPEN's repair process to fix conflicts in plans.

Our current approach to performing optimization for
interdependent goals is randomized hill-climbing with
restart. We begin by first creating a plan that achieves all
of the mandatory goals. We then perform a series of
optimization steps where each step consists of i iterations.
At each iteration, if there are no conflicts in the plan, we
use the improvement expert to suggest the next optional
goal to add. If there are conflicts, we perform an iteration
of repair. Whenever we have a conflict free plan, if its
score is the best we have seen, we record its point in the
search space. At the end of the ith iteration, we return to
the highest-valued point in the search space and begin the
next optimization step. This approach protects against the
possibility of adding a goal to the plan that cannot be
solved.

We use a simple, greedy improvement expert to select
the next goal to add. It considers all goals and picks the
one that would lead to the highest score if it were added to
the plan. We include an element of randomness to avoid
repeatedly adding an unachievable goal. With probability
1 - € we add the highest scoring goal, otherwise a goal is
picked at random.

Evaluating ASPEN's Performance with
Interdependent Goals

Our main concern in evaluating our system was to see
whether or not explicitly taking into account goal
interdependencies during optimization would significantly
improve the quality of the plan. We expected to see some
improvement over a system that did not use goal
interdependencies, but were not sure if the improvement in
quality would be worth a potential increase in time to
produce the plans. We were also curious to see how much
of an improvement would be provided by our relatively
simple objective function.

Methodology

We compared our extended version of ASPEN, which we
will refer to as ASPEN+IDGS (for ASPEN with
InterDependent Goal Support) to two other versions of
ASPEN: ASPEN-+Random and ASPEN+SimpleReward.
All three versions used the randomized hill-climbing
algorithm described in the previous section. The only
difference is in how each of the three selects the next
optional goal to add to the plan. ASPEN+IDGS uses the
objective function from Equation 1 to pick the next goal.
ASPEN+Random simply selects a goal at random without
considering rewards. Finally, ASPEN+SimpleReward uses
an objective function that looks at rewards for individual
goals without considering goal interdependencies.

We ran each system on a set of randomly generated
problems from a Mars exploration domain. In this domain,
a team of three rovers must collect different types of
science data at various locations on the planet's surface.



The planner must decide which goals to assign to each
rover, determine a sequence for each rover to use in
visiting the different locations, and plan for activities such
as manipulating the rover masts and communicating with
earth. Generated plans must also respect resource and
temporal constraints, such as not exceeding onboard
memory limitations when collecting data.

The randomly generated problems varied in the number
and location of the science goals. Table 3 shows the types
of goals that are given to the planner along with the
possible rewards for each individual goal. Note that some
goals have a range of rewards in which case a specific
reward is drawn randomly from this range. Each problem
specification contains several mandatory panoramic images
(goal type A) of different terrain areas, which always
provide a base set of data on each area, and then a set of
optional goals to take additional images and spectrometer
measurements (goal types B, C, and D) of particular rocks
in those areas. Problems could range in size from 6 to 78
different goals to examine 0 to 24 rocks in the surrounding
terrain.

Goal Reward
A: Panoramic Image of an Area (Mandatory) | 20
B: Long-Range Image of a Rock 12-25
C: Close-Up Image of a Rock 7-20
D: Close-Up Spectrometer Read of a Rock 2-15

Table 3: Individual goals and rewards

The rovers are given 1 Martian day to complete these
goals. Depending on the relative locations of the targets,
each rover can typically handle about 10 goals in this time.
With three rovers this means that most of the problems will
be too large to complete and the planner will have to take
into account the different goal values to determine which
goals should be achieved.

Each problem description also included a randomly
generated set of goal interdependencies. Although the
interdependencies were randomly generated, they were
based on preferences derived from our conversations with
planetary geologists and represent the type of utility values
considered by human experts. Table 4 shows the goal
combinations used for the experiment and the associated
rewards. To increase the variance among goal
combinations, we used two different factors for computing
the value for one of the goal pairs (pair B and D). A certain
percentage of the time the reward for this pair was
significantly increased. Finally, for a given rock, each of
the three goal combinations is removed with probability
0.5.

In selecting parameters for the randomized hill-climbing
algorithm used in each planner, we decided to use 50
iterations per optimization step as it seemed to provide the
best balance between allowing the planner enough time to
repair goals but not so long that it would waste a lot of time
if it got stuck and needed to back up to a previous plan.
For €, we selected a small value of 0.02.

25

Goal Combination Reward

<Goal B, Goal C>
<Goal B, Goal D>

(Reward(B) + Reward(C)) * 1.75
(Reward(B) + Reward(C)) * 2.25, 90%
(Reward(B) + Reward(C)) * 10.0, 10%

<Goal C, Goal D> | (Reward(C) + Reward(D)) * 1.25

Table 4: Goal interdependencies and rewards

Results

We generated a set of 30 problems and because there is an
element of randomness both to the ASPEN iterative repair
algorithm and to our optimization approach, we ran the
three versions of ASPEN on each problem 5 times. The
systems were run on a Sun Blade 1000 with 1 Gigabyte of
RAM.

At the end of each optimization step we recorded the
current plan score based on the objective function from
Equation 1, the current number of goals in the plan, and the
number of seconds spent during that step. Note that even
though the ASPEN+Random and ASPEN+SimpleReward
versions of the planner did not make use of the objective
function to select goals to add, we still used that objective
function to score their plans for the purpose of the
experiment.

Figures 4-6 present the results from these runs. Objective
function scores are compared in Figure 4, while Figures 5
and 6 compare the total number of goals achieved and the
planning time used by each method. The data points in each
graph are averaged over the 150 runs from each system. In
each graph, the data point at optimization step O represents
the planner performing repair on a plan containing all
mandatory goals. We performed two-tailed t tests between
each pair of the three systems with a Bonferroni correction.
The only graph that showed significant differences among
the systems was the graph of plan scores in Figure 4.
ASPEN+IDGS was found to be significantly better than
both ASPEN+Random and ASPEN+SimpleReward at the
0.01 confidence level. ASPEN+Random outperformed
ASPEN+SimpleReward but only the data points between
optimization steps 6 and 14 showed significant difference
at confidence level 0.01.

Discussion

Figure 4 shows that ASPEN+IDGS outscores both
ASPEN+Random and ASPEN+SimpleReward. In fact,
ASPEN+IDGS showed a significant improvement over
both versions at each data point. The plot of the number of
goals included in each plan (Figure 5) shows that all three
systems were achieving about the same number of goals.
This means that ASPEN+IDGS was selecting higher
quality goals. This factor is particularly important because
none of the planners were able to achieve all of the goals
thus it is better to achieve the higher quality subset.

It is also important to note that ASPEN+IDGS's biggest
improvements in performance occur in the early
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optimization steps. Thus, even if the planner is capable of
solving all the goals it is given but it is under tight time
constraints, then using ASPEN+IDGS will allow the
planner to find a much higher quality set of goals. This
feature is especially important in real-world problems
where planning time can be tightly bound.

The shapes of the curves reveal some interesting
characteristics about each algorithm.  The curve for
ASPEN+IDGS rises sharply in the early optimization steps
and then tapers off, while ASPEN+Random starts rising
more slowly, increases in its rate of growth, and then
begins to taper off at the end. Given that both planners
were adding about the same number of goals to the plan at
each time step, the differences in the curve shapes is a
result of the way each algorithm selected goals. The sharp
rise in the ASPEN+IDGS curve can be explained by the
fact that ASPEN+IDGS is explicitly looking to add goals
that will improve the objective function. However, as more
goals are added to the plan, and therefore the rovers'
resources are beginning to be stretched to their limit,
making repairs to the plan becomes more difficult and the
planner spends more iterations fixing problems with the
plan and fewer iterations adding goals. As a result, the
curve begins to level off. As can be seen in Figure 5, the
number of goals added to the plan at each optimization step
begins to decrease at about the same time that
ASPEN+IDGS's score begins to taper off in Figure 4.

In contrast, the ASPEN-+Random curve in Figure 4
begins slowly because it is randomly adding goals to the
plan and, early on, it is unlikely that the interdependent
goal combinations will be satisfied in the plan. However, as
more goals are added, the probability of satisfying goal
combinations when a new goal is added increases, and the
score begins to rise more rapidly. But, just like
ASPEN+IDGS, the planner begins to spend more time
performing repairs and fewer goals are added to the plan
causing the curve to taper off.
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The fact that ASPEN+SimpleReward was the worst
performer is particularly interesting. Recall that this version
of the system is selecting new goals based on the each
goals individual contribution to the plan. In other words, it
is using the rewards from Table 3. Therefore, the planner
will favor the addition of long-range images and avoid
adding close-up spectrometer reads. The problem with this
approach is that the goal interdependencies do not
necessarily preserve the relative reward values of the
individual goals. For example, although the close-up
spectrometer read is the lowest rank score individually,
when it is combined with a long-range image, it becomes
much more valuable. However, since ASPEN+Simple-
Reward typically avoids adding this goal to the plan, it
does not satisfy these high-quality goal combinations. As a
result, its score grows slowly and, like the other curve,
tapers off in later optimization steps.

Figures 4 and 5 show that ASPEN+IDGS provides
considerable benefit when the planner cannot achieve all
the goals in a plan. In this case, ASPEN+IDGS selects a
higher quality subset of goals than either of the two
competing systems in this study. This is already
advantageous, but we were also interested in whether or not
ASPEN+IDGS could increase plan quality without a
significant increase in planning time. The plot of each
system's processing time per optimization step in Figure 6
shows ASPEN+IDGS did not significantly increase
planning time.

These results show that ASPEN+IDGS provides a
significant improvement in plan score over versions of the
planner that do not consider goal interdependencies without
a significant increase in planning time. This benefit is most
important when a planner is given more goals than it can
achieve as well as when the planner is under time
constraints and may not have enough time to plan for all of
its goals.
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Related Work

Other work in planning optimization has used utility
models to improve on particular types of quality measures.
PYRRHUS (Williamson and Hanks, 1994) extends the
UCPOP partial-order planner to handle metric time,
resources, and a utility model. In contrast to PYRRHUS,
our approach allows for the representation of utility for
specific goal combinations that can change from problem
to problem.

Markov Decision Processes (MDPs) (Boutilier, et al.,
1999) represent another approach to dealing with plan
quality. The goal combinations used in this paper could be
encoded into an MDP. However, MDPs have yet to be
demonstrated on real problems of significant size in
domains with time and resource constraints and it is likely
that the large computational cost would be prohibitive.

Work in mixed-initiative planning allows a planner to be
biased toward solutions with certain characteristics (Myers
and Lee, 1999). While our work has focused on automated
planning, a user could specify utility preferences to
encourage certain goal combinations.

Previous work in decision analysis has looked at
decision making with multiple objectives (Keeney and
Raiffa, 1993) enabling one to develop preferential
structures over decision outcomes. Our representation of
goal interdependencies is a simple type of preference
structure which allows the planner to select among alternate
actions. In the future we plan to incorporate more results
from decision analysis to support more complex goal
relations and uncertainty about goal pay-off.

Conclusions

In this paper we have presented a method for utilizing
interdependent goal utilities, where goal relations can be
dictated by current information and can vary from problem
to problem. In typical planning systems, only simple, static
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goal relations can be defined that remain relatively constant
between problem instances. However, in many application
areas, goal dependencies and their related utility metrics
can dramatically change based on current information or
even user preferences. To address this problem, we have
implemented a new method for representing and reasoning
about interdependent goals. We have also presented
experimental results that show how this approach can
significantly improve overall plan quality in a multi-rover
application.

In future work we will consider more complex goal
interdependencies including relations among more than two
goals, relations in which only so many of a certain set of
goals should be achieved, and situations in which adding
certain combinations of goals can decrease plan quality.
We also plan to enhance our current optimization algorithm
to better recognize potential high-utility goal combinations.
Finally, though currently this system is operated only in
simulation, we intend to ultimately test its capabilities using
real rovers examining actual terrain features.
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Abstract

In this paper, we discuss the problem of optimizing the
Multi-Criteria Decision Quality (MCDQ) under uncer-
tain time constraint using Qualitative Markov Decision
Process (Q-MDP). The main reason to use Q-MDP is
that the multi-criteria quality is represented by a vector
and it is hard to express the expected utilities, rewards
and values with a numerical measure. The sequential
decision multi-criteria quality process is modeled as an
MDP where numeric reward and value functions are
not always available. We describe different approaches
using Q-MDP as an alternative of a classical MDP to
deal with non-numeric reward and value functions. We
also present an approach based on a numeric measure
using an euclidean distance.

Introduction

In real-world applications, the solution quality is fre-
quently a function of multiple criteria. Computational
utility is represented, in general, as a single utility mea-
sure to computation based on the status of an n-tuple
of criteria. One of applications concerned with such ap-
proach is the design of hybrid assembly lines, dealing
with many criteria such cost, balance, reliability and
congestion. The application of our concern is an ex-
ploratory rover that should visit different sites and de-
velops experiments to collect information for scientists.
At each site, experiments allow to collect information in
return to the requests of scientists where each scientist
is interested on particular information (chemical, geo-
logical analysis, etc ...). At each site, the rover takes
pictures, makes analysis on stones, etc ... Tasks per-
formed at each site improve the quality of information
of each scientist. The decision-maker of the rover repre-
sents each scientist as a criterion. In order to maximize
the satisfaction of all scientists (responding to the max-
imum number of requests), the rover have to decide the
sequence of experiments to develop. This sequential
decision process applied to an initial problem, yields a
result having a quality described as a vector Cj of qual-
ity criteria (q1,¢2,--.,¢n). The quality of a criterion in
our context is the degree of satisfaction of a scientist

Copyright © 2002, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.
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(percentage of processed requests). Each decision (ex-
periments at a site) improves the quality of the result
according to a subset of criteria. The decision process is
under time pressure because the response to the request
for each scientist should be available before a fixed time.
We use a class of resource-bounded reasoning based on
progressive processing that uses a hierarchy of process-
ing levels to solve a problem. This hierarchy allows to
find a tradeoffs between the solution quality and compu-
tation time. When a progressive processing agent acts
(executes a processing level), it improves some criteria
of the quality. For the rover, the progressive process-
ing task consists of a first processing level that allows
to take pictures and analyzing them and a second level
that makes experiments. The rover can decide to exe-
cute just the first level at a site. Abusively, we name
an agent the execution of a progressive processing task
at a site.

This application can be seen as a specific multiple
objectives optimization problem that is also a partic-
ular application of MCDQ where each objective is a
criterion of the overall solution. This problem has to
address twin issues of searching in large and complex so-
lution space and addressing, multiple, potentially con-
flicting objectives. Selection of a solution from a set of
possible ones on the basis of several criteria is consid-
ered as a difficult problem. Due to this difficulty, most
of researchers reduce the problem to a mono-criterion.
Mathematical programming techniques and the popu-
lar weighted-sum approach have been developed (Yager
1988; Slany 1994). This problem has been extensively
addressed by classical genetic algorithms using scalar
fitness information. Other genetic algorithm use rank-
ing methods to grade the population in terms of Pareto
dominance. Most of those approaches are a kind of local
optimality search rather than a global one.

In our context, to find the optimal multi-criteria qual-
ity consists in finding the optimal sequence of process-
ing levels of multiple progressive processing agents. The
decision process is sequential and consists in know-
ing which processing level should be executed next.
This sequential decision process can be modeled by
a stochastic automata with a Markov property. A
Markov Decision Process (MDP) controller for pro-



gressive processing has been extensively discussed in
(Mouaddib & Zilberstein 1998). However, the use of
vectors to represent multi-criteria quality leads to new
problems where numerical, additive utility, reward and
value functions are not available. Indeed, if we as-
sume that the vectorial space of multi-criteria quality
is not Euclidean, a numerical definition of utility based
on the Euclidean distance measure is not available.
Thus, it is more appropriate to represent preference
over states with an ordering relation rather than with
additive utilities and rewards. A new interest in using a
qualitative version of decision theory has been already
advocated in (Dubois & Prade 1995; Boutilier 1994;
Tan & Pearl 1994). This paper is another contribu-
tion in this line of research. Furthermore, it advances
the state of the art in the control of resource-bounded
agents by introducing the dependency and also in the
MultiCriteria Decision by introducing the uncertainty.

Multi-Criteria Decision Quality

Optimization problem
We use a vector of criterion quality represented by
(qi,q3,...,qF) where each criterion quality ¢ repre-
sents the quality of the dimension 7 of the value in the
solution quality after the execution of level I} (5 level
of the agent 7). Each criterion quality ¢} is normal-
ized (¢} € [0,1]). Applications where the quality is not
normalized we can use the percentage of improvement
so that the measure belongs to [0,1]. In the context of
the rover, we represent the quality at each dimension
as the degree of satisfaction of the scientist (satisfied at
75% for example that can mean that 75% of scientist
requests are satisfied). An agent i is the execution of a
progressive processing task at a site i. Processing lev-
els are taking pictures (first level) and analyzing stones
(second level). We can also imagine further levels as
analyzing pictures.

The vector Q represents a point in the vectorial space
and each action that modifies one or many criteria
moves this point in the space. The progressive pro-
cessing is designed such that this point moves towards
the absolute optimal point represented by the vector
T (all the scientists are completely satisfied 100%). In-
deed, we assume in the rover application that after each
experiment the satisfaction of scientist increases. We
discuss in the following if the trajectory of the point
follows the Euclid assumption or not and describing the
appropriate decision-theoretic approach.

Decision-Theoretic approach
Preliminaries
Performance profile Each individual agent i has a
characterization of its performance that maps the sta-
tus of an input quality vector Q to a discrete probability
distribution of the duration ¢ and output quality q{ that

is the quality of dimension i in the vector after the ex-
ecution of jt* level. This performance profile allows to
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express the probability to get a vector of satisfaction
degrees of scientists given their current satisfaction de-
grees when we act at a special site.

The performance profile is denoted PP;((Q',1)|@).
This performance profile is conditional as it is described
in (Zilberstein & Russell 1993) and expresses the depen-
dency between the status of the vector and the duration
and the output quality of the processing level. The out-
put quality can depend only on a subset of dimensions of
the vector. This definition generalizes the definition of
the conditional performance profile and allows to use a
vector of dimensions to represent dependencies between
each other. We discuss in the following the difficulties
that can be raised to construct this performance and
describing an alternative.

Time-dependent utility function The utility func-
tion U (Cj, t) of the output vector quality represents the
utility of the status of the quality vector at time ¢.
This utility is multidimensional also and we represent
it by the vector (u1(q1,t),u2(g2,t),. .., Un(gn,t)) where
u;i(g;,t) is a numeric utility function of quality ¢; at
time t. The multi-dimensional utility allows us to ex-
press the utility of the satisfaction degree of a scientist
after waiting ¢ time units. We assume that when a sci-
entist waits more than 7 time units the utility of the
solution is null.

Formal framework of the MDP controller

The problem of the control consists in distributing avail-
able time T' to progressive processing agents such that
the multi-criteria decision is optimal given a probabilis-
tic performance profile of agent processing levels and a
utility time-dependency function. This problem can be
seen as an MDP automaton where the states can be
represented by the status of the vector when the time
t is consumed. The rewards associated with a state
are the utility of the state and the possible action is to
execute the next processing level of the agent.

State representation The world of state is modeled
as a stochastic automaton with a finite set of world
states S = {[Q,t]} where the the initial state is [0, 0],
the terminal states are [, T] and [I, ] that represent
respectively the state where the available time has been
fully elapsed or the state where the highest vector qual-
ity is reached, and the intermediate states that code the
status of the vector at time ¢. These states have the fol-
lowing form: [@, ]

Actions In every nonterminal state the possible ac-
tion E! is to execute the level j of the agent ¢ in order
to improve the quality of the criterion ¢ (dimension i in
the value of the result). There is quality dependency
and uncertainty on execution time ¢ (execution time
of level j of agent i) and quality ¢;.

Transitions The transition model is a function that
maps each element of S x {E}} into a discrete probabil-
ity distribution over S. In the following, the transitions



equations are described to code the transitions from an
intermediate state to another and from an intermediate
state to a terminal one.

Successful transition is when the action requires
less resources than what is available. This transition
is coded by:

if t+ct <1, Pr(@,t+ Q. 8, BT (1)
The vector Q" corresponds to the new status of the
vector of quality after the execution of the level j +
1 of the agent ¢ that leads to improve the criterion ¢
(quality stability assumption) of the vector quality Cj
Other criteria can be improved if we relax the stability

assumption. Vectors Q" and Q have the following forms:
Q:(q%7q?2/7"'7qg7"'7qu'7"'7qf1,)

o Quality stability assumption
- T
QI:(q%7qg7"'7qg7"'qZ+7"‘7q1l’c]/)

o Quality stability assumption relazed
2 j+1
QI:(q%7q?2/7"'7qg+17"'7qg+7"'7q'£€7,)
When the quality stability assumption is relaxed, vector
Q@' is the result of the modification of the qualities of
more than one quality criterion of vector (). The rest
of the discussion is not affected by the quality stability
assumption.

Failure transition is when the action requires more
resources than available. In such situations, the mech-
anism consists of aborting the action.

if t+c > T, Pr(@,T1d,1, B
Expected Value

(2)

The value of intermediate states
V(G,1]) =max;
(PP, ENOVIGt+D+
St gy, y g PRAGL AV (. TI)
(3)

The value of terminal state
V([L,#]) = U(,¢) (4)
V([@,T) =U(@,T) (5)

Theorem 1 The optimal multi-criteria decision qual-
ity is the optimal policy computed for its corresponding
MDP, given the utility function U.

Proof:
Because of the one-to-one correspondence between the
state of the MDP and the computation state of the
multi-criteria decision quality problem, the optimal so-
lution of the MDP is the optimal multi-criteria decison
quality. O

The resulting MDP is a finite-horizon MDP with no
cycles, because we move to the next level per agent, the
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transitions move “forward” with no loops. This MDP
can be easily solved for a reasonable size (relatively
large state spaces) using standard dynamic program-
ming algorithms or search algorithm AO*. However,
those techniques can be used when we can tranform the
vector of values to a single one. But in our context, this
tranformation is not always possible. Consequently, the
following issues have to be addressed.

e Multi-dimensional utility : The utility of multi-
criteria quality can be represented as a multi-
dimensional utility. The problem with such utilities
is how to decide that a multi-dimensional utility dom-
inates another since operator of comparison such as
Mazx can be applied only to a single value. In this
paper we discuss how to construct an optimal policy
using a multi-dimensional utility.

e Estimation of the performance profile : The
performance profile allows to characterize the behav-
ior of each agent. This behavior is represented by the
effect of an agent on a criterion given the status of the
vector. The construction of such a characterization
requires an important tool of sampling to estimate it.
We discuss a possibilistic approach as an alternative
to the stochastic one.

Before discussing those issues in the rest of the paper,
we discuss the policy that should be followed when we
have preferences on the criteria.

Considering preferences on criteria

We have discussed the problem of sequencing multiple
progressive processing agents for multi-criteria decision
quality, in a general case. However, in this section we
discuss a specific policy for sequencing multiple progres-
sive processing agents where criteria are ordered accord-
ing to their preference. The preference definition we use
in our context is given as follows:

DeﬁnitNion 1 Critefioni is preferred over j i = j holds
when: V([Q,t]) > V([Q',t]) such that YQ and Q', if
gi > g, then we have,

Vi, 1, Vaj,q; Pr(@,0)V((@.1) > Pr(@", V(@)

Intuitively, this definition is the Pareto-dominance of
a criterion that states that as soon as the quality of
the preferred criterion at a state s is higher than the
quality of the preferred criterion at a state s’, then s
is preferred over s’ (expected value is higher). The ex-
pected value at a state, in this definition, introduces
the probability to be in a state, Pr([(j,t]), that we show
how it is computed in our context.

Theorem 2 In situations where there is a preference
function = over criteria, the best policy is to allocate all
the time to the most preferred criterion until its satura-
tion (q=1), then the next most preferred and so on until
the available time has been fully elapsed. This strategy
is optimal.



Proof:

We assume that ¢ = g2 > g3 - ..
the preference order on criteria 1,2, ...,
policy of the theorem.

> qn corresponding to
n. Let m be the

Definition 2 We say that a policy w is optimal if, ¥V
7w and [Q, 1] Vx([Q,1]) > Vo ([Q, 1]).

Let us assume that current state is [(J,#]. We can
then compute the probability to be in state [Q’ t+ ¢l

when moving from current state [, ¢] to state [Q', t+¢!]
as follows:

Pr((Q",t+¢j]) = Pr(@",¢ + /]I[d,1,E])  (6)

Because of the equations 1 and 2, the above equation

becomes :
Pr([@ min(t+c/, 1)) = > Pr((@,c)|@) (7)
V(@' el

Let us assume, for contradiction, that from state
[Q, t] we use another policy 7’ rather than policy 7 of
the theorem such as 7 # 7.

We execute agent j by using policy «’. Action o
is the action indicated by policy 7’ at current state
(7'([@,1])). The value with this transition is:

Z PPa’((@,)6)|Q)
V(g;,0)

(8)
The transition with policy 7 is that we execute agent
1 where action a is the one indicated by policy 7 at

current state (7([Q,1])):

> PP Q6

(QI7 )

(10,1 = )@V ([Q", min(t+5,T)])

(9)
Because criterion i is preferred to j and that in equation
(9) the quality of this criterion is improved (g} > ¢;) and
that in equation (8) criterion 7 is not modified, we have:
q; > qi'. Moreover because of the definition 2 we can
say that:
Pr([Q",min(t + §,T))) Ve ([Q", min(t +§,T)]) <
Pr([@Q",min(t + 6, 7)) Vx([Q', min(t + 4, T)])
(10)
Because of the equation 7 we have:
g Pri@,0)|Q) Ve ((Q", min(t +6,T)]) <
St PrU@8)@)Va (@ min(t +6,T)))
(11)

Because of equations 8, 9 and 11 we can say that:

Ve (10, 1]) < V(@ 1))

The maximization of the equation (3) has not been re-
spected. Contradiction. O

(12)

V7r’ ([@I) mln(t—'_(s) T)])
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Approximating multi-dimensional
time-dependent utility

In this section we introduce a numeric utility computed
as an Euclidean distance between the current quality
vector and the vector T when the vectorial space is Eu-
clidean. In the other case, we assign to states a quali-
tative utility degree. This qualitative degree is defined
from the utilities of the criterion qualities. In the fol-
lowing, we describe pessimistic and optimistic qualita-
tive utility functions, preference-based qualitative util-
ity function and a possibilistic approach.

Euclidean distance measure

One way to define this utility is to take the Euclidean
distance between vector  and vector T representing
the maximal quality of the solution and the cost of the
time t. Vector 1 is n-tuplet (1,1,...,1) while vector 0 is
n-tuplet (0,0,...,0)

U(G,t) = —distance((Q, 1) — Cost(t)  (13)

The function cost is the cost incurred in the system
when consuming ¢ time units. Moreover, the distance
function that define the euclidian measure is defined as
follows:

distance(Q, 1) = Z (1—q;)?

i

(14)

The distance between vector Q and vector 1 is used
to measure the rewarded value of the state by having
a higher value when vector Q is close to vector 1. In
addition to the mathematicl convenience of the distance
measure, the policy Tgistance using this measure, allows
us to prefer a vector over another when it is close to
vector T representing the highest quality (qualities has
been normalised).

Pessimistic vs Optimistic qualitative utility

We adapt the framework of the MDP defined previously
to design a pessimistic qualitative MDP (Pes-QM DP)
and an optimistic qualitative MDP (Opt-QM DP) us-
ing qualitative utility definitions. We define pessimistic
and optimistic qualitative utility as follows :

Definition 3 A pessimistic utility associated to a state
[@Q,t] can be defined by :

(@, 1) = min(U(Q, )-ui(ai, 1)) (15)

Definition 4 An optimistic utility associated to a state
[@Q,t] can be defined by :

uO(@,1) = max(U(Q,t)-ui(gi, 1)) (16)

The pessimistic or optimistic utility replaces the nu-
meric utility definition of equation 1 by :

R(U(G,1) = u"**(G,1) (17)



RU(Q,t)) = u®"(@,1) (18)
Equations 4 and 5 are modified accordingly as follows

- =

V(1,t) =ul(1,1) (19)
V(1,t) = uOP(1,1) (20)
V(@,T) =u"*(@,T) (21)
V(@,T) = u"(@,T) (22)

Equation 3 with " means maximizing the utility

of the less satisfied scientist. However, equation 3 with
u9P! means maximizing the utility of the most satisfied
scientist. This expression is less intuitive and the opti-
mality with this measure u°?! is not obvious. However,
with measure u”** allows an optimal policy as we claim
in the following.

Claim 1 The optimal multi-criteria decision quality is
the optimal policy computed for its corresponding Pes-
MDP using ut®*.

Proof:

The conditions of Theorem 1 remain valid, we can say
that with pessimistic qualitative utility the policy ob-
tained is optimal.O]

Preference-based qualitative utility

In the pessimistic vs optimistic qualitative utility, we
represent the multi-dimensional utility by a mono-
dimensional utility and then we use a single measure
as usually to compute the expected values of states.
In many applications as multi-objectives applications
a mono-dimensional utility is inappropriate. However,
a preference on multi-dimensional utility exists. We
discuss how we can use this preference to compute ex-
pected value of states (Tan & Pearl 1994) and the opti-
mal policy for a preference-based qualitative MDP (P-
QMDP).

T_pe preference p on multi-dimensional utility
U(Q) t) = (ul(qla t)) UZ(QZ) t): v 7un(qn7 t)) can be de-
fined by :

w:Dy X Dy x...x D, — scale

where D; C R is the definition domain of the util-
ity ui(g;,t) and scale = {1, 2, ...h}. This prefer-
ence ranking p allows to assign a preference rank that
corresponds to an order-of-magnitude approximation of
the utility associated with space Dy X Dy X ... X D,.
The intended meaning of a ranking is that regions
R; C Dy x Dy x ... x D,, are ordered such that
Ry > Ry > ... = Rp . This ranking allows to define
a qualitative utility, representing a level of satisfactory,
by :

Definition 5 p(U(Q,t)) < w(U(Q",t)) iff the fol-
lowing condition holds : U(Cj,t) € R;, U(Q”,t) €
Rj and R; = Rj
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Example 1 Let’s assume that we have two scientists.
Dic1o = [0,1] and we can have the following regions :
Ry =[0.95,1] x[0.95,1], R2 =10,0.95(x[0.95,1], R3 =
[0.95,1] x [0,0.95(, such that Ry > Ry > Rs.

We prefer that the first and second scientist be satis-
fied at least with a degree 0.95 rather than only one of
them is satisfied at least with a degree 0.95 and we pre-
fer that scientist two be preferred to the scientist one.
Consequently : w(Ry) =1, w(R2) =2 and u(R3) =3

Definition 6 A qualitative utility QU(Q, t) is defined
by R(w(U(Q,t))) Where R is defined as a reward func-
tion assigned to each scale such that R(uy) > R(us)
when p1 < wo.

The vector Cj moves throughout regions from the less
preferred to the most one (progressive processing as-
sumption). Some adaptations of this framework are
needed where regions are not naturally ordered.

In the same way, we use qualitative utility QU in-
stead of the numeric utility of equation 1 and we modify
equations 4 and 5 accordingly such that :

V(iv t) = QU(iv t) (23)

V(Q,T) =QU(Q,T) (24)

The expected value of terminal state we manipulate

in this framework is multi-dimensional. The expression

of equation 3 remains valid but since we manipulate a

vector instead of a single numerical value the operator
max is replaced by Vmax defined such that :

Definition 7 . . .
Vmax(V(Q,t),V(Q',1)) = max(QU(Q, 1), QU(Q', 1))

Equation 3 for multi-dimensional expected value is
then defined as :

V((G,1]) = Vmax;

(PP(Q, IOV t+ D+

Syertt tiyar v g PR, IV (G, T1)
(25)

Claim 2 The optimal multi-criteria decision quality is
the optimal policy computed for its corresponding MDP
using multi-dimensional expected value and a qualitative
wtility definition.

Proof:

Conditions of Theorem 1 remains also valid in this
framework, then the policy obtained with this quali-
tative utility is optimal. O

Possibilistic approach (II-MDP)

We discuss in this section the most general situation.
The framework is when the probabilities are not avail-
able or hard to construct. Indeed, we use PP, with
multi-dimensional input and a multi-dimensional out-
put that can be hard to construct. In this framework,
we propose a possibilistic MDP (II-MDP) as introduced



in (Sabbadin 2000). Instead of assuming available prob-
abilities, we assume that we have for the uncertainty of
the output vector when acting a possibility distribution
7 measuring to what extent an output vector Q" and a
computation time ¢ are plausible when an agent ¢ acts
in the state @ of the vector: m;((Q',¢)|@). In the same
way, the consequences are ordered in terms of levels of
satisfaction as introduced in the previous section by a
qualitative utility function pu.

(Sabbadin 2000) proposed two equations for qualita-
tive decision to obtain optimal strategies that we adapt
to our former notation as follows :

Vopt[@, 1] = max max min{m;((Q",¢)|Q), Vope[Q', t+c]}

Eov(@e)

(26)

VpeS[Q: t] = max min max{ﬂ'i((g’,cﬂ@),Vpes[é’,t—l-c]}
L V(QI’C)

(27)

Vopt measures to what extent there exists a satisfactory
plausible consequence, while V}.; measures to what ex-
tent every plausible consequence is satisfactory. More
details on this approach are given in (Sabbadin 2000).

Our claim in this section is just to show that when
utility and probabilities in an MDP are hard to con-
struct II-MDP is an interesting alternative.

Concluding remarks

We present a new approach to construct an optimal
multi-criteria decision quality by sequencing processing
levels of multiple progressive processing agents. The op-
timal multi-criteria decision quality problem has been
reformulated by an MDP, a vector of dimensions (the
quality criterion) and we then show the construction of
an optimal policy. We also show that when considering
the criteria preferences the optimal policy consists of se-
quencing the processing levels in respect to the sequence
of agents that is defined by the order of criteria prefer-
ence. We also present how to address mutli-dimensional
utility and value functions and how to estimate the per-
formance profile. We show an adaptation of possibilistic
MDP to our former and the optimal policy.

In the same way this approach advances the state of
the art of the problem of controlling resource-bounded
agents using dynamic programming (Mouaddib & Zil-
berstein 1998) since we introduce dependency between
agents.

Future work will concern the application of this ap-
proach to handle multiple resources of the rover such as
storage capacity and power.
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Abstract

Planning for quality is currently receiving increasing
attention by the researchers in this field. In the past,
few researchers focused on finding good plans accord-
ing to some criteria, mostly number of steps in the so-
lution. The single criteria planning optimization task
is very hard given that planning for satisfacing is not
solved yet, though there are already some very impres-
sive quantitative results that are very promising. When
dealing with multiple criteria for planning optimiza-
tion, the task gets harder. Our approach to solving
this task has always been learning control knowledge
for efficiently obtaining “good” plans. However, we
have always focused on single criteria for optimization
(number of steps, price, time, ...). In this paper, we
present a solution for learning control knowledge for
planning with multiple criteria. The solution consists
on learning separate control knowledge for each crite-
ria, and then merging the resulting control knowledge
(rules). We present preliminary results that show that
this approach yields better results than learning for the
multiple criteria at once.

Introduction

Planning to generate a solution/plan has been largely
studied in the literature. On the other hand, the search
for optimal or good plans had been discarded in the
past due to its complexity. Usually, plan quality was
measured in terms of solution length (or, alternatively,
makespan). Lately, a growing number of researchers
have focused in trying to efficiently generate good solu-
tions according to one criteria (Nareyek 2001). A com-
mon problem to all approaches has been the complexity
of the task. One approach to decrease this complex-
ity relies on learning control knowledge to gain both in
efficiency (number of solved problems, time spent on
finding a solution) and quality (finding good solutions
according to a specific criteria) (Estlin & Mooney 1996;
Iwamoto 1994; Pérez & Carbonell 1994; Ruby & Kibler
1992).

HAMLET is one such systems that learns control
knowledge to guide efficiently PRODIGY4.0 (Veloso et
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al. 1995), a nonlinear planner, to good solutions (Bor-
rajo & Veloso 1997; Borrajo, Vegas, & Veloso 2001).
The learned control knowledge is represented as a set
of control rules. We showed how it was possible to im-
prove both efficiency and quality of plans. However,
plan quality was measured in terms of only one crite-
ria: solution length, price, time to execute the plan,
etc. This is not enough in many real-world problems
in which people is interested on obtaining a reduction
in terms of several criteria such as cost, time, resources
usage, etc. Also, in many cases, there might be several
different criteria to be used in different situations, so
planners should allow the user to select at any given
moment a criteria, and learning systems should learn
different control knowledge depending on those crite-
ria.

In this paper, we present the use of HAMLET for the
task of learning control knowledge to guide the plan-
ner to better solutions according to several user-defined
metrics. We are using PRODIGY4.0 as the planner, since
it allows the user to declare how to compute different
criteria explicitly for each operator. The declarative
representation of quality metrics allows reasoning with
those metrics while planning using a branch-and-bound
technique.

In order to learn control knowledge for several crite-
ria, we thought of two approaches:

e learning control knowledge separately for each crite-
ria, and then merging the resulting sets of control
rules; or

e learning control knowledge for a combination of the
criteria through the definition of a function of the
individual criteria.

Here, we present results that compare both ap-
proaches and draws some preliminary conclusions from
the experiments.

Section presents the base planner, PRODIGY4.0 with
the extension to PRODIGY that allows the user to define
quality criteria. It also describes how HAMLET learns
control knowledge. Section shows the results of the
experiments we performed, and Section draws some
conclusions. Finally, Section relate our work to others.



Planning and learning systems

This section describes the planner we have used in this
article (PRODICY4.0) and the learning system used.

PRODIGY4.0

In this work, we have used a state space planner called
PRODIGY4.0 (Veloso et al. 1995). PRODIGY4.0 is a
nonlinear planning system that follows a means-ends
analysis. The inputs to the problem solver algorithm
are:

e Domain theory, D (or, for short, domain), that in-
cludes the set of operators specifying the task knowl-
edge, the object hierarchy, and a set of quality crite-
ria;

e Problem, specified in terms of an initial configuration
of the world (initial state, S) and a set of goals to be
achieved (G); and

e Control knowledge, C, described as a set of control
rules, that guides the decision-making process.

PRODIGY4.0’s planning /reasoning cycle, involves sev-
eral decision points:

e select a goal from the set of pending goals and sub-
goals;

e choose an operator to achieve a particular goal;

e choose the bindings to instantiate the chosen opera-
tor;

e apply an instantiated operator whose preconditions
are satisfied or con-tinue subgoaling on another un-
solved goal.

We refer the reader to (Veloso et al. 1995) for more
details about PRODIGY4.0. In this paper it is enough
to see the planner as a program with several decision
points that can be guided by control knowledge (CK).
If no CK is given, PRODIGY4.0 might make the wrong
decisions at some points, requiring backtracking and re-
ducing planning efficiency. Figure 1 shows an example
of CK represented as a rule to determine when the op-
erator unload-airplane must be selected. CK can be
handed down by a programmer or learned automati-
cally.

(control-rule select-operator-unload-airplane
(if (and (current-goal (at <object> <airport>))
(true-in-state (inside <object> <airplane>))
(type-of-object <airplane> AIRPLANE)
(type-of-object <airport> AIRPORT)))
(then select operator unload-airplane))

Figure 1: Example of a control rule for selecting the
unload-airplane operator.

QPRODIGY is an extension to PRODICY in which
knowledge about plan quality is encoded in the domain
definition, i.e., in the set of operators (Borrajo, Vegas,
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& Veloso 2001). The user can define more than one
quality function for each operator, as well as the met-
ric used to measure the plan quality when solving the
problems. When solving a problem using a given met-
ric, the search for the first solution is common to that of
PRODIGY. From that moment, QPRODIGY searches for
better solutions by pruning all search paths that would
lead to worse (more costly) solutions according to the
metric (branch-and-bound approach).

In order to reason about quality, the domain defi-
nition is extended and operators are now defined by
its preconditions, effects and cost functions. Each cost
function may use numbers, domain variables, or, in gen-
eral, any user-defined function for its computation. The
only restriction for them is that they must return a nu-
meric value: the cost of that particular metric. Every
time an instantiated operator is applied, the cost of such
operator is added to the cost of the applied operators
belonging to the current search path. As an example,
Figure 2 shows the representation of an operator in the
Zenotravel domain used for the planning competition at
ATPS’02. This operator allows an airplane to fly fast,
taking less time than usual, but also consuming more
fuel than usual.

(OPERATOR ZOOM (params <a> <c1> <c2>)
(preconds
((<a> AIRCRAFT)
(<c1> CITY)
(<c2> (and CITY (diff <c1> <c2>)))
(<d> (and DISTANCE
(gen-from-pred (distance <c1> <c2> <d>))))
(<b> (and BURN (gen-from-pred (fast-burn <a> <b>))))
(<cf> (and CONSUMED-FUEL (consumed-fuel <d> <b>)))
(<ca> (and CONSUMED-FUEL
(gen-from-pred (capacity <a> <ca>))))
(<f> (and CONSUMED-FUEL
(gen-from-pred (fuel <a> <f>))
(more-fuel-than-consumed <f> <cf> <ca>)))
(<£f1> (and CONSUMED-FUEL (new-fuel <f> <cf>))))
(and (at <a> <c1>)
(fuel <a> <£>)))
(effects
((del (at <a> <c1>))
(add (at <a> <c2>))
(del (fuel <a> <f>))
(add (fuel <a> <f1>))))
(costs ((<speed>
(and SPEED
(cost-from-pred (fast-speed <a> <speed>))))
(<time>
(and DURATION
(new-duration <d> <speed>))))
((TIME <time>)
(FUEL <cf>)
(TIME-FUEL (+ <time> <cf>)))))

Figure 2: Example of an operator in the Zenotravel
domain for flying an airplane fast.



In order to use the cost functions, QPRODIGY has two
new arguments with respect to PRODIGY4.0: the cost-
function to plan for (by default, plan length), and the
upper bound for the cost of any solution (by default,
the cost of the first solution found, so the first solution
produced by QPRODIGY will be the same as the one
generated by PRODIGY). A standard branch-and-bound
technique is then performed.

HAMLET

HAMLET is an incremental learning method based on
EBL (Explanation Based Learning) and inductive refine-
ment (Borrajo & Veloso 1997). The inputs to HAMLET
are a task domain (D), a set of training problems (P), a
quality measure (@) and other learning-related param-
eters. A quality metric measures the quality of a plan
in terms of number of operators in the plan, execution
time, economic cost of the planning operators in the
plan or any other user defined criteria. The output is a
set of control rules (C). HAMLET has two main modules:
the Bounded Explanation module, and the Refinement
module. Figure 3 shows HAMLET modules and their
connection to PRODIGY4.0.

HAMLET

Quality

Q  Measure
™[ Bounded Explanation C
Learning = module
L mode | /

—— -
o Optimality ————————| Ref 'ﬂszem
module

parameter ST Learned

Traini STe c Control C
p  lraning Knowledge

Problems ™ ("propIGY

/

D Domain

Figure 3: HAMLET’s high level architecture.

The Bounded Explanation module generates control
rules from a PRODICY4.0 search tree. The details can
be found in (Borrajo & Veloso 1997). The rules might
be overly specific or overly general. HAMLET’s Refine-
ment module solves the problem of being overly specific
by generalizing rules when analyzing positive examples.
It also replaces overly general rules with more specific
ones when it finds situations in which the learned rules
lead to wrong decisions. HAMLET gradually learns and
refines control rules, in an attempt to converge to a
concise set of correct control rules (i.e., rules that are
individually neither overly general, nor overly specific).
ST and ST¢ are planning search trees generated by two
calls to PRODIGY4.0 planning algorithm with or with-
out control rules, respectively. C is the set of control
rules, and C’ is the new set of control rules learned by
the Bounded Explanation module.

Experiments and Results
The goal of the experiment has been to compare the two
approaches for generating control knowledge for mul-
tiple criteria planning. We will use the quality-based
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planner, QPRODIGY, together with the learning system
that we have discussed in the previous section, HAM-
LET. We chose the Zenotravel domain given that it has
been used in the AIPS’02 planning competition. The
Zenotravel domain is a version of the logistics domain
in which several people have to travel from some ini-
tial cities to other ones. They can only use airplanes to
move. Airplanes can fly using two different operators:
fly (slow move, less fuel consumed); and zoom (fast
move, more fuel consumed). When airplanes do not
have more fuel they can refuel. The standard version
of this domain provides three different quality criteria
to be minimised: time, fuel, and time-fuel (addition of
time and fuel criteria). The overall quality of a plan
is computed as the sum of the costs of the individual
operators in the plan.

We trained HAMLET with 200 problems of one goal to
up to four persons to travel for each criteria. Separat-
edly, it generated 42 control rules for the time measure,
40 control rules using the fuel measure, and 48 control
rules for the time-fuel measure. Then, we tested all con-
figurations using 80 randomly generated test problems
of 5, 10, 15 and 20 goals, a random number of persons
to travel of upto 10, 15, 20, and 25. The results of the
experiments are shown in Table 1. Values in the ta-
ble have been accumulated for all the testing problems.
The configurations named PRODIGY- cost-function were
obtained by running QPRODIGY without control knowl-
edge, using as a quality measure cost-function. Our ex-
periments were performed in a 1’5 Ghz machine, with
0,5 Gb of RAM. We set a time bound of 10 seconds.

Table 1 shows the number of solved problems of each
configuration in the Zenotravel domain, the total time,
the length of the solution, and the quality of the solu-
tion according to each criteria. Given that all problems
were solved by all configurations, we randomly gener-
ated 20 more difficult problems using 20 test problems
of 50 goals, a random number of persons to travel upto
50. The results of the experiments are also shown in
Table 1 in the rows starting with 20, only for the multi-
ple criteria configurations (time-fuel). In order to com-
pare configurations, it is enough to see the left hand
side and the right hand side of the table. In order for
the comparison to be fair, only the problems that have
been solved by both systems are used to compute the
accumulated time and quality values.

As an example of the control rules generated by
HAMLET when learning for improving the cost-function
time, Figure 4 shows a control rule that selects the op-
erator zoom.! This control rule forces PRODIGY to use
the operator that allows an airplane (<aircraft-235227-
2>) to move fast from a city (<city-235227-4>) to an-
other destination city (<city-235227-3>). This opera-
tor should be preferred to the other one for moving an
airplane (fly) when the quality criteria is time. The

!Some irrelevant conditions in the if-part of the control
rule have been removed for clarity, such as the type con-
straint of each variable.



Table 1: Results for several configurations in the AIPS’02 Zenotravel domain.

Number of Solved Time Solution Solution Solved Time Solution Solution
problems | problems length quality | problems length quality

PRODIGY-TIME

HAMLET-TIME

80 80 4.0 1921 1,556,381 80 26.0 1856 1,241,064
20 20 1.0 370 71,740 9 20.0 372 68,519

PRODIGY-FUEL

HAMLET-FUEL

80 80 4.0 1921 215,895 80 12.0 1766 197,240
20 20 19.0 1875 158,006 20 64.0 1702 134,650

PRODIGY-TIME-FUEL

HAMLET-TIME-FUEL

80 80 4.0 1921 1,772,276 80 26.0 1821 1,554,373
20 20 3.0 592 211,642 11 38.0 534 183,505

PRODIGY-TIME-FUEL

HAMLET-MERGING-TIME-FUEL

80 80 4.0 1921 1,772,276 80 17.0 1766 1,398,419
20 20 10.0 1220 420,719 16 50.0 1105 349,154

HAMLET-TIME-FUEL

HAMLET-MERGING-TIME-FUEL

20 11 38.0 534 183,505 16 14.0 527 177,636

contrary is true when the other quality measure is se-
lected, fuel.

(control-rule REDEDUCED-SELECT-Z00M-TEMP-PROBLEMS-0-68-ENEIL-235227
(if (current-goal (at <aircraft-235227-2> <city-235227-3>))
(true-in-state (fuel <aircraft-235227-2> <infinite-235227-5>))
(true-in-state (at <aircraft-235227-2> <city-235227-4>))
(true-in-state (at <aircraft-235227-1> <city-235227-3>))
(some-candidate-goals nil))
(then select operators zoom))

Figure 4: Example of a control rule for selecting the
zoom operator.

This control rule can be improved in two different
ways: removing unnecessary conditions (the initial po-
sition of another airplane is not needed, <aircraft-
235227-1>); and imposing another constraint on the
fuel that the airplane has, so that it has enough for
moving the airplane fast. The first possible improve-
ment on the control rule can be obtained from either
running new learning problems, allowing HAMLET to re-
fine this rule, or using another learning system, such as
EvoCK (Aler, Borrajo, & Isasi 1998) to get rid of those
unnecessary conditions. However, the second improve-
ment, imposing numerical constraints on variables, is
much harder to obtain, since we would have to signifi-
cantly modify the code for checking equality and sub-
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sumption of control rules when specializing or general-
izing them.

Discussion and Conclusions

The most important result is that even though HAM-
LET is not prepared to handle numerical informa-
tion, it is able to learn control rules that outperform
PRODIGY4.0in terms of quality: plan length in all cases
except for one (with a difference of only two opera-
tors in the plan) and fuel, time, and time-fuel in the
respective configurations. On the other hand, it takes
longer than PRODIGY4.0 to solve the problems with the
learned knowledge (see the ’time’ column?). This is
reasonable because it takes time to evaluate the control
rules, and also, it takes longer to solve a problem when
quality is important than when it is not (it is well known
that finding optimal solutions is a very hard problems,
even in simple domains like the blocksworld). This is
also probably the reason that some of the most difficult
problems (the 20 problem set) are not always solved
in the allocated time (this is so in the HAMLET-time,
HAMLET-time-fuel, and HAMLET-merging).

There is another interesting result. Learning to solve
each quality measure separately and then merging the
control rules obtains better results than learning to

2The time to solve a problem should not be confused
with the ’time’ quality measure.



solve the combined time-fuel quality measure (1398 vs.
1554, smaller is better). We do not yet know why this
is so, and how it depends on the function that combines
the two quality measures (currently, the time-fuel mea-
sure is time+fuel). We will study this matter in the
future.

Finally, it seems to be easier to decrease time than
fuel because with the same computational effort, time
is decreased 20.25% (315317 time units) and fuel is de-
creased only 8.64% (18655 fuel units). Decreasing time-
fuel is between: 12.29%.

Related Work

There has been relatively very little work in the field of
learning for obtaining good quality solutions as an ex-
plicit goal of the learning system. Moreover, very few
have concentrated on the interaction between a human
and a machine learning system for acquiring control
knowledge for quality. However, there is an increasing
interest now through the use of resources and time by
the planners (Hasslum & Geffner 2001; Nareyek 2001;
Ghallab & Laruelle 1994). Also, there is a strong rela-
tion to the whole field of scheduling, given that sched-
ulers handle time and resources (Smith, Frank, & Jon-
sson 2000).

An earlier system, QUALITY system (Pérez & Car-
bonell 1994) also used the PRODIGY4.0 planner. While
QPRODIGY defines a cost function for each operator,
QUALITY needs as input an evaluation function of a
whole plan. With respect to learning,

QUALITY compares the search trees produced by two
different solutions to the same problem (one possibly
generated by a human)? in order to learn control knowl-
edge to prefer one solution to another. The problem
with using preference control knowledge instead of us-
ing selection control knowledge (as is the case of HAM-
LET) is that when the planner has to backtrack, the
alternatives are still there, and search can be much less
efficient. An advantage of QUALITY is that it is able
to transform the knowledge described in the evaluation
functions into operative knowledge in terms of control
knowledge. Another difference is that QUALITY does
not refine the rules once they have been learned.

Other approaches define plan quality in terms of qual-
ity goals (Iwamoto 1994), carry out a rewriting process
for optimizing the plan (Ambite & Knoblock 1998), or
perform quality-based planning, without using learning
as in PYRRHUS (Williamson & Hanks 1996). Within
learning systems, others do not have the specific goal
of improving solution quality; they obtain good solu-
tions when they learn search control knowledge as a
side effect. An example of such work are the first ver-
sions of the SCOPE system (Estlin & Mooney 1996), that
uses a variation of FOIL (Quinlan 1990) to learn control
knowledge for ucPOP (Penberthy & Weld 1992). They
bounded the set of conditions to add to a control rule

3Therefore, it is difficult to compare its performance
against HAMLET.
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by using the information from the search trees. A newer
version of this system was also able to obtain good so-
lutions by learning, but they used only the “solution
length” as their quality metric (Estlin & Mooney 1997).

Others employ a different strategy for learning, such
as STEPPINGSTONE (Ruby & Kibler 1992), that learns
cases for achieving good solutions, or reinforcement
learning systems that acquire numerical information
about the expected values of applying actions to states
(Watkins & Dayan 1992). Reinforcement handles plan-
ning in a different way, since usually there is no ex-
plicit/declarative representation of operators. Learning
relates to modifying numerical quantities associated to
expected values of applying actions to states.

There has also been some work on plan-
ning using predefined notions of quality, such as
PYRRHUS (Williamson & Hanks 1996), where optimal
solutions were found by a version of the branch-
and-bound technique, but there was no learning
involved.

The work reported in (Ambite & Knoblock 1998) de-
scribes the planning by rewriting approach that allows
to optimize solutions after a basic planning process has
ended. In this case, instead of learning control knowl-
edge, they allow the user to specify a set of rewriting
rules for optimizing a generated plan. But, there is no
learning, so it would be equivalent to allowing the user
to define his/her own control rules.
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Abstract

The paper makes a survey of the principal difficulties the mul-
tiple criteria decision making introduces with a particular em-
phasis on scheduling problems. Two types of difficulties are
considered. The first is of conceptual nature and has to do
with the difficulty of defining the concept of optimality in
presence of multiple criteria and the impossibility to define
universal preference aggregation procedures. The second dif-
ficulty is of more technical nature and concerns the increasing
computational complexity of multiple criteria decision mak-
ing problems. A number of examples are introduced in order
to explain these issues.

Introduction

In this paper, decision making is referred to an agent (artifi-
cial or human) who has to act within a given context, with a
given amount of resources and time in order to pursue one

or more goals. The decision process is expected to be char-

acterised by a form of rationality (possibly bounded) and to

tsoukias@lamsade.dauphine.fr

moraitis@ucy.ac.cy

multiple criteria. Further on, some other conceptual difficul-
ties arise. Is it possible to substitute optimality with another
concept? Are there universal procedures solving multiple
criteria decision making problems? We explore these issues
in section 2. The second difficulty is more technical and
has to do with complexity. We confine ourselves in schedul-
ing problems in order to show that the presence of multiple
criteria normally implies the increase of computational com-
plexity of the problem also in apparently “easy” problems.
We discuss this problem in section 3.

The paper is based on results which are well known in lit-
erature. The aim of the paper is to put together such results
for a community such as the A.l. planning and scheduling
one. Further on, we want to show the importance of an au-
tonomous theory concerning decision making and support
in presence of multiple criteria and the difficulties such an
effort has to face.

The vanishing optimum

be represented in a formal way (the agent has preferencesCan the concept of optimum vanish ($eclg 1996)? Tra-

expressed either under a value function or more simply as
a binary relation on the set of consequences of his/her ac-
tions). This is the frame of operational research and/or deci-
sion theory, possibly under Simon’s (Simon 1979) bounded
rationality variant.

In real life, making decisions under multiple criteria is the

standard situation: there are always different consequences

to consider, there always more objectives and goals to sat-
isfy, there are always more opinions to take in account. Un-
der this point of view the presence of multiple criteria it
should be considered the general case, while single criterion
optimisation should be considered as a special case. This
is not what happened in the history of OR, where the first
contributions on the use of multiple criteria appeared in the
late 60s, early 70s (Roy 1968; Geoffrion 1968; Zeleny 1974;
Keeney & Raiffa 1976).

The difficulty to make decisions under multiple criteria
is twofold. The principal difficulty is conceptual. OR and
decision theory are based on the idea of a rational decision
process represented by a single objective function to opti-
mise. Such an idea simply does not apply in the presence of
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ditionally when we think about decision theory we think
about optimisation: find the one best solution. From a strict
mathematical point of view this is straightforward. Express
your problem as a functio” of your decision variables
1, -, x, and then find the minimum (or maximum) of the
function. This is well defined since

min(F(zy -, x,))&F (v1-,2,) =0

where F” is the “derivate” of functionF’. But then, as
soon as we consider more than one criteria (more objective
functions) we have a set of functiofs,: = 1---,m and we
should look for a solutionX such thatvi F/(X) = 0 and
this is a problem sincei F/(X) = 0 can be an inconsistent
sentence.

Example 0.1 Consider two objective functiofy, F3, both
to minimise, such thatnin(F;) = A = max(F3) and
min(Fy) B max(Fy). Clearly the sentence
Vi F!(X) = 0is inconsistent.

There is no way to guarantee that in presence of multiple
criteria there exist feasible solutions such that all objective
functions can be simultaneously optimised. What we learn
from that?



Difficulty 0.1 Unlike traditional optimisation, the presence
of multiple criteria does not allow to establish an “objec-
tive” definition of "optimal solution”.

In other terms when we work using multiple criteria there
is no mathematical definition of the solution. We have to
introduce alternative concepts, less easy to define and more-

over subjectively established. What are we allowed to estab- ®

lish in the frame of multiple criteria?

There is a set of feasible solutions which are the “natural”
candidates for solving a multiple criteria decision making
problem. These are the so-called Pareto solutions (or effi-
cient solutions or non dominated solutions). We introduce
the following notation:

VX,Y D(X,Y)&Vi F(X) < Fi(Y)A3k Fo(X) < Fi(Y)

We read:solution X dominates solutiol’, iff for all cri-
teria X is at least as good a¥ and there is at least one
criterion whereX is strictly better thart’. It is clear that all
feasible solutions which aneot dominated are potentially
solutions of our problem (a dominated solution is obviously
not interesting). The problem is that the set of Pareto solu-
tions can be extremely large (sometimes equal to the set of
feasible solutions).

Example 0.2 Consider three candidated, B, C' such that
for criterion: 1 A > B > C, for criterion2: B > C > A
and for criterion 3:C > A > B (> representing a prefer-
ence). All three candidates are non dominated.

What can we do? Roughly there are two ways to face the
problem:
1. fix a functionF(Fy, - - -, Fy,) and then try to optimisé~
(that is re-conduct the problem to a single criterion optimi-
sation problem);
2. explore the feasible or the efficient set using a majority
rule as this is conceivable in various voting procedures (that
is, choose the Pareto solution preferred by the “majority” of
criteria).

One single function

of functions should be preferentially independent with re-
spect to its complement (see (Keeney & Raiffa 1976) for
a detailed presentation of this approach). Last, but not
least, it is possible that the effort to adapt the information
to these conditions results in a model which has nothing
to do with the original problem.

Fulfilling the conditions can be possible in principle, but
impossible in practice. In the sense that the cost of obtain-
ing the extra information (such as the trade-offs among
the criteria, the trial-error protocol used in order to cali-
brate the global function etc.) can be simply to large with
respect to the problem or even unattainable (see (Hobbs
1986; Svenson 1996; Mongin 2000) for a discussion on
this issue, including the cognitive effort required for such
an approach).

In any case, even if such a function can be defined, fur-
ther information is required in order to establish it. Such
information concerns two non exclusive issues:

- further preferential information (trade offs among crite-

ria, ideal points in the criteria space etc.);

- shape of the global function (additive, distance, non lin-
ear etc.).

In human decision support usually is the client (or de-
cision maker) who provides such information through a
protocol of information exchange with the analyst. How-
ever, there is always some arbitrariness in this process
since this information depends also on technical choices
(for instance trade offs are necessary in an additive func-
tion, but not in the frame of scalarising constants; the
reader can see (Steuer 1986; Vanderpooten 1989; Korho-
nen, Moskowitz, & Wallenius 1992) for more details).

The problem is more difficult in the case of “automatic”
decision support as with artificial agents. Either such an
agent has to carry enough preferential information or it
has to be able to support a dialog with a human providing
such information. Moreover the agent should be aware
of the technical knowledge necessary to define the global
function. Itis always possible to fix the global function (at
least the shape) from the beginning, but then we impose a
severe limitation to the agent’s autonomy.

The basic idea is simple. Put together the different functions Let the criteria vote
in such a way that we obtain one single value for each fea- another option is to make the criteria vote as if they were

sible solution. After all this is exactly what happens in all

parties in a parliament. The idea is simple. Given any two

schools, university degrees, multi-dimensional indices, cost feasible solutions¥ andY, X is better tharl if it is the
ben?ﬂt' analysis and hundred other examples of “more or case for the majority of criteria. Hundreds of parliaments,
less” simple aggregation functions where values expressed committees, boards, assemblies, use this principle of democ-

on different attributes are merged in one single value.
The interested reader can look in (Bouyssb@al. 2000)

The interested reader can again refer to (Bouystal.

for a nice presentation of all the drawbacks and unexpected 2000) for a critical presentation of the drawbacks and coun-

consequences of such an approach. We try to summarise.

terintuitive results such an approach presents. Again we

e Such a global function does not always exist. To say itin Summarise.
other terms, the conditions under which such a function e There is no universal voting procedure. Since the 18th

exist are not always possible to fulfill. First of all evalua-
tion on the different objective functions have to commen-
surable. Provided it is the case, then it should be possible
to compensate the values of one function with the values
of another function. If this is possible then each subset
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century we know that voting procedures are either manip-
ulable (to some extend a minority can impose its will) or

potentially ineffective (unable to find a solution) as can

be seen in the following example (borrowed from (French
1988)).



Example 0.3 Consider four candidates (A,B,C,D) and methodological knowledge is available up today. In the

seven examiners (a,b,c,d,ef,g). Each examiner gives a case of automatic decision making things become much

preference in decreasing order (1 is the best, 2 is the sec-  more difficult since an artificial agent should be able to

ond best etc.). The following table is provided. understand the difference among several voting schemes
and procedures.

a b c d e f g What did we learn from the above discussion?
A1 2 4 1 2 4 1 - : , .
B 2 3 1 2 3 1 2 Difficulty 0.2 There is no way to e_s;abhsh an universal
C 31 3 3 1 2 3 procedure for a multiple criteria decision making problem.
D 4 4 2 4 4 3 4 Either further information has to be gathered or “extra-
problem” procedures have to be adopted. Either the quality
If we sum the ranks of each candidate we obtaid) = of the outcome can be poor (but we are sure to have an out-
15, 0(B) = 14, o(C) = 16, o(D) = 25 and clearly B come) or we require a nice outcome knowing that it might

is the winner. Suppose now that for some reason the can- be impossible to obtain it.
didate D could not participate to the selection. Being the
worst one should expect that nothing changes. Unfortu-
nately it is not the case. Recomputing the sum of the ranks
we obtaino’(A) = 13, ¢/(B) = 14, ¢’(c¢) = 15 and now

A is the winner. This is tricky. On the other hand if we
look on pure majorities we get that > B (five examin-

ers prefer Ato B)B > C (five examiners prefer B to C)
andC > A (four examiners prefer C to A). There is no
solution.

The fact that we have such “negative” results should not
induce the reader to consider that multiple criteria decision
making problems are just a mess. In real world decision
makers make every day sound decisions using multiple cri-
teria. What we have to give up is the idealdiE solution
of a multiple criteria decision making problem. We need
to accept locally, bounded to the available information and
resources, satisfying solutions.

There is still one more open question. Suppose that for a
Arrow (Arrow 1963) definitely solved the problem prov-  given problem we establish a model (and a concept of good
ing the following theorem. or optimal solution). Suppose also that a precise procedure
has been adopted in order to put together the preferences
on the different criteria. How “complicated” is to reach a
solution?

Theorem 0.1 When the number of candidates is at least
3, there exists no aggregation method satisfying simulta-
neously the properties of universal domain, unanimity, in-
dependence and non-dictatorship. o
Complexity issues
Let us assume that a well defined multiple criteria optimisa-
tion model is available and, without loss of generality, let us
consider scheduling problems. For a comprehensive anal-
ysis on multiple criteria scheduling we refer to (T’kindt &
Billaut 2002). We will deal with the simplest scheduling en-
vironment, namely the static single machine environment.
We use the notation given in (Chen & Bulfin 1993) that ex-
tends to multiple objective problems the so-callege-field
a/ 3/~ classification of Lawler (Lawleet al. 1993).

Consider a selv of n jobs where each jop has a pro-
cessing time;, a weightw; and a due dateé;, respectively.
Given a schedule, for each jghwe denote withC; its com-
pletion time, withT; = max{C} —d;,0} its tardiness. Also,
let Thmax denote the maximum tardiness of the schedule. Fi-
nally, let U; denote the unit penalty for jop being tardy:
namely,U; = 1if T; > 0, elseU; = 0.

where:

- universal domain means that there is no restriction on
the preferences to aggregate;

- unanimity means that an aggregation procedure should
not violate the unanimity;

- independence means that in order to establisk ifs
better thanY” we consider only information concerning

X andY and nothing else;

- non-dictatorship means that there is no preference in-
formation which is more importante than others, such to
impose its will.

The reader can see that although the conditions imposed
by Arrow are very “natural” they are inconsistent. In other
terms: there is no universal preference aggregation proce-
dure. Either we choose for guaranteing a result and we
take the risk of favouring a minority or we impose the
majority rule and we take the risk not to be able to decide. ¢\ 2" . ater to mono-criterion problems, we already en-

Decision efficiency and democracy are incompatible. counter all main classes of computational complexity (see
Suppose a voting procedure has been chosen. If it is ma- (Garey & Johnson 1979) for details): for instance, the
nipulable then one should obtain the information neces- 1|5~ w;C}, thel|| > U; and thel||T;,.x are polynomially
sary to control possible counterintuitive results. If it is solvable, whereas thg| Y 7} is weakly N P-hard and the

a majority rule then the outcome could be an intransitive 1|| >~ w,;U; and thel|| >~ w,; 1} are stronglyN P-hard.

and/or incomplete binary relation. In such a case further  Consider the simplest multiple criteria environment,
manipulation is necessary in order to obtain a final result. namely the bi-criteria one and the two main general ap-
As for the previous approach such further information proaches indicated previously for putting together the two
is usually provided by the client (the decision maker) criteria (a specific case of the first approach is considered
through a precise dialog. A number of guidelines ap- for presentation purposes):

ply here (see (Bouysscet al. 2000)), but no structured (1) fix a function weighting the two criteria by means of
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a lexicographic rule (one criterion is designated as primary
and the other criterion is designated as secondary);
(2) generate the set of efficient solutions (to be then explored
by some majority rule). Notice that an optimal solution of
(1) always belongs to the set of efficient solutions described
by (2).

In the three-field scheduling notatiof,denotes the per-
formance measure. Let and~y, be the two performance
measures for the bi-criterion problem. Consider, now, the

Theorem 0.3 indicates that case (2) is at least as difficult
as case (1). Let then focus on bi-criteria problems handled
by means of a lexicographic approach. We have here pretty
bad results as bi-criteria problems involving polynomially
solvable mono-criterion ones are often alreddi-hard.

For instance, consider thH|(D>_ w;C;|Tmax) problem.
Both the 1||>" w;C; problem and thel||T,,.x problem
are polynomially solvable. Thé||(>" w;C;|Tmax pProb-
lem, however, isV P-hard in the strong sense as shown in

above general approaches with respect to single machine (Hoogeveen 1992). This is due to the fact that the primary

bi-criteria problems. In case (1), the objective is lex-
icographically more important than objectivg and the
corresponding problem will be denoted &$(y2|v1). In

objectiveT},. induces a constraint in the secondary objec-
tive of the typel; < Ti.x Vj, that can be written a§; <

dj 4+ Twmax Vj. By introducing a deadlin€; = d; + Tinax,

case (2), where the set of non dominated solutions must be e obtainC; < d; V. Hence, the above (3> w; C;|Timax)

determined the corresponding problem will be denoted as
v, 2

The following result proposed in (Chen & Bulfin 1993)
links the complexity of a problem with single objective
to the complexity of bi-criteria problems involving objective

Y1-

Theorem 0.2 If 1||y; is NP-hard, then1||(v2]|y1) and
1{|v1, 2 are N P-hard.

Theorem 0.2 indicates that there is little hope to efficiently
handle multiple criteria problems if any of the related mono-
criterion problems is difficult.

There are actually a few special cases where the bi-
criterion lexicographic problem is polynomially solvable
when the secondary objective induces a mono-critefdt
hard problem.

An example of this peculiar situation is given by the
13- 151> C;) problem. Thel|| >~ T; problem is known
to be NP-hard in the ordinary sense, whilst thg > C;
is known to be optimally solved in polynomial time by se-

problem is equivalent to thBd;| > w;C; problem which is
known to beN P-hard in the strong sense.

What happens is that the lexicographic weighting of cri-
teria (that we have seen to be generally easier than the gen-
eration of the efficient solutions) induces a further constraint
(well defined as the primary objective is polynomially solv-
able) in the solutions space: this nearly always induces un-
tractable bi-criteria problems that are polynomially solvable
when only the secondary criterion is considered. This is
what occurs in terms of pure computational complexity.

Also in practice, however, the structural properties of the
problem defined on the secondary criterion tend to be de-
stroyed when the primary objective is introduced as con-
straint.

An example of this is given by thel| Y (7| Tmax) Prob-
lem. By the same approach applied previously, this problem
can be shown to be equivalent to thigl;| > 7; problem.

But the presence of the deadlines kills the nice decomposi-
tion structure (leading to a pseudo-polynomial dynamic pro-
gramming algorithm) of the|| >~ 7; problem as shown in

quencing the jobs in nondecreasing order of their processing (R. Tadei ). At the present state of the art " T | Trnax)

times, the so-called SPT rule. Inthg(}> " T;|> " C;) prob-
lem, in order to optimise the primary objective, the SPT rule

problem is open with respect to the weakly or stroniyly?-
hardness status.

must be respected. However there may be ties, namely jobs  What did we learn then in terms of complexity?

with identical processing times. Only for these jobs it is pos-
sible to optimise the secondary criterion. But this is equiv-
alent to solve a special case of thg) 7, problem with

all identical processing times, this latter problem being opti-
mally solvable in polynomial time by sequencing the jobs in
nondecreasing order of the due dates (the well known EDD
rule). Hence, thé||(>_T;| > C;) problem is polynomially
solvable.

Analogously there are a few special cases where the
bi-criterion lexicographic problem is pseudo-polynomially
solvable when the secondary objective induces a mono-
criterion strongly NP-hard problem. An example is
| (3>Z w;iTy] Y- w;C;) problem which isV P-hard in the or-
dinary sense though thig|(> " w;T}) problem isN P-hard
in the strong sense. These are the arlative good news
we have.

The following theorem also proposed in (Chen & Bulfin
1993) links the complexity of cases (1) and (2).

Theorem 0.3 If 1||(y2|y1) is NP-hard, thenl||yi, 2 is
N P-hard.
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Difficulty 0.3 Even when we deal with the easiest well de-
fined multiple criteria problems, we immediately fall into
N P-hard problems. There is very little hope to derive poly-
nomial algorithms for multiple criteria problems whatever
is the complexity status of the corresponding mono-criterion
problems.

So, also in terms of computational complexity, we face
pretty negative results. Rather than being discouraged by
this situation (as fofV P-hard mono-criterion problems sev-
eral high quality meta-heuristics exist for multiple objective
problems), we need to precise very carefully the goals of our
decision making: for instance, there is nonsense in search-
ing for the complete set of efficient solutions if such set has
huge cardinality.

As an example, consider problei| > w;C;,>" h;C;
where each jolj has two weights:(; andh;). It is possi-
ble to derive the set of all efficient solutions by means of an
e-constraint approach and each solution can be computed in
polynomial time. However the|| > w;C;,>" h;C; prob-
lem is N P-hard in the ordinary sense as the number of effi-



cient solutions may not be polynomially bounded as shown
in (Hoogeveen 1992).

Conclusions

In this paper we analyse the conceptual and technical diffi-
culties associated to decision making problems in presence
of multiple criteria. Three difficulties are discussed:
- the impossibility to introduce an “objective” definition of
solution;
- the impossibility to define “universal” preference aggrega-
tion procedures;
- the increasing computational complexity even when each
single criterion corresponds to an “easy” problem.

Despite the apparent negative nature of the above results
we claim that the development of precise preference aggre-

gation procedures, of heuristics adapted to the presence of

multiple criteria, allow for a given decision making problem

to find satisfying solutions. What we should keep in mind is
that:

- it makes no sense to look behind “optimality”, in any way

it might be defined;

- the method which is going to be used in order to solve
a multiple criteria decision making problem is part of the
model of the problem and is not defined externally.
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Abstract

This paper enhances the GRT planner, an efficient domain-
independent heuristic state-space planner, with the ability to
consider multiple criteria. The GRT heuristic is based on the
estimation of the distances between each fact of a problem
and the goals. The new planner, called MO-GRT, uses a
weighted A* strategy and a multiobjective heuristic
function, computed over a weighted hierarchy of user-
defined criteria. Its computation is based on sets of non-
dominated cost-vectors assigned to the problem facts, which
estimate the total cost of achieving the facts from the goals,
using alternative paths. Experiments show that a change in
the criteria weights or scales affects both the quality of the
resulting plan and the planning time.

Introduction

This paper presents MO-GRT, an extension of the domain
independent heuristic planner GRT (Refanidis, and
Vlahavas, 1999a; 2001) with the ability to take multiple
criteria into account simultaneously. The word criterion
refers to any type of measurable quantity, which is of
interest in the solution plan. These criteria are provided by
the user, along with the definition of the problem. The kind
of problems that MO-GRT handles successfully are
characterized by linear aggregation of the criteria values
and by the ability to set bounds on them. Moreover, MO-
GRT can handle both monotonic and non-monotonic
criteria effectively.

The MO-GRT heuristic consists in assigning a set of
cost-vectors to each fact, in a pre-processing phase. A cost-
vector is an estimate of the total cost of achieving the fact
by applying actions to the goal state, whereas its elements
correspond to the various criteria. Different vectors for the
same fact correspond to alternative ways of achieving the
fact. Then, in the search phase, the states are evaluated
using both the known accumulated value of the past plan,
and the estimated value of the remaining plan based on the
cost-vectors of the state's facts. The search-space is
traversed using a weighted A* strategy, which enables the
planner to exchange planning time and plan quality.

The multiobjective heuristic search paradigm has been
introduced by Stewart and White (1991), who extended the
typical A* algorithm in a vector-valued state space.
Applications of the multiobjective framework in planning
are also found in (Fujimura 96; Moraitis and Tsoukias
2000; Williamson, and Hanks 1994). However, these
works assumed a given domain-dependent heuristic
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function. Besides, in most cases, an attempt was made to
find all the solutions using exhaustive enumeration and
evaluation of all states of the search space. Our approach is
different in that it deals with the construction of a vector-
valued heuristic function in a domain-independent way.
Moreover, it supports the definition of preferences among
the criteria, allowing tradeoffs to take place. Finally, the
aim is not to find all solutions; it is to find the best
compromise between the solution quality and the available
planning time.

This paper is structured as follows: First the main
concepts of the single-objective planning are introduced
and they are extended in the multiobjective framework.
Then, after a brief presentation of the GRT planner, the
MO-GRT planner is presented in detail. Performance
measurements in a logistics domain, where multiple
criteria have been defined, give a first idea of the
potentiality of the framework. Finally, some future
directions are indicated.

The Multiobjective Planning Problem

In single objective planning, a cost c(a) is assigned to each
action a, denoting e.g. duration, resource consumption etc.
Similarly, an overall cost can be assigned to a plan, which
is defined as the sum of costs of its individual actions, i.e.

M
c((ay, as, ..., aM))=Zc(ai) . In case that finding optimal
i=1

plans is computationally too expensive, it may be
acceptable to find a near optimal one. However, near-
optimality is a subjective notion and cannot always be well
defined.

In a multiobjective planning problem, a vector of costs
v(a)' is assigned to each action a. In this case, the overall

cost of a plan (a, a,, ..., ay) is also a vector v((ay, as, ...,
M

ay)) :Z v(a;). In order to compare plans, an evaluation
i=1

function E has to be defined over the space of the cost-

vectors.

Definition 1 (Plan comparison). A solution plan P; is
considered better than a solution plan P, for a given

: Throughout the text bold typeface is used to denote vectors.



evaluation function E, iff E(w(P;))<E(v(P,)).

Note that we consider the lowest values of the
evaluation function best. However, this commitment does
not reduce the generality of the proposed method. In the
following paragraphs some desired properties that may
have an evaluation function are presented.

Definition 2 (Additive property). An evaluation function
E satisfies the additive property, iff for any two cost-
vectors v and u the cost of their sum is equal to the sum of
their costs, i.e.:

E(vtu)=EW)+E(u), vV v, u 6}
The additive property is satisfied by linear-form

functions, which do not have bounds in the valid values of
their arguments.

Corollary 1. For two sets of cost-vectors V and U and for
an evaluation function E that satisfies the additive
property, the minimum cost among the sum of any pair of
cost-vectors veV and ueU is equal to the sum of the
minimum costs of V's and U's cost-vectors, i.€.:

min (E(v)+E(u))= min (E(v))+ min (E(u)) Q)

eV uel vel uelU

In case of an evaluation function satisfying the additive

property, it is possible to adopt a single-objective approach
to solve the planning problem, just by assigning the value
E(v(a)) to each action a. However, this approach cannot be
adopted in case the evaluation function does not satisfy the
additive property, which is usual. This is illustrated in
Figure 1.

P Vi u
Initial State “

Figure 1: Evaluating a state in the presence of many criteria.

Suppose there is a state S of the state space, which can
be reached by the initial state following two alternative
paths, P, and P,, with costs v, and v, respectively, so that
E(v))<E(v;). In case of an additive evaluation function,
path P, could safely be omitted, since, for any path leading
from S to the goals with cost u, E(vitu)<E(vytu)
(Corollary 1). Similarly, suppose there are two heuristic
estimations #; and u, for the cost of reaching the goals
from S, with E(u;)<E(u,). In this case, the estimation u,
could be omitted, since, for any path P leading from the
initial state to S with cost v, E(vtu,)<E(v+u,) (Corollary
1). The situation described above is identical with what is
always the case in single-objective state-space planning,
e.g. for each state, we need a single cost (and the
corresponding path) to reach the state from the initial state
and a single cost estimation to reach the goals from that
state.

However, in case the evaluation function is not additive,
we cannot omit neither the alternative paths between the
initial state and any intermediate state nor the heuristic
estimations of the cost of reaching the goals from any
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intermediate state. Thus, a large number of cost-vectors
may have to be stored for each state, thus increasing the
difficulty to solve a planning problem.

Another desirable property of an evaluation function is
the monotonicity property. In order to define this property,
we firstly introduce the domination relation between two
cost-vectors v and u, denoted with <.

Definition 3 (Domination). A cost-vector v is said to
dominate another vector u and this is denoted by v<u, if
for each i, 1<i<k, v; is better than u; and v=u (k stands for
the vector dimensions).

The characterization "is better than" in Definition 3 may
be interpreted either as "is lower than" or as "is higher
than", depending on the nature of each dimension of the
cost-vectors.

Definition 4 (Non-dominated vectors). A vector v is
described as non-dominated, if there is no other vector
dominating v.

Having defined the concept of domination, we can
introduce the monotonicity property for functions over
vectors, extending the known monotonicity property of
functions over real values.

Definition 5 (Monotonicity property). An evaluation
function E is described as monotonic, iff V v, u: v<u =
E(v) < E(u).

It can be proved that an evaluation function over a set of
criteria satisfies the monotonicity property, iff its first
derivatives on these criteria are continuously positive or
negative functions, depending on whether the lowest or the
highest values of the various criteria are considered best
respectively.

The monotonicity property is satisfied by the evaluation
functions of most real-world planning problems and helps
to reduce the complexity of the planning process. This is
achieved by leaving out all cost-vectors dominated by
other vectors, thus keeping only the non-dominated ones. It
is not difficult to show that all linear-form functions satisfy
the monotonicity property.

The Single-Objective GRT Planner

The GRT planner is a domain-independent heuristic state-
space planner (Refanidis, and Vlahavas, 1999a; 2001),
which adopts the STRIPS formalism (Fikes, and Nilsson
1971). The term "domain-independent" refers to the way
the heuristic function is constructed, i.e. a single algorithm
is used for all domains. Its heuristic function estimates the
distance, in terms of the number of actions, between any
state and the goals, thus trying to minimize the plan length.
However, the heuristic function is not admissible and GRT
does not use an A* search strategy; instead, it either adopts
the best-first search or the hill-climbing one. Thus, GRT,
like all other effective heuristic planners, does not
guarantee optimal plans.

The distance dist(p) between each fact p and the goals is
estimated in a pre-processing phase (heuristic construction



phase) by the following recursive formula:

0,if p € Goals.

AGGREGATE(Pre(a")) +1, where a'
is an inverted action, such that (3)
peAdd(a’).

dist(p)= min

oo, otherwise.

In (3), the prefix operator min operates on sets of
numbers and returns the minimum of them. The recursion
follows from function AGGREGATE, which uses the
distances of its arguments in order to produce its result, as
it will be shown later in this section. Formula 3 is
repeatedly applied until all distances stabilize. The
distances obtained by (3) are used to further estimate the
distance between each state of the state-space and the
goals, by applying function AGGREGATE in the facts of
each state, while searching in the space of the states.

A difficulty that may arise in the heuristic construction
phase is that the actions of a problem cannot always be
applied to the goals. GRT solves this problem by
computing and using the inverted actions instead. For a
normal actrion « than can be executed in state s and results
in state s', the inverted action «' is an action that can be
executed in s' resulting in s. Another difficulty that may
arise is that in some planning problems, the goals do not
constitute a complete state description, so it is not even
possible to apply the inverted actions to them. GRT solves
this problem by detecting the candidate missing goal facts
and enhancing the goals with some or all of them, in a fully
automated way (Refanidis, and Vlahavas 1999b; 2001).

In order to obtain more accurate and informative
estimates, GRT introduces the notion of related facts. A
fact g is considered related to another fact p, if the
achievement of p leads to the achievement of g as well.
The facts related to a specific fact p are called related facts
of p and are denoted by related(p). Intuitively, we can
define the related facts of a set of facts P as the union of

the related facts of P's facts, ie.
related(P)=Urelated (p). For an inverted action a'
peP

achieving a fact p, the related facts of p are defined by the
following recursive formula:

related(p) = Pre(a’) U related(Pre(a")) U
Add(a') - Del(a") - {p}

which is initialized for the goal

related(g)=J, for each ge Goals.

The related facts of a fact p depend on the specific path,
i.e. the sequence of actions followed to achieve p. Since
there are many paths to achieve a specific fact, there are
many ways to define its related facts. For efficiency, GRT
considers a single set of related facts corresponding to a
path with minimum distance, for each fact. In case there
are many alternative paths with the same minimum
distance, GRT selects one of them arbitrarily.

(C))
facts by setting

48

Related facts play a critical role in function
AGGREGATE. So, function AGGREGATE is a combination
of sum and max functions, which groups its argument facts
in disjoint sets of related facts and sums the maximum
distances of each group. The full definition of the function
AGGREGATE is the following:

Function AGGREGATE

Input: A set of facts {p;, p», ..., pn }, their distances
dist(p;) and their lists of related facts rel(p;).

Output: An estimate of the cost of achieving the facts

simultaneously.
1. Set M; = {p1, P2, ., Pn}. Set Cost = 0.
2. While (M # ) do:
a.let M, be the set of facts p; € M that
are not included in any list of
related facts of another fact p; € M,

without p; being also included in their
list of related facts. More formally:

M, = { pi: pj € My, V p; € My, p; € rel(p;)
= py € rel(p;) }
b.Let M; be the set of those facts of M

that are not included in M,, but are
included in at least one of the lists
of related facts of the elements of M.
My = { pi: ps € M - M, 3 p;y € My,
p; € rel(ps) }

c.Divide M, in disjoint groups of facts
that are related to each other. For
each group add the common cost of its
facts to Cost.

d.Set M, = M, - M, - M.

3. Return Cost

In (Refanidis, and Vlahavas 2001) it was shown that the
set M, (step 2a of function AGGREGATE) will never be
empty and it can always be partitioned in disjoint groups of
facts achieved by the same action (step 2¢). The number of
iterations the function AGGREGATE performs is bounded
by the initial size of M;; however, one or two iterations are
usually performed.

The Multiobjective GRT Planner

This section presents the MO-GRT planner in detail. The
section starts with the definition of a criteria hierarchy,
next presents the construction of the multiobjective
heuristic function and finally presents how the states are
evaluated using a weighted A*-like approach.

Evaluation Criteria

Plan evaluation criteria can be classified on the basis of
several features. The first one refers to the values, higher
or lower, that are considered best. We refer to the criteria
of these two cases as lower best and higher best criteria.
Criteria can also be classified based on the direction in
which their values are altered by the actions of a planning
problem. The criteria, the values of which change in a
single direction, are called monotonic (increasing or
decreasing, based on the specific direction), while the




others are called non-monotonic. The monotonic criteria in
particular can also be divided into worsening monotonic
criteria, the values of which change towards their worst
values, and into improving monotonic criteria, the values
of which change towards their best values.

In decision making (Keeney, 1976; Vincke, 1992),
criteria can be organized in hierarchies. For the lowest-
level criteria, called basic criteria, a method of
measurement is defined in order to assign values to them.
For the highest-level criteria, called compound criteria, an
aggregation method is defined, so that the values from the
basic criteria can be combined and give an overall value
for the evaluated object, i.e. the plan. MO-GRT adopts the
Weighted Average Sum method (WAS), which is a linear
multi-attribute value function, suitable for multi-attribute
and multiobjective deterministic problems with arithmetic
criteria and large numbers of evaluated entities, and results
in a cardinal ranking among the alternatives. For the
correct application of WAS, weights have to be assigned to
the criteria, representing the relative preferences of the
evaluator with respect to each criterion.

An example of a criteria hierarchy for a transportation
logistics problem is shown in Figure 2. This hierarchy
consists of two levels only; however, the basic criteria can
be further analyzed to produce a deeper hierarchy.

| evaluated entity (plan)

AR

‘ length || fuel ||durat10n|| free-volume || safety |

Figure 2: A simple criteria hierarchy for the logistics domain.

The criterion length is considered separately from the
criterion of duration, since the former refers to the number
of actions in a plan, while the latter refers to the
cumulative duration of their sequential execution.
Actually, the length of a plan reflects the difficulty in
constructing it. Of course, in problems where all actions
have equal durations, both criteria are equivalent and one
of them should be omitted.

A scale is assigned to each basic criterion, including the
indication whether higher or lower values are preferred.
For example, the scale of plan duration for a specific
problem may be the interval (20, 40) and lower values are
preferred. This does not necessarily mean that plans with
duration below 20 or above 40 time units will be pruned; it
rather means that these plans will be evaluated as if they
had a duration of 20 or 40 time units, respectively. The
reason for setting scales for the basic criteria is twofold:
Firstly, it prevents us from having extremely good plans,
especially for the criteria the values of which can change
towards their best values. Secondly, it allows us to
normalize the values of all criteria in a common scale, in
order to aggregate them.

Scales also play another role: Through the adoption of
the WAS method for the aggregation of the values of the
basic criteria, we implicitly considered that the evaluation
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function is linear. However, this assumption is too strong
to be true in the whole real numbers interval. Thus, setting
scales restricts this linearity within the scales only, which
is a more actual assumption.

In many cases, the scale bounds are hard. For example,
we might not accept a plan with duration greater than 40
time units. In the presence of hard bounds, MO-GRT
prunes the plans that are definitely out of the bounds and
gives low priority to plans estimated to be out of the
bounds. In this paper, we use brackets to denote soft
bounds and square brackets to denote hard bounds, e.g.
(20, 40].

The definition of scales affects the results of the
evaluation process significantly. For example, if all the
produced plans are of a duration between 20 and 40 time
units and we have set the scale of the criterion duration to
the interval (0, 1000), then all plans will be considered as
near optimal and will get about the same score with respect
to duration. On the other hand, if we have set the scale of
this criterion to the interval (20, 25), a plethora of plans
with a duration of more than 25 time units will be
considered as worst plans and will get exactly the same
score. Deciding a criterion's scale is a critical issue and
requires careful analysis of the problem and of the
evaluator's preferences.

The Multiobjective Heuristic Function

The most difficult part of the evaluation process is the
estimation of the cost of achieving the goals from each
state of the state-space. MO-GRT extends the heuristic
function of the single-objective GRT planner, by assigning
each fact p cost-vectors of the form:
<L€I’lgth, C], Cz, ceny CN>

which estimate the cost of the various paths that achieve p
from the goals (N stands for the number of basic criteria,
whereas the criterion length is considered separately). The
set of cost-vectors assigned to a fact p is denoted with V(p)
and is computed by the following recursive formula, which
generalizes Formula 3:

<0,0,...,0>, if p € Goals.

AGGREGATE(Pre(a’)) +
<l,r;,...,ry>, for each inverted
action a’, so that pe Add(a’). r/'s,
i=1,..,N, denote the contribution of
a' to the basic criteria.

V(p)=non_do
m

©))

<00, 0, ..., 0> otherwise.

In (5), the prefix operator non_dom operates on sets of
cost-vectors and returns the subset of non-dominated ones.
Function AGGREGATE is identical with that of the single-
objective GRT planner, except for the fact that it
aggregates cost-vectors instead of single values.

If a set of cost-vectors is assigned to each fact p, then
function AGGREGATE has to be applied to any
combination of the different vectors of its arguments



resulting in a set of cost-vectors, i.e. a cost-vector for each
different combination. Note that a different set of related
facts is assigned to each cost-vector, depending on the
specific sequence of actions that established this cost-
vector.

Complexity Problems. MO-GRT faces the risk of
combinatorial explosion both in memory and in time
requirements. Memory requirements concern the space
needed to store the non-dominated cost-vectors assigned to
each fact. Even for two criteria only, the average number
of cost-vectors per fact may be large. On the other hand,
time requirements concern the application of function
AGGREGATE to all combinations of the cost-vectors of its
arguments.

Suppose V is the average number of cost-vectors per
fact, P be the average number of precondition facts per

action and F’ be the average number of facts per state. In
this case, for the application of an inverted action in the
—P
heuristic construction phase, V' combinations should be
considered on average. On the other hand, when estimating
the cost of reaching the goals from a state of the search
phase, only the best cost-vectors need to be considered
first, according to the evaluation function. However, in
case the resulting vector exceeds the hard bounds of some
criteria, alternative combinations of the cost-vectors of the
state's facts have to be considered. In the worst case, these
—F
combinations are V
numbers, let us consider that V' =10, P=3 and F =30,
which are some rather small values. In this case, we have

For a better notion of these

—P
an average of V' =10’=125 applications of function
AGGREGATE for each applied inverted action during the

—F
heuristic construction phase and ¥ =10 applications of
function AGGREGATE in the worst case for each state
during the search phase.

The Relaxed Dominance Pruning Heuristic. In order to
overcome the complexity problems, MO-GRT adopts an
alternative, more loose selection method in storing and
combining cost-vectors. Henceforth, we refer to this
method as the relaxed dominance pruning heuristic
(RDPH). This method reduces the number of cost-vectors
retained for each fact to the following ones:
= The best cost-vector, according to the criteria hierarchy.
= For each worsening monotonic criterion, the cost-vector
with the best value in this criterion is also retained,
regardless of whether the worst values are hard or soft
bounded.
= For each improving monotonic criterion, a vector with
the best combined value in the rest of the criteria, with
respect to the vector of case 1, is also retained.
However, in the rare case where the best value of such a
criterion is hard bounded, the cost-vector with the worst
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value in this criterion is used instead.

= For the non-monotonic criteria, both case 2 and case 3
are applied, thus two additional cost-vectors are retained
for each one of them.

The rationale underlying the selection of the above cost-
vectors is the following: The best cost-vector of each fact
is retained, since combining these cost-vectors of a set of
facts (e.g. the preconditions of an inverted action or the
facts of a state) may result to the best combined cost-vector
for these facts, according to Corollary 1, which holds for
the WAS function. However, this combined vector may
probably exceed the scales for some criteria, so alternative
vectors of the facts have to be tried. For the case worst
bounds (either hard or soft) are violated, RDPH retains the
vectors that have best values and are within the bounds
(case 2).

The case where the best bounds are violated is treated
separately, depending on whether these bounds are soft
(which is the usual case) or hard. Violating the best soft
bound of a criterion does not contribute positively to the
overall value of the cost-vector, since the vector is
evaluated as if it had the value of the bound. Thus, an
attempt is made to find a new cost-vector that maximizes
the overall value, even if it is still out of the bound for the
specific criterion, rather than to find a new combined cost-
vector inside the bound. This is the reason why in case 3
the vector that maximizes the combination of the other
criteria is retained. However, in case the best bound is
hard, then an attempt is made to produce a new cost-vector
that falls inside the bounds; thus in this case, the vector
with the worst value (due to the best strict bound) is also
retained.

Suppose now that we have N basic criteria (length being
excluded), N, of which are monotonic and N, of which are
non-monotonic. In this case, the number of cost-vectors
that will be retained for each fact would be 1+N,+1+2-N,.

In some cases, it is also possible to retain cost-vectors
that exceed hard bounds of the scales. The strategy adopted
is the following:
= The first cost-vector for each fact is retained, even if it

exceeds some hard bounds.
= A new cost-vector that exceeds some hard bounds is

rejected, provided that there is an existing cost-vector,
which does not violate any hard bound to a greater
extent than the new one.

Note that the criteria bounds used in the heuristic
construction phase are not the original ones. Suppose a
criterion ¢ has a scale (L,R.) and an initial amount of /Init,.
In this case, the scale used for this criterion in the heuristic
construction phase is (L.-Init,,R-Init)). This is a
consequence of the assignment of zero cost-vectors to the
goal facts and this is because in the construction of the
heuristic function we are only interested in the remaining
cost of achieving the goals from any intermediate state and
not in the cost paid for reaching the intermediate state from
the initial one.

State Evaluation. In order to estimate the cost of



achieving the goals from any intermediate state, MO-GRT
assigns a cost-vector to the state, by applying function
AGGREGATE to the cost-vectors of the state facts.
Certainly, there are many cost-vectors that can be
produced, which represent the alternative paths in which
the goals can be achieved from the current state. However,
MO-GRT retains a single cost-vector only, which is
considered to correspond to the "best" path.

Firstly, MO-GRT considers the best cost-vectors of the
state-facts. In case the resulting vector does not violate any
bound, it is assigned to the state. Note that, in this case,
new scales reflecting the current resource availability are
considered, rather than the original ones. Suppose the
original scale of a criterion is (L., R.) and the cost of the
current plan with respect to this criterion is c. In this case,
the scale of this criterion and for the specific state is
considered to be (L.- ¢, R.- ¢).

In case the combined vector resulting from the best cost-
vectors of the state facts violates some bounds, the
alternative cost-vectors of the state-facts are attempted,
giving priority to the vectors that reduce the extent of the
violations and then to the vectors that improve the value of
the resulting vector. As soon as a cost-vector that does not
violate any bound is produced, the process stops and this
vector is assigned to the state. However, in the worst case,
this process would go on until all the combinations of the
alternative cost-vectors of the state-facts have been
considered without producing a non-violating combined
cost-vector. In order to overcome the potential complexity
problem in similar situations, MO-GRT reduces the number
of alternative vectors tried in case of violations to the
number of the criteria times the number of the initial
violations.

Plan Evaluation

The criteria hierarchy is used to evaluate the states of the
state-space. These must be evaluated both for the known
accumulated cost of the past plan and the estimated cost of
the remaining plan towards the goals, based on the
heuristic estimations. Thus, the criteria hierarchy has to be
applied twice and both values have to be combined. The
only modification is that the criterion length is of no
interest for the past plan, except for the case where this
criterion reflects the duration of the plan.

The values assigned to the two top-level criteria, i.e. the
past plan and the remaining plan, have to be combined
using weights. The integrated function used for the
evaluation of the states is formed as:

SO=WyE@OTWrEMS)), WytW=1, Wy W20 (6)

where S is the evaluated state, g(S) is the cost-vector of the
past plan, v(S) is the cost-vector of the remaining plan that
has been assigned to the state, ¥, is the relative weight of
the past plan and W, is the relative weight of the remaining
plan. For W,=W,=0.5, the search behaves as the original
A* strategy, for W,=1, the search behaves as a breadth first
optimal strategy, whereas, for W,=1, the search behaves as
the greedy best-first strategy.
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A crucial point is the treatment of the states, to which an
estimated cost-vector of the remaining plan that violates
some hard bounds has been assigned. MO-GRT cannot
prune these states, since the MO-GRT heuristic is not
admissible. So, the planner retains all states of the frontier
set, however it penalizes the states that violate a hard
bound by twice the amount of the violation.

This section ends with the application of the notion of
domination to the states. The single-objective GRT keeps a
closed list of visited states, in order to avoid re-visiting
them. In the case of MO-GRT, this closed list has to be
extended, in order to store the non-dominated cost-vectors
of the several visits in the state. Now, a revisited state is
only pruned in case the vector of a previous visit
dominates the vector of the new one in all basic criteria.

Performance Measurements

This section examines the role of the criteria, their weights
and scales play in the planning process, i.e. how they affect
the planning time and the quality of the resulting plans.
This is performed through an adequate number of
experiments in an enhanced logistics-type domain.

The logistics™° Domain

In the original logistics domain (Veloso 92), there is a
single means of transportation to transfer an object
between two cities, i.e. an airplane. In order to measure the
effectiveness of MO-GRT, we have extended this
description with trains, which can only perform
transportations between different cities and we have
labeled one location in each city as a railway station. We
call this extended logistics domain logistics™©.

The new domain has three new actions, referring to the
loading, unloading and moving of a train. Moreover, two
predicates, namely train and station, have been introduced:
they describe an object as train and railway station,
respectively. We have also introduced the criteria of cost
and duration and we have assigned an application cost and
duration to all domain actions schemas (Table 1).
Certainly, lower values are preferable.

Table 1: Application cost and duration for the actions of the
logistics™© domain.

Actions Cost Duration
loading/unloading any truck 2 1
loading/unloading any train 2 1
loading/unloading any plane 3 2
moving a truck 10 10
moving a train 20 100
flying a plane 50 10

As it results from Table 1, all criteria (including length)
are monotonically increasing. Besides, since lower values
are preferred, the criteria are also worsening criteria.
However, the adoption of a single type of criteria for the
experiments does not restrict the generality of the results,
since MO-GRT deals with all types of criteria equally.



Problem Definition

As a starting point, we used the STRIPS untyped logistics
problem set of the AIPS-00 planning competition',
comprising 28 problems. In every problem of this
distribution, all cities have two locations, one of which is
the airport. We labeled the non-airport location of each city
as railway station. Furthermore, we added a train to each
problem, initially located in the railway station of the first
city. Note, finally, that the initial values of all criteria are
considered to be zero.

To apply MO-GRT, we must set the criteria scales,
which are not identical in all problems. In order to render
the reproduction of the experiments feasible, we used an
"algorithmic" way of setting these scales. Thus, these were
based on the number of packages that had to be moved
inside one city, or to a different one. We omitted packages
that were not referenced within the goals, as well as
packages with identical initial and goal positions. Table 2
shows the expressions used to set the scales for all criteria.

Table 2: Scales for the three criteria.
P=Packages that must be transferred inside the same city
P,=Packages that must be transferred to a different city

Criteria Left bound Right bound
Length (Right bound) / 4 4:P\+12:P,
Cost (Right bound) / 8 24:P+154+P,
Duration (Right bound) / 8 22-P+246°P,

The rationale of the above formulas is the following: As
for the right bound, the formulas describe the worst cases,
i.e. cases where the packages are transferred separately,
while a means of transportation is never in place for
transfer and it must be moved from another position. On
the other hand, the decision for the left bound was based
on our experience with the problems of the logistics™®
domain. The intention was to have all the solutions
between the two bounds and to have a sensible distance
between the left bound and the obtained values for all
criteria.

We performed 12 experiments, denoted with the letters
A to L. Each experiment included running the planner for
all 28 problems of our logistics™© problem set, using
specific weights. Table 3 summarizes the weights used in
these experiments.

Table 3: Weights used in various experiments.

Weights

Past Length  Cost  Duration

plan

Experiment Remaining

Plan

1
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K 1 3 3 1 3
L 1 3 3 1 10

Note that in the logistics™® domain, the criterion length
does not clearly favor any of the other two criteria, since
the average actions needed to perform a transportation are
the same, whether a plane or a train is used. However, this
would not be the case if, for example, loading a package in
a plane would require more than one actions. In general,
the criterion length is usually positively related to some
criteria and negatively related to some others.

Experimental Results

MO-GRT has been implemented in C++. The
measurements were taken on a SUN Enterprise 3000
machine running at 167MHz, with 256 MB main memory
under Solaris 2.5.1 OS. We set a CPU time limit equal to 5
minutes for each problem. Some problems were not solved
due to memory limitations or due to the requirement for
more processing time.

Next we compare several groups of experiments, where
each group includes experiments that only differ in a single
weight. Experiment A is included in all groups and serves
as a reference experiment. When comparing two
experiments, e.g. experiment X to experiment A, the
following metrics are used:

_ solved(X) — solved(A)

solved

solved (A)

m, = average( time(X;)— time(Al-))

time = AVETHE time(A4;)

length(X ;) —length(4,)
mlength = average( ) (7)
i length(4;)

m, . = average( cost(X;)—cos t(Al-))

cost . g COSl(Al-)

duration(X,) — duration(4;)
duration(4,)

mdumtion = average( )
where:
solved(Z): the number of problems solved in experiment Z
time(Z;):the time needed to solve problem i in experiment
zZ
length(Z)):the length of the solution to the problem i in
experiment Z
cost(Z;): the cost of the solution to the problem i in
experiment Z
duration(Z;): the duration of the solution to the problem i
in experiment Z
Z is an experiment (in this case X or A).

Note that the averages are computed in the problems
solved in both experiments (X and A). There are two
reasons why we use averages on a large number of
problems, instead of comparing on specific problems. The
first one concerns the large number of problems, the huge
number of interesting variations in weights and scales, and



the five metrics of interest, which makes the detailed
presentation of the results impossible in all cases, due to
the limited space of the paper. The second reason is that
the impact of changing a weight or a scale may be
negligible or even contradictory for a specific problem,
due to the heuristic nature of the proposed technique;
however the average results are always intuitive.

Table 4 presents the absolute values in all 28 problems
for experiment A, which are used as a basis of comparison
in the subsequent sections. The problems have been solved
with the relaxed dominance pruning heuristic.

Hereinafter we compare the performance of MO-GRT
with and without the RDPH and then we examine the
effect of the weights of the past and the remaining plans, as
well as the weights and scales of all criteria, on the
planning process. Finally, we compare MO-GRT to GRT in
the same problems.

Table 4: Detailed results for experiment A
(solution time in msecs).

problem set, with the weights and scales of experiment A
and without RDPH heuristic results in solving 69% less
problems than when running MO-GRT with the RDPH in
the same problems, with the same weights and scales and
in the time limit of 5 minutes. Besides, in problems solved
by both configurations of MO-GRT, the configuration
without the RDPH needed 865% more time on average to
solve them and produced plans that were 6.32% better on
average than the configuration with the RDPH.

The above results are intuitive, since retaining all the
non-dominated cost-vectors for the facts of a problem
demands more processing time but gives us the
opportunity to perform more effective tradeoffs, thus
producing better plans. However, we believe that the slight
increase in quality when retaining all non-dominated cost-
vectors is unimportant compared with the significant
degradation in the planner's efficiency. Thus, all
measurements in the following sections have been taken
with the RDPH, the default configuration of MO-GRT.

Weights of the Past and the Remaining Plan. In this

Problem time Ieﬁgt cost dt]i'gi- Problem time length cost dt]i'gi- section, we compare experiments B, C and D to
logistics-4-0 170 13126 238llogistics9-0 540 26 296 480  °xperiment A. We investigate the effect of different
logistics-4-1 180 15 162  152/logistics-9-1 410 22 186 170 combinations of the past and the remaining plans weights
logistics-4-2 130 12 164 158|logistics-10-0 930 29 308 490  on the overall planning process. Actually, what is of
logistics-5-0 190 19 170 156flogistics-10-1 1350 39 412 628 interest is the ratio between these weights. Table 6 shows
logistics-5-1 200 12 76 228llogistics-11-0 1190 36 440 618  the results.
logistics-5-2 120 8 32 26|logistics-11-1 1520 47 486 656
logistics-6-0 230 22 112 256flogistics-12-0 1120 35 326 502 Table 6: Results for several combinations of past and remaining
logistics-6-1 130 9 52 126flogistics-12-1 1250 42 420 712 plan weights.
logistics-6-2 240 21 178 162flogistics-13-0 2530 53 648 774 -
logistics-6-9 170 15 132 242ogistics-13-1 2070 43 504 636 -LXpSriment = migneg Miime Miength __ Meost___ Mduration
logistics-7-0 490 31 346 406|logistics-14-0 3330 47 422 832 B (1/1) -35.71%  913.6% -1.01% -0.88%  -8.68%
logistics-7-1 550 33 308 406|logistics-14-1 2610 49 448 734 C(172) 0.00%  52.6% -0.72% -3.31%  -0.47%
logistics-8-0 610 26 244 388llogistics-15-0 4510 64 686 724 D (0/1) 0.00% -13.92% 0.99% 291%  4.75%
logistics-8-1 800 29 284 384|logistics-15-1 3150 61 700 698

The Relaxed Dominance Pruning Heuristic. First, we
investigate the effect of RDPH on the overall performance
of the MO-GRT planner, using the weights and scales of
experiment A. In the comparison we are interested in the
MEtrics Msolved, Miime ANd Mqyality. The last metric is defined
by the following formula:

uality(X,) — quality(4,
mqua,,-fﬁaverage(q y(X;) — quality( ,))

, quality(4,)

where quality(Z;) is the result of applying the WAS
function on the solution plan of problem Z;. This metric
does not make sense in case different weights or scales are
used; in such cases, we have different evaluation functions.
On the other hand, since this section presents results on the
overall quality of the resulting plans, we have omitted
results for the individual metrics Mg, Mcost AN Mguration-
Table 5 presents the results.

Table 5: Performance of MO-GRT without RDPH.

Experiment Msolved Miime Mauality

A (without RDPH) -69.41%  865.37% 6.32%

The results presented in Table 5 can be interpreted as
follows: Running MO-GRT in the 28 problems of our
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Table 6 shows that as the ratio between the weights of
the past and the remaining plan decreases, the planner
reaches faster a solution. Furthermore, in experiment B,
where we had the highest value of this ratio, 35% of the
problems (the largest ones) were not solved. With regard to
the three criteria, as the above ratio increases, the produced
plans generally become better. However, the degree of this
effect is different for the three criteria.

Weight of the Criterion length. In this section, we
compare experiments E, F, G and H to experiment A. We
investigate the effect of the weight of the criterion length
on the overall planning process. Table 7 shows the results.

Table 7: Results for several weights of the criterion length.

Experiment Misolved Miime Miength Most Mgyration

E (length=1) 0.00% 130.19% 3.76% 1.03% -2.05%
F (length=2)  0.00%  14.32% 1.88% -0.61% 1.14%
G (length=5)  0.00% -7.38% -0.49% 0.89% -1.16%
H (length=10)  0.00% -12.42% -0.40% 1.29% -1.09%

The above results show the effect of the weight of the
criterion /ength on the total solution time. As the weight of
this criterion increases, the planner reaches faster a
solution and finds slightly shorter plans; on the other hand,
as this weight decreases, the planner delays and finds
slightly longer plans. The effect of this weight on the plan



cost and duration is neither significant nor consistent. This
is explained by the fact that in the logistics™® domain the
plan length is not competitive either to the plan cost or the
plan duration.

Weights of the Criteria cost and duration. In this section,
we compare experiments I, J, K and L to experiment A.
We investigate the effect of the weights of the criteria cos?
and duration on the overall planning process. Table 8
shows the results.

Table 8: Results for various weights of the criteria cost and
duration.

EXperlment Misolved Miime Miength Meost Mduration

I (cost=3) 0.00% 13.72%  -027%  -9.77% 7.06%
J (cost=10) -17.86%  1509.18% 0.68% -14.55% 9.16%
K(duration=3) 0.00% 64.74% 6.93% 9.89%  -9.26%
L (duration=10) -21.43% 1161.74% 22.53% 32.29% -17.72%

It is seen that for both the criterion cost (experiments I
and J) and the criterion duration (experiments K and L), as
the weight of each criterion increases, the resulting plans
become better in terms of this criterion, while they worsen
with respect to the rest of the criteria. It is also seen that an
increase in the weight of the criterion cost does not
significantly affect the length of the obtained plans, which
does not occur in case of an increase in the weight of the
criterion duration. The rationale of this observation is that
most packages are initially located in railway stations and
the same occurs in their goal positions. Thus, the demand
for plans of lower duration favors the use of planes for
transportation, which leads to longer plans as a side-effect.

A second observation is that as the weights of the
criteria cost and duration increase, whereas the weight of
the criterion of /ength remains the same, the solution time
increases. Especially in case these weights become greater
than the weight of the criterion /ength (experiments J and
L), many problems cannot be solved within the time and
memory limits. This result was expected, based on the
previous results concerning the influence of varying the
weight of the criterion length.

Scales of the Criteria. In this section, we investigate the
effect of the scales attached to the criteria on the overall
planning process. Reusing the problems of experiment A
as a reference, we constructed 12 variations, keeping the
same weights and changing the scales. The new
experiments are denoted with A, rerion x 1, Where criterion
is the criterion the scale of which has changed, and M is a
positive number that multiplying the width of the original
scale. The new scale has the same center as the original
one, but it is M times broader. For example, if the scale of
duration in a problem of experiment A was initially (200,
300) and M was 2, the same scale in experiment
Apuratione Would be (150, 350). Both scales have the
same center, i.e. 250, but the second one is two times
broader than the first one. Note that in case the left bound
becomes lower than 0, we set it to the value 0 and we shift
the right bound accordingly. Table 9 shows the results.

The conclusion drawn from Table 9 is that a criterion
scale affects significantly the quality of the resulting plan
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in terms of this criterion. The results show that as the scale
of a criterion diversifies (broadens or shrinks) from a
critical scale, the quality of the obtained plans reduces, in
terms of this criterion, whereas it may increase in terms of
the other criteria. For example, as we broaden or shrink the
scale of the criterion cost, the cost of the obtained plans
increases, while their duration decreases. On the other
hand, as we broaden or shrink the scale of the criterion
duration, the duration of the obtained plans increases.
However, in this case we observe that when the scale
broadens two times, the duration of the obtained plans
decreases. This is an indication that a two-times broader
scale is the critical scale for this criterion. We note finally
that as the scales of the criteria cost and duration diversify
from their critical scales, the planner reaches a solution
significantly faster. This is because as these two criteria
lose their strength, the effect of the criterion length on the
planning process becomes more significant.

Table 9: Results for various criteria scales.

EXperimem Misolved Miime Miength Most Mgyration
Acostx2 0.00% -5.27% -0.08% 3.10%  -0.93%
Acostxs 0.00% -8.03%  1.95% 7.72%  -2.20%
AcosTx05 0.00% -3.38%  2.02% 724%  -1.14%
Acostx02 0.00% -7.88%  1.85% 747%  -2.16%
ApuraTionx 2 0.00% -4.39%  0.38% 3.02%  -0.27%
ADURATION x 5 0.00% -12.30%  0.01% 0.28% 5.24%
ADURATION x 0.5 0.00% 231%  2.78% 1.50% 11.67%
ADURATION x 0.2 0.00% -6.14%  1.55%  -1.82%  14.39%
ApgnGTHx 2 0.00%  228.51% 2.03%  -1.60% 1.18%
AvenGTH x5 -42.86% 2804.42%  3.89% 2.67%  -4.19%
ALENGTHX 0.5 0.00% -7.84% -022%  -0.93% 0.44%
ALENGTH x 02 0.00% -7.88%  1.85% 747%  -2.16%

As for the criterion length, we observe that as its scale
broadens, the planner needs more time to find a solution
and, for greater broadenings, many problems become
unsolvable in the specified limits of time and memory.
Inversely, when we shrink this scale, problems are solved
faster. This leads us to the conclusion that the critical scale
for the criterion length is significantly narrower than the
originally selected one.

Finally, we would like to lay emphasis on the fact that
there is no ideal scale for a criterion. One could identify
the critical scale for a criterion and for a specific problem,
by repeatedly running the planner on this problem using
different scales for the criterion and observing the quality
of the resulting plans in terms of this criterion. However,
this is not the best scale to be used. The reason is that the
best scale for each criterion and for a specific problem is a
very subjective matter that depends only on the evaluator's
preferences, i.e. the person who is interested in the solution
plan, and may be very different from the critical one.
Extracting the preferences of the evaluator (criteria
hierarchy, weights and scales) is a difficult problem that
has been thoroughly studied in the area of decision-making
and several methods have been proposed, e.g. interviews,
questionnaires, etc.

GRT versus MO-GRT. We conclude our performance
results by comparing GRT to MO-GRT. GRT can be
considered a special case of MO-GRT, if all criteria have



zero weights, except for length, which has a weight equal
to 1, and if the weight of the past plan is equal to 0, while
the weight of the remaining plan is equal to 1.

Certainly, the conclusions drawn by the comparison
depend on the weights and scales that will be used by MO-
GRT. In order to retain a common reference in our
experiments, we compare GRT to MO-GRT using again
experiment A as a reference (Table 10).

Table 10: Comparison between the single-objective GRT
and the MO-GRT in experiment A.

EXperlment Misolved Miime Miength Mcost Mguration

GRT 0.00%  -19.94% 0.16% 6.34% -0.81%

As Table 10 shows, GRT is approximately 20% faster
than MO-GRT. Note that this acceleration is greater than
all accelerations encountered in all experiments. As far as
the other criteria are concerned, GRT found plans of
approximately equal length, higher cost and lower
duration.

Summary and Future Challenges

This paper presents MO-GRT, a heuristic state-space
STRIPS planner, which extends the single objective planner
GRT with the ability to take multiple criteria into account.
MO-GRT takes as input a user-defined hierarchy of
criteria, which are considered important for the resulting
plan, some preferences among them, in the form of
weights, and a scale of allowable values for each basic
criterion. As the experimental results have shown, different
weights and scales result in plans of different quality, with
respect to the criteria, and in different planning times. The
work presented in this paper is the first attempt to apply
multiple-criteria evaluation techniques in the area of
domain-independent planning.

There are several challenges for future work in the area
of multi-criteria planning. First of all, we intend to apply
MO-GRT in other domains where multiple criteria are of
interest and observe/analyze its performance and
limitations. The creation of a reservoir of such domains is
also in our goals.

An interesting extension of MO-GRT would be the
development of a meta-system, which will analyze a
planning problem in an attempt to identify the boundaries
where the cost of solving the problem with respect to the
various criteria lies. The development of such a system
may require either some pre-processing planning (e.g.
running the planner with marginal weights and collecting
the solution plans) or domain-analysis techniques. This
system would be useful to the evaluator, giving him the
opportunity for a better understanding of the problem and
helping him to set the scales for the various criteria.

Another challenge refers to the adoption of utility
models (Haddawy, and Hanks, 1998). The extension of the
techniques presented in this paper, so as to cover
probabilities and utility models, is straightforward but is
more costly from a computational point of view. Actually,
a greater effort will be needed to construct the heuristic,
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since in that case, cost-vectors accompanied by their
probabilities have to be computed for all the non-
dominated ways to achieve a problem's facts and for all the
possible worlds.

Finally, a last extension could be the special treatment of
time. Currently, MO-GRT treats all criteria in a cumulative
manner, however actions can be executed in parallel, so
taking into account parallel action execution could result in
more accurate plans.
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Abstract

We approach the problem of finding plans based on
multiple optimization criteria from what would seem an
unlikely direction: find one valid plan as quickly as
possible, then stream essentially @/l plans that improve on
the current best plan, searching over incrementally longer
length plans. This approach would be computationally
prohibitive for most planners, but we describe how, by
using a concise trace of the search space, the PEGG
planning system can quickly generate most, if not all, plans
on a given length planning graph. By augmenting PEGG
with a branch and bound approach the system is able to
stream parallel plans that come arbitrarily close to a user-
specified preference criteria based on multiple factors. We
demonstrate in preliminary experiments on cost-augmented
logistics domains that the system can indeed find very high
quality plans based on multiple criteria over reasonable
runtimes. We also discuss directions towards extending the
system such that it is not restricted to Graphplan’s scheme
of exhaustively searching for the shortest step-length plans
first.

I. Introduction

From a classical planning perspective a basic, multiple
criteria optimization problem might entail finding a plan
that optimizes two factors:
x: the number of time steps
y: the total ‘cost’ of the plan

Here the optimization itself will be with respect to some
user-specified criteria involving x and y. Graphplan is a
well-known classical planner that, in spite of the more
recent dominance of heuristic state-search planners, is still
one of the most effective ways to generate the so-called
“optimal parallel plans”. State-space planners are drowned
by the exponential branching factors of the search space of
parallel plans (the exponential branching is a result of the
fact that the planner needs to consider each subset of non-
interfering actions). However, there is no known practical
approach for finding cost-optimal plans with Graphplan, let
alone optimizing over some arbitrary weighting of time
steps and cost. We describe and report on initial
experiments with a Graphplan-based system that streams a
sequence of plans that increasingly approach a user-
specified optimization formula based on multiple criteria.
This system, which we call Multi-PEGG, seeks to find the
plan that comes closest to matching the user’s preference
expressed as a linear preference function on two variables.
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(e.g. ax + By, where x and y might be defined as above).
As we’ll discuss in Section V (future work) extending the
system to handle more than two criteria is straightforward,
as is implementation of criteria such as ‘the least cost plan
with no more than k steps’.

Consider first how a plan satisfying multiple criteria
might be generated by Graphplan if computation time were
not an issue. By alternating search episodes on the
planning graph with extensions of the graph, Graphplan’s
algorithm is guaranteed to return the shortest plan in terms
of time steps (where a step might include multiple actions
that do not conflict). If Graphplan finds its shortest valid
plan for the given problem on a k-level planning graph, a
modest modification of the program could, in principal,
find all possible valid k-length plans by conducting
exhaustive search on the same planning graph.! The final
set of plans could then be post-processed to find the best
one in terms of any other optimization criteria giving us,
for example, the least cost, k-length plan. However, not
only is this approach computationally impractical for many
problems/domains, but it can only handle a small subset of
the multi-objective criteria one could envision. Such a
system for example, could not satisfy a user request for the
least-cost plan of any length.

In a naive attempt to extend the system capabilities so its
scope includes plans of length greater than k, we might
iteratively extend the planning graph, restarting the solution
search for valid plans at each successive level. If we have a
means of calculating ‘cost’ for the subgoal sets generated
during the regression search, branch and bound techniques
might be applied after finding the first valid plan to prune
some of this search space. Nonetheless, this will clearly be
an intractable approach for any problem of sufficient size
to be of interest.

The PEGG (Pilot Explanation Guided Graphplan)
planning system dramatically boosts Graphplan’s ability to
find step optimal plans by taking advantage of certain
symmetries and redundancies in its search process
[Zimmerman and Kambhampati, 2001, 2000]. We report
here on preliminary work with extending PEGG in such a
way that it leverages those planning graph related

! There are few subtleties involved in doing this. For example,
care must be taken so that the subgoal sets generated in the
regression search that directly leads to each valid plan are not
memoized. The standard Graphplan goal assignment routine
memoizes goal sets at each planning graph level as it backtracks.



symmetries to efficiently generate al/l plans of interest on
any length graph. The ‘Multi-PEGG’ planner, which we
focus on in this study, employs this capability together with
a heuristic-based branch and bound strategy to generate a
stream of increasingly higher quality plans (relative to the
user’s definition of quality). Given a variety of linear user
preference formulas, we show that this approach can
efficiently stream monotonically improving solutions for
two different logistics domains augmented with action cost
values.

The rest of this paper is organized as follows: Section II
gives an overview of the PEGG system on which Multi-
PEGG is based, and reports on its performance relative to
Graphplan and one of the faster heuristic state space
planners. Section III describes the extensions to PEGG
that allow it to efficiently extract many, if not all, valid
plans from a given length planning graph in reasonable
time. Section IV then describes how Multi-PEGG exploits
this capability along with branch and bound techniques to
stream plans that come increasingly closer to a user-
specified quality metric based on multiple criteria. Section
V contains our conclusions and ideas for future work.

I1. Using memory to expedite Graphplan’s
search for step-optimal plans

The approach we adopt to finding plans satisfying multiple
criteria is rooted in the ability of the PEGG planner to
efficiently find all valid plans implicit in a given length
planning graph. The planning system makes efficient use of
memory to transform the depth-first nature of Graphplan’s
search into an interactive state space view in which a
variety of heuristics are used to traverse the search space
[Zimmerman and Kambhampati, 2001, 2002]. It
significantly improves the performance of Graphplan by
employing available memory for two purposes: 1) to avoid
some of the redundant search Graphplan conducts in
consecutive iterations, 2) and (more importantly), to
transform Graphplan’s iterative deepening depth-first
search into iterative expansion of a selected set of states
that can be traversed in any desired order. We briefly
review in this section the PEGG algorithm before
describing how it can be adapted to find all plans on the
graph.

The original motivation for the development of PEGG
and the related planner that preceded it, EGBG
[Zimmerman and Kambhampati, 1999], was the
observation of redundancy in Graphplan’s iterative-
deepening solution search. Connections  between
Graphplan’s search and IDA* search was first noted by
Bonet and Geffner, 1999. One shortcoming of the standard
IDA* approach to search is the fact that it regenerates so
many of the same nodes in each of its iterations. It’s long
been recognized that IDA*s difficulties in some problem
spaces can be traced to using too little memory. The only
information carried over from one iteration to the next is
the upper bound on the f-value. Given that consecutive
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iterations of search overlap significantly, we investigated
methods for using additional memory to store a trace of the
explored search tree in order to avoid repeated re-
generation of search nodes. Once we have a representation
of the search space that has already been explored, we can
transform the way this space is extended in the next
iteration. In particular, we can (a) expand the nodes of the
current iteration in the order of their heuristic merit (rather
than in a default depth first order) and/or (b) we can
consider iteratively expanding a select set of states.

Although this type of strategy is too costly to
implement in a normal IDA* search, the IDA*-search done
by Graphplan is particularly well-suited to these types of
changes as the kth level planning graph provides a compact
way of representing the search space traversed by the
corresponding IDA* search in its kth iteration. Realization
of this strategy however does require that we provide an
efficient way of extending the search trace represented by
the planning graph, starting from any of the search states.

Consider the Figure 1 depiction of the search space for
three consecutive Graphplan search episodes leading to a
solution for a fictional problem in an unspecified domain.
Represented here are just the substates that result from
Graphplan’s regression search on the ,X,Y,Z, goals, but not
the mini CSP episodes that attempt to assign actions to
each proposition in a state. Thus, each substate on a given
planning graph level is linked to it’s parent state and is
composed of a subset of the parent’s goals and the
preconditions of the actions that were assigned. In each
episode, we show substates generated for the first time in a
unique shading and use the same shading when the states
are regenerated one planning graph level higher in the
subsequent search episode. A double line box signifies
states that eventually end up being part of the plan that is
extracted. As would be expected for IDA* search there is
considerable similarity (i.e. redundancy) in the search
space for successive search episodes as the plan graph is
extended. In fact, the backward search conducted at level k
+ 1 of the graph is essentially a replay of the search
conducted at the previous level k with certain well-defined
extensions as defined in (Zimmerman and Kambhampati,
1999).

Certainly Graphplan’s search could be made more
efficient by using available memory to retain at least some
portion of the search experience from episode n to reduce
redundant search in episode n+1. This motivation was the
focus of the EGBG system (Zimmerman and
Kambhampati, 1999), which aggressively recorded the
search experience in a given episode in a manner such that
essentially al/ redundant effort could be avoided in the next
episode.  Although that approach was found to run up
against memory constraints for larger problems, it suggests
a potentially more powerful use for a much more pared-
down search trace: leveraging the snapshot view of the
entire search space of a Graphplan iteration to focus on the
most promising areas. This transformation can free us from
the depth-first nature of Graphplan’s CSP search,



permitting us to move about the search space to visit it’s across episodes. The PEGG algorithm for building and

most promising sections first -or even exclusively. using a search trace retains Graphplan’s iterative nature but

PEGG exploits the search trace it builds, extends, and significantly transforms its search process. We make the
prunes primarily for its view of the effective search space, following two informal definitions before describing the
and only secondarily to avoid some of the redundant search algorithm developed to transform Graphplan’s search:

Search segment: a node-state as generated during

[nit
State

(which is itself the first search segment), indexed to a
specific level of the planning graph. Key content of a
search segment S, at plan graph level k is the
proposition list for the state, a pointer to the parent
search segment (S, ), and the actions assigned in
T satisfying the parent segments goals. The last
information is needed once a plan is found in order to
extract the actions comprising the plan from the
search trace.

Search trace (ST): the entire linked set of search
segments (states) representing the search space
visited in a Graphplan backward search episode. It’s
convenient to visualize it as a tiered structure with
separate caches for segments associated with search

\ Graphplan’s regression search from the goal state
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reverse order of the plan graph; the top ST level is 0
(it contains a single search segment whose goals are
the problem goals) and the level number is
incremented as we move towards the initial state.
\ When a solution is found the search trace will
necessarily extend from the highest plan graph level
T to the initial state, and the plan actions can be
extracted from the linked search segments in the ST
without unwinding the search calls as Graphplan
does.
We also define some processes:
Search trace translation: For a search segment in
the ST associated with plan graph level j after search
episode n, associate it with plan graph level j+1 for
episode n+1. Iterate over all segments in the ST.

j
\ the convention of numbering the ST levels in the
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The fact that search segments are mapped onto the

plan graph helps minimize the memory requirements.

-) -

/ 1 In order to pickup Graphplan’s search from any state
w] | in the trace, the number of valid actions for the state
3 N goals and their mutex status must be known. The
it . R simple expedient of successively linking the search
State W segment to higher plan graph levels in later search
/é E episodes makes this bookkeeping feasible.
£ 3 W Goal Visiting a search segment: For segment S, at plan
E E X E [T) 2 graph level j+1, visitation is a 3 —step process:
— 1F< Di Q ) z 1. Perform a memo check to ensure the subgoals
R 2] = B of S, are not a nogood at level j+1
E 1z % ) 2. [Initiate Graphplan’s CSP-style search to
I g L $ L satisfy the segment subgoals beginning at level
K T L r j+1. A child search segment is created and
\ 1 2 3 Proposition Levels 7 8 u linked to S, (extending the ST) whenever S,’s
goals are successfully assigned.
3. Memoize Sp’s goals at level j+1 if all attempts
Figure 1. Graphplan’s search space: 3 consecutive search to consistently assign them fail.
episodes on the planning graph We claim, without proof here, that as long as all/ the
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segments in the ST are visited in this manner the planner is

guaranteed to find a ‘step-optimal’ plan in the same search

episode as Graphplan (though the number of actions in the
plan may differ).

The entire PEGG trace building and search process is
detailed [Zimmerman and Kambhampati, 2001, 2002] and
we only outline it here. The search process is essentially 2-
phased: a promising state from the ST must be selected,
then depth-first CSP-type search on the state’s subgoals is
conducted. If the CSP search fails to find a plan, the
planner selects another ST search segment to visit. Our
work with a variety of different search trace architectures
has highlighted the importance of keeping the search trace
small and concise, both due to memory constraints and
because the search effort expended in non-solution bearing
episodes increases in direct proportion to the number of
segments in the ST. We’ve employ a variety of CSP
speedup techniques for the Graphplan style portion of the
search process and find that the benefits are compounded
because they greatly reduce the number of states visited -
and hence tracked in the ST. Chief amongst these methods
are explanation based learning (EBL), dependency directed
backtracking, domain preprocessing and invariant analysis,
and a bi-level plan graph.

As described in [Zimmerman and Kambhampati, 2001,
2002], the search trace provides us with a concise state
space view of PEGG’s search space, and this allows us to
exploit the ‘distance based’ heuristics employed by state
space planners such as HSP-R (Bonet and Geffner, 1999)
and AltAlt (Nguyen and Kambhampati, 2000). Two of the
approaches for employing these heuristics in PEGG that we
have investigated are:

e Ordering the ST search segments according to a given
state space heuristic and visiting all of them in order
(we term this PEGG-b )

e Ordering the ST search segments according to a given
state space heuristic and retaining only the ‘best’
fraction for visitation (PEGG-c)

The first approach maintains Graphplan’s guarantee of step

optimality but focuses significant speedup only in the final

search episode. The second approach sacrifices the
guarantee of optimality in favor of pruning search in al/
search episodes and bounds the size of the search trace that
is maintained in memory. As we’ve reported previously,
optimal length plans are generally found, regardless. For
this study, Multi-PEGG is run only under the PEGG-b
conditions (entire search space visited subject to branch &
bound constraints) and we defer further discussion of the

PEGG-c to the future work assessment of Section V.

Table 1 compares the performance of PEGG operation to
standard Graphplan as well as Graphplan enhanced with
the CSP speedup techniques that have been incorporated in

* The name scheme for PEGG operating in various modes
used in [Zimmerman and Kambhampati, 2001, 2002] is
retained here to avoid possible confusion.
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PEGG (EBL, DDB, domain preprocessing, etc.). Clearly
the enhancements alone have a major impact on standard
Graphplan’s performance, significantly extending the range
of problems it can solve. Focusing on the PEGG-b column
its ability to leverage its inter-episodic memory becomes
apparent. PEGG-b accelerates planning, by factors of up to
300 over standard Graphplan and 2 - 14x over even the
enhanced Graphplan.

When running in this mode, PEGG uses the ‘adjusted-
sum’ distance heuristic described in [Nguyen and
Kambhampati, 2000] to move about the search space
represented in the ST. Summarizing their description: The
heuristic cost h(p) of a single proposition is computed
iteratively to fixed point as follows. Each proposition p is
assigned cost 0 if it’s in the initial state and e otherwise.
For each action, a, that adds p, h(p) is updated as:

h(p) := min{h(p), 1+h(Prec(a) }
where h(Prec(a)) is computed as the sum of the
h values for the preconditions of action a.
Define /lev(p) as the first level at which p appears in the
plan graph and /lev(S) as the first level in the plan graph in
which all propositions in state S appear and are non-

Bgam (8) 1= 2, c0s t(p;) + lev(S) = max lev(p,)
piES !
mutexed with one another. The adjusted-sum heuristic may
now be stated:

It is essentially a 2-part heuristic; a summation, which is
an estimate of the cost of achieving S under the assumption
that its goals are independent, and an estimate of the cost
incurred by negative interactions amongst the actions that
must be assigned to achieve the goals. (Due to space
considerations, we limit our experimentation here to only
this distance heuristic.)

As discussed in [Zimmerman and Kambhampati, 2001,
2002], PEGG-b exhibits speedup over Graphplan in spite
of the fact that it revisits (but doesn’t regenerate) every
state that Graphplan generates in each non-solution bearing
search episode. One primary sources of its advantage lies
in the fact that any state in the ST from the previous
episode can be extended in the new episode without
incurring the search cost needed to regenerate it. If a state
in the deepest levels can be extended to the initial state, we
will have found a solution while completely avoiding all
the higher level search required to reach it from the top
level problem goals. Hereafter we refer to a search trace
segment that is visited in the solution episode and extended
via backward search to find a valid plan as a seed segment.
Thus, to the extent that the search heuristic identifies a seed
segment deep in the ST in the solution episode, PEGG will
greatly shortcut the search in what is often the most costly
of Graphplan’s iterations.

In the next section, we describe an extension to PEGG
that enables the system to find (in most cases) all step-
optimal plans implicit in a given planning graph. This will
prove to be key capability in order for Multi-PEGG to
generate plans satisfying multiple optimization criteria.



Stnd GP GP-e PEGG-b PEGG-c Alt Alt (Lisp version)

Problem (enhanced Graphplan) | heuristic: adjsum heuristic: adjsum cpu sec (/acts)
Ccpu sec cpu sec cpu sec (steps/acts) heuristics:

Cpu sec (steps/acts) (steps/acts) adjusum2  combo
bw-large-B 234.0 101.0 (18/18) 12.2 (18/18) 94 (18/18) 87.1(/18) 20.5(/28)
bw-large-C ~ ~ ~ 60.5 (28/28) 738 (/28) 114.9 (/38)
bw-large-D ~ ~ ~ 460.9 (36/36) 2350 (/36) ~
Rocket-ext-a | 846 39.8 (7/36) 2.8 (7/34) 1.1 (7/34) 436(/40) 1.26(/ 34)
Rocket-ext-b | ~ 27.6 (7/36) 2.7 (7/34) 2.7 (7134) 555(/36)  1.65(/34)
att-log-a ~ 31.8 (11/79) 2.6 (11/56) 2.2 (11/62) 36.7 (/56) 2.27(/64)
att-log-c ~ ~ ~ 22.9 (12/57) 53 3(/47)  19.0 (/67)
Gripper-8 ~ 28.8 (15/23) 16.6 (15/23) 8.0 (15/23) 6 (/23) *
Gripper-15 ~ ~ 475 (36/45) 16.7 (36/45) 141 (/45)  16.98 (/45)
Gripper-20 ~ ~ ~ 44.8 (40/59) 38.2(/59)  20.92(/59)
Tower-7 ~ 114.8 (127/127) 14.3 (127/127) 1.1 (1271127) 7.0 (127) *
Tower-9 ~ ~ 118 (511/511) 236 (511/511) 121(/511) *
Mprime-1 17.5 48  (4/6) 36  (4/6) 2.1 (4/6) 7226(/4) 796 (/4)
Mprime-16 ~ 54.0 (8/13) 352 (8/13) 5.9 (4/6) ~ ~
8puzzle-1 2444 95.2 (31/31) 391 (31/31) 9.2 (31/31) 143.7 (/31) 119.5(/39)
8puzzle-2 1546 87.5 (30/30) 31.3  (30/30) 7.0 (30/30) 348.3 (/30) 50.5(/48)
8puzzle-3 50.6 19.7 (20/20) 2.7 (20/20) 1.8 (20/20) 62.6 (/20) 63.3 (/20)
aips-grid1 312 66.0 (14/14) 34.9 (14114) 84 (14/14) 739.4 (114)  640.5 (/14)
aips-grid2 ~ ~ ~ 129.1 (26/26) ~ ~

Table 1 PEGG performance vs. Graphplan, enhanced Graphplan and a BSS heuristic planner
GP-e: Graphplan enhanced with bi-level PG, domain preprocessing, EBL/DDB, goal & action ordering
PEGG-b: Same as PEGG, all segments visited as ordered by adjsum heuristic
PEGG-c: bounded PE search, only best 20% of search segments visited, as ordered by adjsum heuristic
Parentheses next to cpu time give # of steps/ # of actions in solution
All planners in Allegro Lisp, runtimes (excl. gc time) on Pentium 500 mhz, Linux, 256 M RAM
“adjusum2” and “combo” are the most effective heuristics used by AltAlt

~ indicates no solution was found in 30 minutes

III Extracting all valid plans with PEGG

As discussed in the introduction, extracting all valid plans
from even the k-level planning graph, where k is the first
level at which a problem solution can be found, is in
general intractable for Graphplan. Indeed, no existing
planner efficiently does this. We describe here a version
of PEGG, which we call PEGG-ap (All Plans) that can in
fact efficiently generate all such plans in reasonable time
for problems that are not highly solution dense and can
stream an arbitrarily large number of them even when there
are thousands. It’s the combination of PEGG’s search trace
and the planning graph that make this a feasible proposal
for PEGG.

Consider the depiction of Graphplan’s search space in the
solution episode (third graph) of Figure 1. This
corresponds to the ST as it exists immediately after the first
plan is found. At this point we’ve provably shown that
each state (set of subgoals) corresponding to the sets of
assigned actions in a step of this plan can be extended to
the initial state via Graphplan’s CSP-style search. These

60

* indicates problem wasn’t run

states are the nine speckled search segments in the figure
and we will hereafter refer to any such state as a plan state.
In effect then, such a state at level m can be seen as the root
node of a subtree with at least one branch that extends
from level m to the initial state. We will call such a subtree
a plan stem (or just stem) and observe that there may be
many valid plans implicit in the given planning graph that
have the same plan stem as their base. Now consider a
planning system which seeks to find all valid plans on a
planning graph and that can keep track of such plan stems
each time it finds a new plan. If the system can efficiently
check during the regression search to see if the set of
subgoals, S, to be satisfied at a given level m corresponds
to one of these states, it has a powerful means of
shortcutting that search. Whenever S corresponds to one of
the plan stem nodes in memory the planner will have found
a new plan with a head consisting of the actions/steps
assigned in regression search to level m and a tail
consisting of the actions/steps corresponding to the plan
stem in memory. It can then immediately backtrack in
search of other plans.



The fact that PEGG conducts its search on a planning
graph suggests an efficient approach for retaining in
memory the states associated with a valid plan: the same
caches used to memoize states that cannot be consistently
satisfied during regression search (i.e. ‘nogoods’) can be
used to memoize the states in the extracted plan. Like
Graphplan, PEGG’s memo-checking routine checks these
planning graph level-specific caches anyway before
attempting to assign a set of subgoals in CSP fashion.
PEGG-ap, has a modified memo saving routine so that
when a valid plan is found, it memoizes each plan state at
its associated planning graph level, and includes a pointer
to the search segment in the ST. The PEGG-ap memo-
checking routine differentiates between a nogood memo
and a plan state memo such that when a search state
matches a plan memo (from some plan already identified),
the routine returns a pointer to the relevant search segment
in the ST. This enables PEGG-ap to construct a new
plan(s) without further search.” Note that since all search
segments that are part of a valid plan are anyway contained
in the ST, it is not necessary to actually store each plan so
generated. As long as we maintain a list of the last search
segment in a plan tail (i.e. the state whose subgoals are
subsumed by the initial state) the upward-linked structure
of the ST allows us to extract all identified plans from it on
demand.

PROBLEM TOTAL | RUNTIME | RUN TIME SIZE OF ST
PLANS | 1STPLAN ALL (no. of states)
PLANS After 1stplan /
After all plans
BW-LARGE-A 1 1.3 29 52 / 107
HUGE-FCT 84 9.3 26.6 6642 / 16,728
FERRY6 384 15.8 17.2 377 | 421
GRIPPERS 1680 17.0 32.5 7670 / 10,730
TOWERS6 1 1.9 23 315 / 440
EIGHT1 12 40.1 75.0 18,650 / 29,909
ROCKET-EXT-A | (>2073) | 2.9 (> 14,000) 188 /(238)
ROCKET-EXT-B_| 1111 1.1 77.0 194 / 2200
ATT-LOG-A 1639 29 2407 279 | 818

Table 2 PEGG-ap experiments with extracting all plans at
the first solution level of the planning graph
Values in parentheses are partial results reported at the time the

run was terminated. All planners in Allegro Lisp, runtimes (excl.

gc time) in cpu seconds on Pentium III, 900 mhz, Windows 98,
128 M RAM

The performance of PEGG-ap on a sampling of
benchmark planning problems is reported in Table 2. The
system was set to search in the PEGG-b mode; all ST
search segments are ordered and visited according to the
‘adjusted-sum’ heuristic.  The first column of values
reports the total number of step-optimal plans generated at
the planning graph level at which the first problem solution

? A search segment can be a stem root for more than one
valid plan since there may be more than one consistent
assignment of actions satisfying its goals.
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was found. Clearly, the solution density varies greatly
across domains and problems, from the Tower of Hanoi
domain that can only have one solution to the logistics
domains that may have thousands of valid optimal plans
implicit in the planning graph at the solution level.
Columns 3 and 4 report run times in cpu seconds to find the
first plan and all plans respectively, and the figures testify
to the effectiveness of this approach in extracting the
remaining plans once the first plan has been found. For
example, on the HUGE-FCT problem it takes PEGG-ap 9.3
seconds to generated the first solution and then just over 17
seconds to find the remaining 83 on the 18-level planning
graph. The first solution to GRIPPERS is found in 17
seconds and then the remaining 1679 solutions are
generated within another 16 seconds. Many logistics
domains problems are so solution dense however that there
are thousands of step-optimal plans on the planning graph
at the solution level. In the case of ROCKET-EXT-A, for
example PEGG-ap had streamed over 2000 plans in 3 '
hours when the run was terminated.

The fifth column provides a measure of the additional
memory required in order for PEGG-ap to extract all step-
optimal plans as compared to just the first plan found. We
compare here the size of the search trace at the time the
first plan is generated with its size after all plans have been
found. As expected, the ST grows as more of the states are
visited in an attempt to find other plans, but the growth is
not linear in the number of plans. This is a reflection of the
fact that for most domains/problems plans often share many
of the same ST states. The number of search segments
(states) in the ST increases by a factor of 11 in the worst
case here, but on average the increase is a factor of 2
larger. In no case has this memory demand exceeded the
available swap space on the machine used.

IV Streaming plans based on multiple
optimization criteria

Up to this point, all versions of PEGG we’ve discussed are
capable of optimizing the number of plan steps. This
ability is inherited from the IDA* nature of Graphplan’s
search process (The connections between Graphplan’s
search and IDA* was first noted by Bonet and Geffner,
1999.) In order for Multi-PEGG to also handle other
optimization criteria, we must have a means of estimating
the ‘cost’ of a achieving a state in terms of the criteria. We
start by assigning propositions in the initial states a cost of
zero and an execution cost for each action. Since PEGG
conducts regression search from the problem goals, the cost
of reaching those goals from any state generated during the
search (e.g. the states in the ST) is easily tracked as the
cumulative cost of the assigned actions up to that point.
Estimating the cost of reaching a given state from the initial
state however, is problematic. To evaluate that cost we
need to propagate the costs from the initial state to the state
using the mutual dependency between propositions and
actions. Specifically, the cost to achieve a proposition



depends on the cost to execute the actions supporting it,
which in turn depends on the costs to achieve propositions
that are their preconditions. The planning graph is well
suited to represent the relation between propositions and
actions, and we will make heavy use of it.

There are two measures of action and state cost that we
calculate and propagate in Multi-PEGG:

e Max cost: the value of the proposition with the
maximum cost in a set of propositions (a state or the
preconditions of an action).

e Sum cost: the sum of the costs of all propositions in a set

The first measure is most accurate when all preconditions
of an action (state) depend on each other and the cost to
achieve all of them is equal to the cost to achieve the
costliest one. This measure never overestimates the cost
and is admissible. The second measure is most accurate
when a state or all preconditions of an action are
independent. Although clearly inadmissible, it has been
shown in [11; 2] to be more effective than the max
measure. Note that the sum cost will always decrease for an
action when the cost of one of its preconditions improves,
but this is not guaranteed for max cost. As described
below we will make use of these measures both separately
and in combination in deciding which states to expand
during search.

In seeking a ‘compromise’ estimate of the true cost of
reaching the initial state from a given state, we have
considered linear combinations of the max and sum
measures. Noting that the last two terms of the adjusted-
sum heuristic (see section II) provide a measure of the
inter-dependence of the propositions in a state, we
experimented with using it as a weighting. The following
cost estimate for a state S, which we will call adjusted-
combo, has proven effective for the Multi-PEGG search
process we will describe below:

lev (S)— max lev (p,)
cst rics

adj —combo sum (S) +

glev (§) -1

lev (S) — max lev (p;)
PiE€

- glev (§) -1 max( )

where: lev(S) and lev(p) are as defined in section II, and
glev(S) is the planning graph level at which state
S is currently being evaluated.
Note that since no state S will ever be generated in
regression search at a planning graph level lower than
lev(S), the two weighting terms (in brackets) will always
sum to one. This cost estimate has the desired property
that the higher the degree of negative interactions between
the subgoals in S, the larger the fraction of the estimate
comes from summing the cost of its subgoals. This is
clearly an inadmissible heuristic since it can overestimate
the cost of a state, but this is of somewhat less concern
since Multi-PEGG seeks to stream plans of increasing
quality.
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We also must confront the issue of normalizing the cost
component to the length component when they are
combined in a user’s linear preference formula. The intent
of a preference formula such as o length + B cost will not
be met if there is no base upon which they can be
compared. Ideally, we’d like to normalize each component
over its optimal value, but in general, we don’t know those
values. However, as described below, Multi-PEGG in fact
first finds a step-optimal plan and then seeks to find a
better plan with respect to the user’s preference. As such,
at the point where it needs a value for plan quality in order
to conduct branch and bound search, it has the optimal plan
length and one possible plan cost in hand. When
generating the quality value, ¢ for a candidate plan we use
these base values (opt-length and base-cost , respectively)
to perform a rough normalization of the actual plan
parameters (length and cost ) in Multi-PEGG as follows:

length cost

opt—length base—cost

We can now give an overview of the high-level algorithm
used by Multi-PEGG to stream plans that increasingly
approach ¢, a specified optimization formula involving
more than just plan length:

1. Find the first valid plan -which will be step optimal-

using PEGG’s approach for conducting search using
a search trace. Memoize its constituent states as
successful plan states and return the plan to the user.
Whenever the planning graph is extended, propagate
not only mutex information but also action and
proposition max and sum cost information.

2. With a valid plan in hand, determine it’s quality
value based on the user-specified criteria, g.

3. Define the search space for the next search episode
in the following manner: Sort the remaining search
segments (states) in the ST based on their ¢ criteria.
Plan length is set by the current length of the
planning graph (say, k) and estimates of a state’s
cost are made based on the propagated cost of its
subgoals using the adjusted-combo formula.

4. Seek increasingly ‘higher quality’ plans by
conducting branch and bound search (using the ¢
value of the best plan found) on the sorted ST states.
Any candidate state is visited (as defined in section
II) as long as its estimated ¢ value is less than that of
the current best plan. New plans are generated in
the manner described for PEGG-ap; either by
reaching the initial state or an existing plan state.
Whenever the branch and bound finds a lower cost
plan, return it to user, memoize its plan states, and
update the bounding g value.

5. When the branch & bound search space is exhausted
at level k, extend the planning graph (propagating
cost information), translate the ST up one level, and
sort the search states as described in step 3 -with
two additions:

a. Filter from the search space for this episode any
state that does not have a decreased sum cost



value. (If the cost has not decreased there is no
way that it can be extended to a lower cost plan
than the current best.)

b. Each state S, visited in the previous episode at
associated planning graph level & that does not
extend to a plan effectively provides an updated
estimate of lev(S). Instead of the original /ev(S)
value, which is the first level at which the
propositions are binary non-mutex, we now have
an n-ary non-mutex level estimate, which is just .

6. Return to step 4.

This algorithm could of course go on seeking a better plan
indefinitely, so in practice we enforce a maximum runtime.

To date Multi-PEGG has been tested on three classical
problem domains that we modified to enable testing of its
ability to handle multi-criteria.

ROCKET domain
The standard version of this highly parallel logistics
domain involves multiple rockets that fly between locales
carrying cargo and people. We added cost values to the
domain actions as follows:

e rockets’ MOVE action> 4

e REFUEL> 3

e LOAD and UNLOAD actions> 1
The benchmark ROCKET-EXT-A and B problems involve
2 rockets, 4 locales, and 10 people and cargo items that
must reached goal locations. For both problems Graphplan
finds a step-optimal plan of length 7, (which involves using
both rockets) but there are a /arge number of such step
optimal plans on the 7-level planning graph (see Table 2)
and the number of actions in them may vary between 30
and 36. For this fairly simple problem structure it’s
straightforward to manually determine the optimal plans in
terms of actions or cost; if only one rocket is used the goals
can be reached in two fewer rocket trips, but it requires one
additional plan step. Beyond 8 steps no other cost
reductions are achievable.

Table 3 reports on Multi-PEGG’s performance in seeking
an optimal plan based on different linear combinations of
the plan length and plan cost criteria. Here we attempt to
give a feel for the dynamic nature of the plan streaming by
reporting for each user preference formula , the plan length

and cost and its calculated g value for the first plan found,
and then after 30, 120, and 1200 cpu seconds of runtime.
(We don’t report values for the 7.0 L + 0 C formula since
this is basic Graphplan’s bias. Because cost is absent from
the optimization expression, all plans found at the first
solution level will have equal ‘quality’.) The table reveals
several interesting characteristics of Multi-PEGG’s search
process. Once the first plan is found on the 7-level
planning graph, the branch and bound search for a lower
cost plan on that graph is quite effective in pruning the
search space. Whereas PEGG-ap was still searching for all
possible plans at level 7 after 14,000 seconds, Multi-
PEGG, after 1200 seconds, completes its search at level 7,
extends the planning graph, and conducts search on the 8
level graph for all but the first row optimization criteria.
The higher the cost weighting of the criteria, the more the
search is pruned on a given planning graph level. The
inadmissible nature of the adjusted-combo cost heuristic is
manifest in the fact that the .8L + .2C and .5L + .5C
formulas find some slightly lower cost plans on the 7-level
graph than the two formulas with higher cost weightings.
However the user’s preference appears to be reasonably
served for these latter two formulas in that they move on
fairly quickly to find some much higher quality (lower ¢
value) plans -at least based on their criteria- on the 8-level
planning graph.

The ROCKET domain problem provides limited
exercise for the type of multiple criteria optimizing that
Multi-PEGG does, so we look next at a more complex
logistics domain involving more than one mode of
transportation with different associated costs.

ATT LOGISTICS domain
The standard version of this domain involves two modes of
transporting packages; via airplane and via truck.
However, the trucks can only operate within a city (hauling
packages from the Post Office to the airport) and the
airplanes are used to fly between cities. We’ve extended
this domain by not only giving costs to the actions, but
enabling trucks to travel between cities that are within
range of their fuel capacity. They must refuel at each such
city. (For simplicity, we’ve not introduced actual refueling
actions for airplanes, but it’s straightforward to do so). The
trucks are constrained from traveling directly to any city by

Optimization 1% Plan Best plan at 30 sec Best plan at 2 min. | Best plan at 20 min.
Criteria [ step length/cost] qval cpusec. | [steplength/cost] gval | [steplength/cost]qval |[step length/cost] g val
L: length C: cost

8L+ .2C [7/56] 1.0 3 [7/52] .98 [7/52] 98 [7/50] 97
SL+ .5C [7/56] 1.0 3 [7/52] .96 [7/52] .96 [8/ 49] .95
2L+ 8C [7/56] 1.0 3 [7/56] 1.0 [7/56] 1.0 [8/45] .89
0L+ 10C [7/56] 1.0 3 [7/56] 1.0 [8/49] .86 [8/45] .80

Table 3. Multi-PEGG streaming of plans on the ROCKET-EXT-A problem, modified to include action costs.
All planners in Allegro Lisp, runtimes (excl. gc time) in cpu seconds on Pentium III, 900 mhz, Windows 98, 128 M RAM
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a ‘NEXT-TO’ fact added to the ‘DRIVE’ operator and a
set of facts in the initial condition that prescribe which
cities are directly next to each other. The cost values for
actions are as follows:

e LOAD-TRUCK, UNLOAD-TRUCK> 1
e LOAD-AIRPLANE, UNLOAD-AIRPLANE> 1
e DRIVE-TRUCKI (local, in-city trip)> 1
e DRIVE-TRUCK?2 (inter-city trip)> 3
e REFUEL-TRUCK (needed inter-city only) 1

e FLY> 20
This cost structure is such that, depending on such things as
where the truck and package(s) are located in a city,
whether their destination is the airport or a post office of a
distant city, and how many times a truck must be refueled,
transporting the cargo via truck may be cheaper than flying.
Note that delivery via truck could also take fewer steps
than via airplane because transfer of the cargo from truck to
airplane is avoided.

The original benchmark ATT-LOG-A problem that we
focus on here features 8 packages to be transported, 3 cities
(LA, PGH, BOS) each having one airport and one post
office, 1 truck in each city (initially), and both airplanes are
in one city. The step-optimal plan for the standard problem
is 11 steps and PEGG-ap finds that there are plans ranging
from 52 to 76 actions on this 11-level planning graph. (In
terms of our introduced cost structure the least cost, 11-step
plan would have a value of 128).

Our modified ATT-LOG-A problem retains all the
original parameters except that we introduce connected
cities linking the three destination cities (and thus
permitting truck travel) as follows:

e 4 cities between BOS and PGH

e 6 cities between PGH and LA

e 6 cities between BOS and LA
Each of these connecting cities contains an airport (but no
post office) so airplanes can also visit them and, feasibly
load/unload cargo. We designed the routing structure so
that, in combination with the cost structure, truck
transportation of cargo will only provided a cost advantage

between the cities of BOS and PGH, albeit at the expense
of time steps. We note that the additional transportation
routes increases the branching factor of this problem
considerably, so that although PEGG-ap extracts all step-
optimal plans of the original problem within about 40
minutes, it is unable to do so in twice that long on our
modified version.

Table 4 reports the performance of Multi-PEGG on this
problem for the same optimization formulas and runtime
intervals discussed for Table 3. Here there is much greater
variation in the quality of the streamed plans due to the
more complex structure of the logistical domain. Broadly
speaking, the streaming process on this problem has two
main phases once the first, step-optimal plan is found; 1)
optimizing over the cost of various action sets in alternative
11-step plans 2) searching beyond 11 steps for longer, but
less costly plans that use inter-city truck transportation
between PGH and BOS instead of airplanes. The branch
and bound on plan cost again greatly helps in pruning the
search space, as Multi-PEGG begins examining plans of
greater than the step-optimal length within 20 minutes for
three of the four optimization formulas. For the formulas
in the last two rows of the table, Multi-PEGG in fact
examines 13-step plans and greatly improves on its least
cost 11-step plan by finding some that use the PGH truck to
transport three packages to BOS instead of flying them.

The reported results also indicate that, while increasing
the bias towards low cost plans causes a more rapid move
in this direction for the first two formulas, the trend does
not continue with the third formula (compare plan cost
trends for these formulas in columns 3 or 4). This is
probably due to the complex interactions between how the
ST search space is visited (which is directed by the cost
heuristic) and the subsequent memoization of both failing
nodes and successful plan stem nodes.

V Conclusions and Future Work

We have conducted an investigation into the feasibility of

Optimization 1% Plan Best plan at 30 sec Best plan at 2 min. | Best plan at 20 min.
Criteria [ step length/cost] gval cpusec. | [step length/cost] qval | [steplength/cost]qval |[step length/cost] g val
L: length C: cost

8L+ .2C [11/208] 1.0 12 | [11/182] 98 | [11/166] 97 | [11/128] 94
5L+ 5C [11/208] 1.0 12 | [11/166] 95 | [11/144] 94 | [11/ 128] 90
2L+ 8C [11/208] 1.0 12 | [11/180] 96 | [11/160] 95 | [13/111] 78
0OL+10C [11/208] 1.0 12 | [11/166] 91 | [13/115] 80 | [13/107] 11

Table 4. Multi-PEGG streaming of plans on the ATT-LOG-A problem, modified to include action costs.
All planners in Allegro Lisp, runtimes (excl. gc time) in cpu seconds on Pentium III, 900 mhz, Windows 98, 128 M RAM
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streaming parallel plans satisfying multiple criteria using a
Graphplan-based planning system. Our preliminary work
shows that Multi-PEGG’s use of a concise search trace can
be exploited to allow it to efficiently generate a stream of
plans that monotonically approach a user’s preference for
plan quality when expressed as a linear preference function
on two variables. On the admittedly limited number of
problems examined to date, Multi-PEGG is not only
capable of finding the least cost step-optimal plan, but it
finds longer length plans that come closer to satisfying the
multi-objective optimization criteria.

Extending the current system to handle different
optimization criteria and more than two does appears to be
a straightforward task. Each such criterion requires a
suitable estimation function, and the ‘cost’ values must be
propagated in the planning graph separately. However, the
approach to ordering states in the ST according to a multi-
variable linear preference functions remains unchanged. It
is also not a difficult undertaking to extend the type of
criteria the user can employ to such things as ‘I am not
interested in plans costing over x” or ‘Give me only plans
shorter than length y’.

Overcoming the make-span bias of Multi-PEGG

In spite of the early success of the approach reported in
this paper, it clearly has some disadvantages. It inherently
starts with a step-optimal plan and, with some help from
branch and bound techniques, searches on incrementally
longer planning graphs streaming it’s current best plan as it
does so. If the user’s primary plan quality criteria is cost,
not length, and the types of low cost plans that are likely to
be of interest are many steps longer than the shortest length
plan, this approach could be unsatisfactory. Although we
recognized this limitation early in the investigation, we also
had in mind two major augmentations that might well
overcome it, and so proceeded with a test of the simpler
system reported here. We discuss these two augmentations
to Multi-PEGG next.

Liberation from Graphplan’s level-by-level search

There is in fact nothing formidable that requires Multi-
PEGG to finish its search on a given planning graph level
before considering possible plans on extensions of the
planning graph. The search trace again proves to be very
useful in this regard. Once the first valid plan has been
found and a plan quality value established for subsequent
branch and bound search, the ST can be translated up any
desired number of levels (subject to the ability to extend
the graph correspondingly and propagate the cost values)
and used in a search for plans of arbitrary length. Referring
back to Figure 1, this is equivalent to translating the ST
tree of the third search episode pictured upward on the
planning graph so that the XYZ root node now lies on some
level higher than 9. If we then assess the multi-criteria ¢
values for the search segments (states) in the ST at these
higher levels we can co-mingle them with the same search
segments from lower levels and order all of them together
for visitation according to our plan quality formula. To the
extent that we have an effective estimation formula for
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identifying the lowest cost plans, this will essentially enable
Multi-PEGG to concurrently consider multiple length plans
in its branch and bound search for a better plan.

This would be a prohibitive idea in terms of memory
requirements if we had to store multiple versions of the ST,
but we can retain only the one version of it and simply store
any level-specific cost and heuristic information in its
search segments as values indexed to their associated
planning graph levels. Interesting problems that arise
include such things as what range of plan lengths should be
considered at one time and how to avoid having to deal
with plans with steps consisting entirely of ‘persists’
operators.

Shortcutting the search in a given episode

Of the two modes for employing distance heuristics
discussed in section II, we have only reported the
performance of Multi-PEGG when it visits all states in the
ST (i.e. PEGG-b mode), modulo the branch and bound
process. It’s also possible to augment the branch and
bound pruning of search by screening from consideration
those states that do not meet some threshold criteria based
on a distance heuristic. Such states generated in
Graphplan’s regression search hold little or no promise of
being extended into a solution, yet their inclusion in the
search trace means PEGG will have to expand them
eventually in each intermediate search episode. We have
found that the distance-based heuristics are effective in
identifying such states, and have experimented with various
threshold options for restricting those maintained in the ST.
Although such filtering of the search space forfeits the
guarantee that PEGG will return a step-optimal solution, in
practice we find that that even restricting the active ST to
the heuristically best 10-15% of the generated states has no
impact on the quality of returned plans. When PEGG
operates in this mode, (tagged as ‘PEGG-¢c’ in Table 1)
there is a dramatic reduction of both the size of the working
ST and the time spent in non-solution bearing search
episodes. As indicated, PEGG-c solves many more
problems than either standard or enhanced Graphplan (GP-
e) and exhibits speedups of 40x or more over GP-e where
both find solutions. The table also reports the length of the
plans produced (in terms of steps and actions). In all cases,
PEGG-c finds a plan of equivalent step-length to the
Graphplan optimal plan.

The intuition for Multi-PEGG is that, besides looking for
the ‘next best plan’ we only want to visit a search segment
in the ST that has a high likelihood of being extended into a
valid plan. Of course, this may also screen out some of the
longer length but lower cost plans that we may be
interested in, so this is an empirical issue that needs to be
investigated.

Bounding the length of plans that need to be considered

Another interesting issue associated with this approach to
optimizing over multiple criteria is whether we can assess
when the streaming process can be terminated due to no (or
low) possibility of improving on the current best plan. The
planning graph may again prove to be a useful structure for
deducing such bounds on the search process.
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Abstract

The ability to make decisions and to assess potential
courses of action is a corner-stone of many Al appli-
cations, and usually this requires explicit information
about the decision-maker’s preferences. In many ap-
plications, preference elicitation is a serious bottleneck.
The user either does not have the time, the knowledge,
or the expert support required to specify complex multi-
attribute utility functions. In such cases, a method that
is based on intuitive, yet expressive, preference state-
ments is required. In this paper we suggest the use
of TCP-nets, an enhancement of CP-nets, as a tool for
representing, and reasoning about qualitative preference
statements. We present and motivate this framework,
define its semantics, and show how it can be used to
perform constrained optimization.

I ntroduction

The ability to make decisions and to assess potential courses
of action is a corner-stone of many Al applications, includ-
ing expert systems, autonomous agents, decision-support
systems, recommender systems, configuration software, and
constrained optimization applications. To make good deci-
sions, we must be able to assess and compare different alter-
natives. Sometimes, this comparison is performed implic-
itly, as in many recommender systems. However, in many
cases explicit information about the decision-maker’s pref-
erences is required.

Utility functions are an ideal tool for representing and rea-
soning with preferences. However, they can be very difficult
to elicit, and the effort required is not always possible or
justified. Instead, one should resort to other, more qualita-
tive forms of preference representation. Ideally, this qualita-
tive information should be easily obtainable from the user by
non-intrusive means. That is, we should be able to generate
it from natural and relatively simple statements about pref-
erences obtained from the user, and this elicitation process
should be amenable to automation. In addition, automated
reasoning with this representation should be feasible and ef-
ficient.

One relatively recent framework for preference repre-
sentation that addresses these concerns is that of Condi-
tional Preference Networks (CP-nets) (Boutilier et al. 1997;
1999). In CP-nets, the decision maker is asked to describe
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how her preference over the values of one variable depends
on the value of other variables. For example, she may state
that her preference for a dessert depends on the value of the
main-course as well as whether or not she had an alcoholic
beverage. Her choice of an alcoholic beverage depends on
the main course and the time of day. This information is de-
scribed by a graphical structure in which the nodes represent
variables of interest and the edges represent dependence re-
lations between the variables. Each node is annotated with
a conditional preference table (CPT) describing the user’s
preference over alternative values of this node given differ-
ent values of the parent nodes. CP-nets capture a class of
intuitive and useful natural language statements of the form
“| prefer the value x, for variable X giventhat Y = y, and
Z = zy”. Such statements do not require complex intro-
spection nor a quantitative assessment.

In (Boutilier et al. 1997) it was observed that there is an-
other class of preferential statements, not captured by the
CP-net model, that is no less intuitive or important. These
statements have the following form: “It is more important
to me that the value of X be high than that the value of
Y be high.” We call these relative importance statements.
For instance, one might say “The length of the journey is
more important to me than the choice of airline”. A more
refined notion of importance, though still intuitive and easy
to communicate, is that of conditional relative importance:
“The length of the journey is more important to me than the
choice of airline provided that I am lecturing the following
day. Otherwise, the choice of airline is more important.”
This latter statement is of the form: “A better assignment for
X is more important than a better assignment for Y given
that Z = z,.” Notice that information about relative impor-
tance is different from information about independence. In
the example above, my preference for an airline does not de-
pend on the duration of the journey because, e.g., | compare
airlines based on their service, security levels and the quality
of their frequent flyer program.

In this paper we show that enriching a CP-net based pref-
erential relation by adding such statements may have a sig-
nificant impact on both the consistency of the specified rela-
tion, and the reasoning about it. Likewise, we show that the
internal structure of such a "mixed” preferential statement
set can be exploited in order to achive efficiency in both con-
sistency testing and in preferential reasoning. In particular,



we present an extension of CP-nets, which we call TCP-
nets (for tradeoffs-enhanced CP-nets), and show how they
can be used to compute optimal outcomes given constraints.
TCP-nets capture both information about conditional inde-
pendence and about conditional relative importance. Thus,
they provide a richer framework for representing user pref-
erences, allowing stronger conclusions to be drawn, yet re-
main committed to the use of intuitive, qualitative informa-
tion as their source.

This paper is organized as follows. First, we describe the
notions underlying TCP-nets: preference relations, prefer-
ential independence, and relative importance. Second, we
define TCP-nets, and provide a number of examples. Third,
we define the semantics of TCP-nets and discuss the con-
ditions for the consistency of the specified preferential or-
ders. Forth, we show how TCP-nets can be used to perform
constrained optimization. We conclude with a discussion of
future work. Proofs and a discussion of the TCP-nets ap-
plicability to the configuration problems appears in the full
paper (Domshlak & Brafman 2002b).

Preference Orders, Independence, and
Relative Importance

In this section we describe the ideas underlying TCP-nets:
preference orders, preferential independence and condi-
tional preferential independence, as well as relative impor-
tance and conditional relative importance.

Preference and Independence

A preference relation is a total pre-order (a ranking) over a
set of outcomes. Given two outcomes o, o', we write o = o’
to denote that o is at least as preferred as o' and we write
o > o' to denote that o is strictly more preferred than o’. The
types of outcomes we are concerned with consist of possi-
ble assignments to some set of variables. More formally,
we assume some given set V = {X;,..., X} of variables
with corresponding domains D(X4), ..., D(X,,). The set
of possible outcomes is then D(X;) x --- x D(X,,). For
example, in the context of the problem of configuring a per-
sonal computer (PC), the variables may be processor type,
screen size, operating system etc., where screen size has the
domain {17in, 19in, 21in}, operating system has the domain
{LINUX, Windows98, WindowsXP}, etc. Each assignment
to the set of variables specifies an outcome — a particular PC
configuration. Thus, a preference ordering over these out-
comes specifies a ranking over possible PC configurations.
The number of possible outcomes is exponential in n,
while the set of possible total orders on them is doubly ex-
ponential in n. Therefore, explicit specification and repre-
sentation of a ranking are not realistic. We must find im-
plicit means of describing this preference relation. Often,
the notion of preferential independence plays a key role in
such representations. Intuitively, X and Y = V — X are
preferentially independent if for all assignments to Y, our
preference over X values are identical. More formally, let
x1,%s € D(X) for some X C V (where we use D(-) to
denote the domain of a set of variables as well), and let
v1,y2 € D(Y), where Y = V — X. We say that X is
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preferentially independent of Y iff, for all x1, x5, y1, y2 we
have that

x1y1 = Xoy1 iff X1y2 = X2y

For example, in our PC configuration example, the user may
assess screen size to be preferentially independent of pro-
cessor type and operating system. This could be the case if
the user always prefers a larger screen to a smaller screen,
no matter what the processor or the OS are.

Preferential independence is a strong property, and there-
fore, less common. A more refined notion is that of condi-
tional preferential independence. Intuitively, X and Y are
conditionally preferentially independent given Z if for every
fixed assignment to Z, the ranking of X values is indepen-
dent of the value of Y. Formally, let X,Y and Z be a par-
tition of V and let z € D(Z). X and Y are conditionally
preferentially independent given z iff, for all x1, x2, y1, y2
we have that

x1y1Z > X2y1Z iff X1y22Z = Xoyaz

X and Y are conditionally preferentially independent given
Z if they are conditionally preferentially independent given
any assignment z € D(Z). Returning to our PC exam-
ple, the user may assess operating system to be indepen-
dent of all other features given processor type. That is, it
always prefers LINUX given an AMD processor and Win-
dows98 given an Intel processor (e.g., because he might be-
lieve that Windows98 is optimized for the Intel processor,
whereas LINUX is otherwise better). Note that the notions
of preferential independence and conditional preferential in-
dependence are among a number of standard notions of inde-
pendence in multi-attribute utility theory (Keeney & Raiffa
1976).

Relative Importance

Although statements of preferential independence are nat-
ural and useful, the orderings obtained by relying on them
alone are relatively weak. To understand this, consider two
preferentially independent boolean attributes A and B with
values a, as and by, bo, respectively. If A and B are prefer-
entially independent, then we can specify a preference order
over A values, say a1 > ao, independently of the value of
B. Similarly, our preference over B values, say by = bs,
is independent of the value of A. From this we can deduce
that aq by is the most preferred outcome and a»b- is the least
preferred outcome. However, we do not know the relative
order of a;bs and axby. This is typically the case when we
consider independent variables: We can rank each one given
a fixed value of the other, but often, we cannot compare
outcomes in which both values are different. One type of
information that can address some (though not necessarily
all) such comparisons is information about relative impor-
tance. For instance, if we say that A is more important than
B then this means that we prefer to reduce the value of B
rather than reduce the value of A. In that case, we know that
a1by > azby, and we can (totally) order the set of outcomes
asaiby > airbs = asbr = asbs.

Returning to our PC configuration example, suppose that
operating system and processor type are independent at-



tributes. We might say that processor type is more impor-
tant than operating system, e.g, because we believe that the
effect of the processor’s type on system performance is more
significant than the effect of the operating system.

Formally, let a pair of variables X and Y be preferen-
tially independent given W = V — {X ,Y'}. We say that
X is more important than Y, denoted by X > Y, if for ev-
ery assignment w € D(W) and for every z;,z; € D(X),
Ya,yp € D(Y), such that z; > z; given w and yp > y,
given w, we have that:

TiYoW > T;YpW.

For instance, when both X and Y are binary variables, and
1 > xo and y; > yo hold given w, then X > Y iff we
have z1yow > zoy;w for all w € D(W). Notice that
this is a strict notion of importance — any reduction in Y
is preferred to any reduction in X. Clearly, this idea can
be refined by providing an actual ordering over elements of
D(XY). We have decided not to pursue this option farther
because it is less natural to specify. However, our results
generalize to such specifications as well. In addition, one
can consider relative importance assessments among more
than two variables. However, we feel that such statements
are somewhat artificial and less natural to articulate.

Relative importance information is a natural enhancement
of independence information. It retains the property we
value so much: it corresponds to statements that a naive
user would find simple and clear to evaluate and articulate.
Moreover, it can be generalized naturally to a notion of con-
ditional relative importance. For instance, suppose that the
relative importance of processor type and operating system
depends on the primary usage of the PC. For example, when
the PC is used primarily for graphical applications, then the
choice of an operating system is more important than that
of a processor because certain important software packages
for graphic design are not available on LINUX. However,
for other applications, the processor type is more important
because applications for both Windows and LINUX exist.
Thus, we say that X is more important than Y given z if we
always prefer to reduce the value of Y rather than the value
of X when z holds.

Formally, let X, Y, W be as above, and let Z C W. We
say that X is more important than Y given an assignment
z € D(Z) (ceteris paribus) iff, for any assignment w on
W =V - ({X,Y}UZ) we have:

TiYaZW > T;YpZW

whenever x; > x; given zw and y; > y, given zw. We
denote this relation by X >, Y. Finally, if for some z €
D(Z) we have that either X >, Y, or Y >, X, then we say
that the relative importance of X and Y is conditioned on Z,
and write RZ(X,Y, Z).

TCP Nets

TCP-nets (for CP-nets with tradeoffs) is an extension of
CP-nets (Boutilier et al. 1999) that encodes (conditional)
preferential independence and (conditional) relative impor-
tance statements. We use this graph-based representation
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for two reasons: First, it is an intuitive visual represen-
tation of preference independence and relative importance
statements. Second, the structure of the graph has impor-
tant consequences to issues such as consistency and com-
plexity of reasoning. For instance, one of the basic results
we present later shows that when this structure is “acyclic”
(for a suitable definition of this notion!), then the preference
statements contained in the graph are consistent — that is,
there is a total pre-order that satisfies them.

TCP-nets are annotated graphs with three types of edges.
The nodes of a TCP-net correspond to the problem variables
V. The first type of (directed) edge captures preferential de-
pendence, i.e., an edge from X to Y implies that the user has
different preferences over X values given different values of
Y. The second (directed) edge type captures relative impor-
tance relations. The existence of such an edge from X to Y’
implies that X is more important than Y. The third (undi-
rected) edge type captures conditional importance relations:
Such an edge between nodes X and Y exists if there exists
some Z for which RZ(X,Y, Z) holds.

o
&

[a1 > a2] [b2 > b1]

[(@1 Ab1) V (a2 Ab2) : c1 > ca;

((11 /\b2) \Y ((lz /\b1) P C2 > 61]

[c1 1 d1 > do; ca i da > di]

[di:e1 > e2; da:ea > ei]
[di:fi>fo> fa5d2: f3 > fi1 > fol

Figure 1: An example CP-net

Like in CP-nets, each node X in a TCP-net is annotated
with a conditional preference table (CPT). This table asso-
ciates a preferences over D(X) for every possible value as-
signment to the parents of X (denoted Pa(X)). In addition,
in TCP-nets, each undirected edge is annotated with a condi-
tional importance table (CIT). The CIT associated with such
an edge (X,Y") describes the relative importance of X and
Y given the value of the conditioning variables.

Formally, a TCP-net AV is a tuple (V, cp, i, ci, cpt, cit):

1. V is a set of nodes, corresponding to the problem vari-
ables {X1,...,Xn}

2. cp is a set of directed cp-arcs {ai,...,ar} (where cp
stands for conditional preference). A cp-arc (X;, X;) be-
longs to V' iff the preferences over the values of X; de-
pend on the actual value of X;.

3. iisaset of directed i-arcs {31, ..., 0} (wherei stands for
importance). Ani-arc (X;, X;) belongs to N iff X; > X ;.

4. ciis a set of undirected ci-arcs {v1,...,7vm} (Where ci
stands for conditional importance). A ci-arc (X;, X;) be-
longs to NV iff we have RZ(X;,X;,Z) for some Z C
V- {X;, X;}.

5. cpt associates a CPT with every node X € V. ACPT is
from D(Pa(X)) (i.e., assignment’s to X ’s parent nodes)
to total pre-orders over D(X).

6. cit associates with every ci-arc (X;, X;) asubset Z of V—
{X;,X;} and a mapping from a subset of D(Z) to total



orders over the set {X;, X;}. We call Z the selector set
of (X“XJ) and denote it by S(X“Xj)l

A CP-net (Boutilier et al. 1999) is simply a TCP-net in
which the sets i and ci (and therefore cit) are empty, and that
every node X € V is independent of all other nodes given
Pa(X). In the rest of this section we provide examples of
TCP-net. We start with an example of a CP-net shown in
Figure 1.

a>a b>b

(b)

Figure 2: lllustrations for Example 2.

Example 1 The CP-net in Figure 1 is defined over the vari-
ables {4, B,C, D, E, F'}; all variables are binary except for
the three-valued F'. The decision maker specifies uncondi-
tional preference over the values of a (denoted in figure by
a1 > az). However, if A = a; and B = b, the decision
maker prefers ¢ to ¢; (denoted by (a; Ab2) : ca = ¢1). Now
consider this CP-net and the following three outcomes: a =
a1b101d2e2f2, ﬂ = a1b102d262f2, and v = a1b102d1€2f2.
a and g assign the same values to all variables except C.
« assigns to C' a value that is preferred to the value 3 as-
signs to C', given the assignment to the parents of C' (denoted
Pa(C)). Therefore, a = 3 is a consequence of this CP-net.
The same argument applies to 8 and ~, with respect to the
variable D, and thus, 8 > « is a consequence of this CP-net
as well. a > ~y cannot be derived directly from the CP-net
above. However, this relation can be inferred via transitivity
froma > gand 8 > v.

In the following examples all variables are binary, al-
though the semantics of both CP-net and TCP-net is defined
with respect to arbitrary finite domains.

Example 2 Figure 2(a) illustrates a simple CP-net over
three variables A, B, and C' a is unconditionally preferred
to a, and b is unconditional preferred to b, while the pref-
erence over the values of C' is conditioned on both A and

INaturally we expect this set Z to be the minimal context upon
which the relative importance between X; and X; depends.
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B. The solid lines in Figure 2(c) show the preference re-
lation that this CP-net induces. The top and the bottom el-
ements are the worst and the best outcomes, respectively.
Arrows are directed from less preferred to more preferred
outcomes. In turn, Figure 2(b) displays a TCP-net that ex-
tends this CP-net by adding ani-arc from A to B. Thus, A is
absolutely more important than B. This induces additional
relations among outcomes, captured by the dashed lines in
Figure 2(c).

Example 3 Figure 3(a) illustrates a CP-net over five vari-
ables A, B, C, D, and E. Figure 3(b) presents a TCP-net
that extends this CP-net by adding an i-arc from B to E and
a ci-arc between C and D. The relative importance of C' and
D depends on the assignment to B and £. When B and E
are assigned be, then C' > D. When B and E are assigned
be or be, then D > C. Finally, when B and E are assigned
be, the relative importance between C and D is unspecified.
The CIT of this ci-arc is also presented in Figure 3(b).

Semantics and Consistency
The semantics of a TCP-net is straightforward, and is de-
fined in terms of the set of preference rankings that are con-
sistent with the set of constraints imposed by its preference
and importance information. We use - to denote the pref-
erence relation over the values of X given an assignment u
to U D Pa(X).

Definition 1 Let A/ be a TCP-net over a set of variables V.

1. LetW =V - {X}UPa(X)andletp € D(Pa(X)). A
preference ranking > satisfies >§ iff z;pw > z;pw, for
eachw € D(W), when z; >X z; holds.

2. A preference ranking > satisfies the CPT of X iff it satis-
fies -2 for each assignment p of Pa(X).

3. A preference ranking > satisfies X > Y iff for every
weDW)st. W=V —{X,Y}, 2;ysW < z;yp W
whenever z; =X z; and y, =Y y,.

4. A preference ranking > satisfies X >, Y iff forevery w €
D(W)st. W=V —{X,Y}UZ, z;y,2W < T;ypzW
whenever z; =X, z; and yp =Xy, Ya.

5. A preference ranking > satisfies the CIT of the ci-arc
(X,Y) if it satisfies X >, Y whenever an entry in the
table conditioned of z ranks X as more important.

a > a
b>b
a | b>b f _»_)@
b | c-é @
b |exc / @ (Cjél’%
e>¢e be | C>D
be | D>C
b | d>d be | D>C
b | ds-d

Figure 3: Illustrations for Example 3.



A preference ranking > satisfies a TCP-net N iff it: (i)
satisfies every CPT in N; (ii) satisfies X > Y for every i-
arc (X;, X;) in NV; (iii) satisfied every CIT in V. A TCP-
net is satisfiable iff there is some ranking > that satisfies it.
Finally, o = o' is implied by a TCP-net iff it holds in all
preference rankings that satisfy this TCP-net.

Lemma 1 (Transitivity) If o > o’ and o' > o' are implied
by a TCP-net, then so is o = o'

We now define two types of directed graphs that are induced
by a TCP-net NV.

Definition 2 A/’s dependency graph contains all nodes and
directed edges of A/ (i.e., the cp-arcs and the i-arcs)) as
well as the edges (X}, X;) and (X, X;) for every ci-arc
(Xi,X;) in M and every X, € S(X;, X;).

Let S(N) be the union of all selector sets of A/. Given an
assignment w to S(N), the w-directed graph of A/ contains
all nodes and directed edges of A and the edge from X; to
X; if (X;,X;) is a ci-arc of V" and the CIT for (X;, X;)
specifies that X; > X; given w.

Definition 3 A TCP-net V' is conditionally acyclic if its in-
duced dependency graph is acyclic and for every assignment
w to S(N), the induced w-directed graphs are acyclic.

Theorem 1 Every conditionally acyclic TCP-net is satisfi-
able.

Verifying conditional acyclicity requires verifying two
properties. The verification of acyclicity of the dependency
graph is simple. Naive verification of the acyclicity of every
w-directed graph can require time exponential in the com-
bined size of the selector sets. Following we show some
sufficient and/or neccessary conditions for the w-directed
graphs acyclicity that are much easier to check.

Let A" be a TCP-net. If A contains directed cycles,
then surely both the induced dependency graph and every
w-directed graph is cyclic. Since such directed cycles are
simple to detect, let us assume that they do not arise in AV,
Next, note that if there are no cycles in the undirected graph
induced by A (i.e., the graph obtained from A/ by remov-
ing the direction of its directed edges) then clearly all w-
directed graphs are acyclic. Again, this case too is quite sim-
ple to check. Finally, if there are undirected cycles, but each
such cycle, when projected back to \V, contains directed arcs
in different directions, then all w-directed graphs are still
acyclic. This latter sufficient condition can be checked in
(low) polynomial time.

Thus, we are left with the situation that A/ contains sets
A of edges that form a cycle in the induced undirected
graph, not all of these edges are directed, yet all the directed
edges point in the same direction (i.e., clockwise or counter-
clockwise). We call these sets semi-directed cycles, and we
concentrate on their investigation in the rest of this section.

Each assignment w to the selector sets of ci-arcs in a
semi-directed cycle A induces a direction to all these arcs.
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We say that A is conditionally acyclic if under no such as-
signment w do we obtain a directed cycle from A. Oth-
erwise, 4 is conditionally directed. Our first observation
is that if all semi-directed cycles in N are conditionally
acyclic, then so is M. Let S(.A) be the union of the se-
lector sets of all ci-arcs in 4. The time required to check
for the conditional acyclicity of a semi-directed cycle A is
exponential in the size of S(A). Thus, if S(.A) is small for
each semi-directed cycle A in the network, then condition-
ally acyclicity can be checked for quickly. In fact, often we
can determine that a semi-directed cycle is conditionally di-
rected/acyclic even more efficiently.

Lemma?2 Let A be a semi-directed cycle in A/, If A is
conditionally acylic then it contains a pair of ci-arcs -;,;
such that S(7;) N S(v;) # 0.

In other words, if the selector sets of the ci-arcs in A
are all pairwise disjoint, then 4 is conditionally directed.
Thus, Lemma 2 provides a necessary condition for condi-
tional acyclicity of A that can be checked in time polynomial
in the number of variables.

Lemma 3 A is conditionally acyclic if it contains a pair of
ci-arcs +y;, y; such that either:

(a) A contains directed edges and for each assignment w
t0 S(v;)NS(7;), i or ~y; can be converted into an i-arc that
violates the direction of the directed edges of A.

(b) All edges in A are undirected and for each assignment
w to S(v;) N S(;), v: and ~; can be converted into i-arcs
that point in opposite directions w.r.t. A.

Lemma 3 provides a sufficient condition for conditional
acyclicity of A that can be checked in time exponential in
the maximal size of selector set intersection for a pair of
ci-arcs in A. Note that the TCP-net size is at least of this
complexity (because of the CITs description), thus checking
this condition is only linear in the size of the network.

Lemma4 Let shared(A) be the union of all pairwise in-
tersections of the selector sets of the ci-arcs in A:

shared(A') = U S(v) NS(v5)

Vi,V €A

If A contains some cp or i arcs, then A is conditionally
acyclic if and only if, for each assignment = on shared(A),
there exists a ci-arc v, € A that, given =, can be converted
into an i-arc that violates the direction of A.

Otherwise, if A consists only of ci-arcs, then A is con-
ditionally acyclic if and only if, for each assignment 7 on
shared(A), there exist two ci-arcs y1,~2 € A’ that, given
m, can be converted into i-arcs that disagree on the direction
with respect to A.

In general, the size of shared(A) is O(|V]), thus check-
ing the (necessary and sufficient) condition provided by
Lemma 4 is generally hard. However, it is clear that
|shared(A)| < |S(A)|. Therefore, checking this condition



is more efficient than checking the naive one. Likewise, re-
stricting the size of shared(.A) (in order to ensure polyno-
mial time consistency verification) will leave us with a much
richer set of TCP-nets than restricting the size of S(A).

Preferential Constraint-based Optimization

One of the central properties of the original CP-net model
that was presented in (Boutilier et al. 1999) is that, given an
acyclic CP-net A and a partial assignment 7 on its variables,
it is simple to determine an outcome consistent with 7 that is
preferentially optimal with respect to A/. The corresponding
procedure is as follows: Traverse the variables in some topo-
logical order induced by NV and set each unassigned variable
to its most preferred value given its parents’ values. Our im-
mediate observation is that this procedure works as is also
for conditionally acyclic TCP-nets: The relative importance
relations do not play a role in this case, and the network is
traversed according to a topological order induced by the
CP-net part of the given TCP-net.

This strong property of optimization with respect to the
acyclic CP-nets (and the conditionally acyclic TCP-nets)
does not hold if some of the TCP-net variables are mutu-
ally constrained by a set of hard constraints, C. In this case,
determining the set of Pareto-optimal? feasible outcomes is
not trivial. For the acyclic CP-nets, a branch and bound al-
gorithm for determining the optimal feasible outcomes was
introduced in (Boutilier et al. 1997). This algorithm has the
important anytime property — once an outcome is added to
the current set of non-dominated outcomes, it is never re-
moved. In this algorithm, variables are instantiated accord-
ing to a topological ordering. Thus, more important vari-
ables, i.e., variables that are “higher-up” in the network, are
assigned values first.

Figure 4 presents our extension/modification of that al-
gorithm to conditionally acyclic TCP-nets which retains the
anytime property. The key difference between processing
acyclic CP-net and conditionally acyclic TCP-net is that lat-
ter induces a set of partial orderings, corresponding to dif-
ferent assignments on its selector variables. Consider a con-
ditionally acyclic TCP-net A/. The set of partial orders in-
duced by A over its variables is consistent with the depen-
dency graph of AV In addition, if S(V) is the union of the
selector variables in A/, then let S'(NV) C S(N) be a pre-
fix of S(N) if and only if, for each X € S'(N), and for
eachY € S(NV) \ §’'(N), X is not reachable from Y in the
dependency graph of A/. Observe, that any set of partial or-
ders over the variables of A/, that agree on an assignment on
a prefix S’(NV) of S(N), agree on ordering of all the vari-
ables in \V, relative importance of which is fully determined
by S'(NV).

The Search algorithm is guided by the underlying TCP-
net A/. It proceeds by assigning values to the variables in
a top-down manner, assuring that outcomes are generated
according to the preferential ordering induced by A’ —on a
call to the Search procedure with a TCP-net A/, the elim-

2AAn outcome o is said to be Pareto-optimal with respect to some
preference order > and a set of outcomes S if there is no other o’
such that o’ > o.
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Search (W, C, K)

Input: Conditionally acyclic TCP-net A/, Constraints C,
Context /C (partial assignment on the original TCP-net)

Output: Set of all, Pareto-optimal w.r.t. A, solutions for C.

Choose any variable X s.t. there is no cp-arc (ﬁ),
no i-arc (¥, X),and no (X,Y) in NV.
Letz: > ... > x4 be the preference ordering of D(X)
given the assignment on Pa(X) in K.
Initialize the set of local results by R = 0
for (¢=1;i<k;i++)do
X ==x;
Strengthen the constraints C by X = x; to obtain C;
if C; C C; for some j < ¢ or C; is inconsistent then
continue with the next iteration
else
Let X' be the partial assignment induced by X = z; and C;
N; = Reduce (V,K')
Let M}, ..., N/™ be the components of NV, connected
either by the edges of A/; or by the constraints C;.
for (j=1;j5<m;j++)do
Ri =Search (V] ,KUK',C;)
if R} # 0 forall j < mthen
foreacho € K' x R} x --- x R™ do
if foreacho’ € Rholds K- o' ¢ K-othen Addoto R
return R
Reduce (N, K')
foreach {X = z;} € K' do
foreach cp-arc (ﬁ) € N do
Restrict the CPT of Y to the rows dictated by X = z;.
foreach ci-arc v = (Y1,Y2) € N s.t. X € S(vy) do
Restrict the CIT of  to the rows dictated by X = ;.
if, given the restricted CIT of ~, relative importance
between Y7 and Y> is independent of S(y), then
if CIT of  is not empty then
Replace + by the corresponding i-arc.
else Remove ~.
Remove from A all the edges involving X. return V.

Figure 4: The Search algorithm for TCP-nets.

inated variable X is one of the root variables of A/. The
values of X are considered according to the preferential or-
dering induced by the assignment on Pa(X). Note that X
is observed in some context X which necessarily contains
some assignment on Pa(X). Whenever a variable X is as-
signed to a value x;, the current set of constraints C is be-
ing strengthened into C;. As a result of this propagation of
X = z;, values for some variables (at least for the variable
X) will be fixed automatically, and this partial assignment
K" will extend the current context X in processing of the
next variable. The Reduce procedure refines the TCP-net A/
with respect to K': For each variable assigned by X', we
reduce both the CPTs and the CITs involving this variable,
and remove this variable from the network. This reduction
of the CITs may remove conditioning of relative importance
between some variables, and thus convert some ci-arcs into
i-arcs, and/or to remove some ci-arcs completely. The cen-
tral point is that, in contrast to CP-nets, for a pair X values
z;,z;, the dependency graphs of the networks A; and N,



accepted by propagating C; and C;, respectively, may dis-
agree on the ordering of some variables.

If the partial assignment X' causes the current CP-net to
become disconnected with respect to both the edges of the
network and the inter-variable constraints, then each con-
nected component invokes an independent search. This is
because optimization of the variables within such a compo-
nent is independent of the variables outside that component.
In addition, after strengthening the set of constraints C by
X = z;t0 C;, some pruning is taking place in the search tree
(see the continue instruction in the algorithm).® Therefore,
the search is depth-first branch-and-bound, where the set of
nondominated solutions generated so far is a proper subset
of the required set of the Pareto-optimal solutions for the
problem, and thus it corresponds to the current lower bound.

When the potentially nondominated solutions for a partic-
ular subgraph are returned with some assignment X = z;,
each such solution is compared to all nondominated solu-
tions involving more preferred (in the current context K) as-
signments X = z;, j < i. A solution with X = «; is added
to the set of the nondominated solutions for the current sub-
graph and context if and only if it passes this nondomination
test. Note that, from the semantics of the TCP-net, given
the same context K, a solution involving X = z; can not be
preferred to a solution involving X = z;, j < 4. Thus, the
generated global set R never shrinks.

If we are interested in getting one Pareto-optimal solu-
tion for the given set of constraints (which is usually the
case), then we can output the first feasible outcome that is
generated by Search. No dominance queries between pairs
of outcomes are required because there is nothing to com-
pare the first accepted solution with. If we are interested in
getting all, or even a few Pareto-optimal solutions, then the
efficiency of the dominance queries becomes an important
factor in the entire complexity of the Search algorithm.

The dominance query for a pair of outcomes can be stated
as follows: Given a TCP-net A and two outcomes a and b, is
a > baconsequence of N'? In (Boutilier et al. 1999) this in-
ference problem with respect to the CP-nets was treated as a
search for a flipping sequence from the (purported) less pre-
ferred outcome b to the (purported) more preferred outcome
b through a sequence of more preferred outcomes:

b=cg=<c1 < <cp1<cm=a

where, for 0 < i < m, outcome ¢; is different from the
outcome c;41 in the value of exactly one variable X ;, and
¢ilJ] < cixa[j] given the (same) values of Pa(X;) in ¢; and
¢;i+1. Thus, each value flip in such a flipping sequence is
sanctioned by the CP-net /. The complexity of the search
for a flipping sequence was analysed in (Domshlak & Braf-
man 2002a), and both polynomial and hard cases were pre-
sented with respect to the form of the CP-net.

The dominance inference problem with respect to the
TCP-nets can be also treated as a search for an improving
flipping sequence, where the notion of flipping sequence is
extended from this for the CP-nets.

3This pruning was introduced in (Boutilier et al. 1997). See
(Boutilier et al. 1997) for its explanation and justification.
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Definition 4 A sequence of outcomes
b=cy<c1 <+ <cpmo1<cm=a

is an improving flipping sequence with respect to a TCP-net
N isand only if, for 0 < i < m, either

1. (CP-flips) outcome ¢; is different from the outcome c; 1
in the value of exactly one variable X;, and ¢;[j] <
ci+1[j] given the (same) values of Pa(X;) in ¢; and ¢;41,
or

2. (I-flips) outcome ¢; is different from the outcome ¢;41 in
the value of exactly two variables X; and X, ¢;[j] <
ci+1[j4] and ¢;[k] > ciy1[k] given the (same) values of
Pa(X;) and Pa(X}) in ¢; and ¢; 1, and X; > X, given
RI(X;,Xk,Z) and the (same) values of Z in ¢; and ¢;41.

Clearly, each value flip in such a flipping sequence is
sanctioned by the TCP-net AV, and the CP-flips are exactly
the flips allowed in CP-nets.

Lemma5 Given a TCP-net V, and two outcomes a and
b, a > b is a consequence of A if and only if there is an
improving flipping sequence from b to a with respect to .

In general, various methods can be used for search for
the flipping sequences. In particular, we believe that at least
some of the techniques, developed for this task with respect
to CP-nets in (Boutilier et al. 1999; Domshlak & Brafman
2002a) can be extended for the TCP-net model. However,
complexity analysis of dominance testing for TCP-nets is
not in the scope of this paper, and we leave it as an open
problem for further research.

Conclusions

In this paper we introduced the notions of absolute and con-
ditional relative importance between pairs of variables and
extended the CP-net model (Boutilier et al. 1999) to capture
these preference statements. The extended model is called
TCP-net. We identified a wide class of TCP-nets that are
satisfiable — the class of conditionally acyclic TCP-nets. Fi-
nally, we showed how this subclass of TCP-nets can be used
in preference-based constrained optimization. We refer the
reader to the full version of this paper, where the relevance
of the TCP-net model to the area of product configuration is
discussed.

An important open theoretical question is the precise
complexity of dominance testing in TCP-nets (i.e., the ques-
tion of which of two outcomes is more preferred). In
the context of CP-nets, this problem was recently analyzed
in (Domshlak & Brafman 2002a). Although the results
from (Domshlak & Brafman 2002a) seem not to be imme-
diately adaptable to TCP-nets, we believe that a correspond-
ing, perhaps completely different, computational analysis is
possible for TCP-nets. Finally, the question of consistency
of TCP-nets that are not conditionally acyclic is another im-
portant challenge.

One of the areas in which we see significant potential for
TCP-nets is automatic configuration (Sabin & Weigel 1998).
While there has been a wide and growing body of research



on modeling and solving configuration problem, there is still
a need for more work on modeling and learning user pref-
erences, and using these to achieve configurations that are
not only feasible, but also satisfactory from the user’s point
of view. This goal is emphasized by almost every paper on
configuration, e.g. (Freuder & O’Sullivan 2001; Haag 1998;
Junker 2001), especially in the context of high-level config-
urators (Haag 1998) for real-life domains.

Another interesting issue is the ability to acquire qual-
itative preference models from speech/text in natural lan-
guage (James 1999). The intuitiveness of the qualitative
preferential statements of TCP-net is closely related to the
fact that they have a straightforward representation in every-
day natural language. In addition, the corresponding prefer-
ential statements in a natural language seems to form a do-
main that is apriori constrained in a very special manner, and
where specialized natural language techniques could apply.
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