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It is healthy for any scientific field to take critical self-examinations periodically. A review of recent 
publications in major conferences reveals that the majority of published work in planning has been the 
efficient sequencing of operators in a well-defined state-based world. The majority of this work assumes 
that a planning system is given clear goal, operator and state definitions in a logical form, and that the goal 
to be accomplished is to find sequences of operators to achieve these goals. While significant progress has 
been made in this direction, there has been a lack of widespread applications of this model as compared to, 
for example, machine learning, data mining and speech recognition.   This raises the questions of whether 
these assumptions actually hold in real world applications, and if this direction of research is indeed highly 
relevant to practical applications of planning. The heart of this exploration is the question: what does real 
planning involve? 
 
This AIPS’02 workshop on real-world planning is then devoted to the exploration of alternative views of 
planning.  We wish to organize the workshop to explore novel issues underlying planning that are beyond 
operator sequencing. We encourage a bottom-up approach that start at high-impact application areas that 
might not be considered as planning traditionally. We further encourage a backwards analysis of the 
applications towards alternative views and definitions for planning.   In our Call for Papers, we gave a list 
of potential high impact areas for planning, including  
 

- Supply Chain Management Applications 
- Real time Robot Planning 
- Real time Multiagent and Multirobot Planning 
- Travel Planning 
- Planning for Information Gathering and Database Queries 
- Planning and Data Mining 
- Business Marketing Strategy Planning and Financial Planning 
- Urban planning 
- Planning in Software Engineering and Workflow Management 
 

Furthermore, in each of these applications, we wish to make clear the nature of the problem, the issues of 
interest to planning researchers, exposition of applications domains, and criteria of success. The techniques 
involve 

 
- Planning and execution 
- Plan management  
- Deliberative and reactive planning 
- Plan recognition 
- Plan quality 
- Planning and resource allocations 
- Planning and learning 
 

The workshop takes place on April 23, 2002 in Toulouse, France before the AIPS 2002 conference.  It 
features invited talks by Craig Knoblock and Brian Williams, two panels and paper presentations.  The 
authors of the 13 papers in this collection made an important effort in the direction that we hoped to follow.  
In addition, the program committee members Sven Koenig, Craig Knoblock, Bernhard Nebel and Wei 
Zhang diligently reviewed papers and provided valuable comments to many.  We wish to thank them all! 
 

 
Manuela Veloso and Qiang Yang, April 2002 
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Craig Knoblock 

University of Southern California / Information Sciences Institute 

4676 Admiralty Way, Marina del Rey, CA 90292 

knoblock@isi.edu 

There are many interesting planning problems in the context of information integration, ranging 

from general issues such as query planning and planning for information gathering to specific 

applications such as travel planning.  Unfortunately, few of these problems fit the standard mold 

for Strips-style planning.  In this talk I will describe several planning problems and how the 

characteristics of these problems lead us to work on very different approaches from what 

planning research has typically focused on. Based on this experience, I will present my views on 

how the planning community should broaden its definition of planning to encompass a wider 

variety of planning tasks. 
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Model-based Programming of Cooperative Agile Vehicles�

Br ian Williams 
MIT 

williams@mit.edu 

 

 

In the future, webs of unmanned vehicles will act together to robustly achieve elaborate missions 

within uncertain environments. This web may be a distributed satellite system forming an 

interferometer, or may be a heterogeneous set of rovers and blimps exploring Mars. We 

coordinate these systems by introducing a reactive model-based programming language (RMPL) 

that combines within a single unified representation the flexibility of embedded programming and 

reactive execution languages, and the deliberative reasoning power of temporal activity planners. 

To support fast mission planning as graph search, the KIRK planner compiles an RMPL program 

into a temporal plan network (TPN), similar to those used by temporal planners, but extended for 

symbolic constraints and decisions. To robustly coordinate agile air vehicles or rover maneuvers 

we combine the Kirk planning algorithm with algorithms for cooperative, kinodynamic path 

planning, randomized algorithms for kinodynamic path planning. This work will be described in 

the context of our cooperative vehicle test beds, including a set of ATRV rovers, a distributed 

sensor net, and a  range of autonomous helicopters and air vehicles. 
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Abstract 
While network query engines make it possible to gather and 
combine data from multiple Web sources, these systems 
primarily focus on efficient query execution and do not 
solve some of the more complicated problems of online 
information gathering.  Such problems require alternative 
types of control flow and better integration with the external 
world; the unique nature of the Web requires query plans be 
expressive enough to accommodate these demands.  In this 
paper, we describe an information gathering plan language 
that is expressive and promotes efficient execution.  
Through its support for subplans, recursion, and a unique set 
of operators, the language allows plans that can interactively 
gather data over a series of pages, monitor remote sources, 
and asynchronously notify users of updates and results.  We 
also present a execution system that efficiently implements 
the plan language using a dataflow-style executor capable of 
pipelining data between operators. 

Introduction   

Current research on network query engines (Ives et al. 
1999, Hellerstein et al. 2000, Naughton et al. 2001) has 
shown that it is possible to gather and combine data from 
multiple Web sources using plans similar to those found in 
traditional database systems.  However, such research has 
focused primarily on the efficiency of plan execution and 
has tended to ignore the problems associated with more 
complicated types of Internet information gathering.     
 The unique nature of the Web is such that certain types 
of queries require a plan language more expressive than 
those capable of only basic integration.  Consider 
collecting the results of a search engine query.  Nearly all 
search engines display query results spread across multiple 
result pages.  To collect all of the data, an automated 
system must be capable of interleaving the collection of 
partial results with navigation to additional results and 
must be able to eventually decide when to stop.  The 
control flow required for such a task is not supported by 
the plan languages of existing network query engines.        
 Another unique aspect of the Web is that it is highly 
dynamic and there is considerable interest in being able to 
monitor sources. However, since the Web has no built-in 
trigger facility, one has to "discover" updates by querying 
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the Web over a period of time that extends beyond that of a 
single interactive query.  To track an integrated set of data 
requires a language capable of managing intermediate 
results and communicating important updates to users 
asynchronously (i.e., via e-mail) as necessary.  Again, most 
network query engines do not support such capabilities. 
 While these examples demonstrate that better plan 
expressivity is desirable, so too is efficient query 
execution.  Gathering data on the Web is an I/O-intensive 
process that renders CPUs idle for periods of seconds 
during plan execution.  Thus, what is needed is a plan 
language that is not only expressive but also very efficient: 
specifically, one that supports highly concurrent execution.  
 A plan language can provide substantial degrees of 
parallelism in two ways.  The first is to support a dataflow 
representation of plans.  The partial ordering of operators 
enabled by a dataflow representation describes execution 
in maximally parallel terms – operators are only limited by 
their own data dependencies.    A second language-level 
strategy is to support operators capable of processing 
pipelined data (i.e.,. tuple-oriented processing).  Pipelining 
refers to the production and consumption of data as soon as 
possible – producers emit incremental results to consumers 
– enabling both to work in parallel on the same relation.           
 In this paper, we present an information gathering plan 
language that is both expressive and efficient.  The 
proposed plan language is modular and supports the notion 
of subplans to encourage reusability and facilitate 
recursion.  In addition, the language consists of operators 
that interact with the external world so that it is possible to 
monitor sources and asynchronously notify users of 
important updates.  While providing better expressivity, 
plans in this language are efficient because they consist of 
a dataflow-style ordering of operators and because those 
operators support the pipelining of data during execution.   
 The rest of this paper is organized as follows.  Section 2 
establishes basic terminology, discusses the details of more 
difficult Web query tasks, and provides an example that we 
will use throughout the rest of the paper.  In Section 3, we 
propose an information gathering plan language and 
describe how it enables us to solve the types of problems 
shown earlier.  In Section 4, we discuss the efficient 
execution of plans generated in this language.   Finally, in 
Section 5, we discuss the related work, both in terms of 
network query engines and intelligent agents.     
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Gather ing and Monitor ing Web Data 

In this section, we describe the problem of gathering and 
monitoring data on the Web.  We first describe basic 
integration tasks and how existing information gathering 
plan languages allow these tasks to be completed.  Next, 
we describe more complicated types of information 
gathering tasks and how they necessitate a more expressive 
plan language.  Finally, we provide an example problem 
that will be the basis for discussion throughout the paper.  

Basic information gather ing tasks 
Basic Web-based information consists of retrieving data 
from multiple sources, combining, and then filtering as 
necessary.  For example, the plans described in (Friedman 
& Weld 1997), (Ives et al. 1999), and (Barish et al. 2000) 
query distinct Web sites, combine the data found in both 
(either by unioning or joining that data), and then either 
filter these results or use them to query other web sources.  
These plans have simple control flow and involve the same 
types of operators found in traditional database systems – 
Retrieve, relational operators like Select, Project, Join, and 
set-theoretic operators like Union, Minus, and Intersect.  
 Current technology for querying the Web in this manner 
exists in two forms.  One is that provided by Web-based 
information mediators (Genesereth et al. 1996, Knoblock 
et al. 2001).  These systems use high-level domain models 
to describe how logical entities are related Web sources.  
They utilize Web site wrappers to convert semi-structured 
HTML into structured relations and thus allow web sites to 
be queried as if they were databases.  Mediators have 
largely focused on enabling multiple heterogeneous data 
sources to be integrated (through query reformulation).  
With these systems, it is possible to write queries that are 
answered through information gathering plans that 
combine and filter data from multiple sources.  
 A second, more recent technology for accomplishing 
these types of tasks comes in the form of network query 
engines.  Although these systems enable the Web to be 
queried in the same way that mediators do, they have 
generally focused on the need for efficient execution and 
on the need to process online XML data.  They have been 
mostly concerned with adaptive execution techniques to 
overcome the inherent latency of querying remote web 
sites.     
 In short, existing mediators and network query engines 
allow Web data to be queried in a manner similar to that 
found in traditional database systems.  The control flow of 
the plan and types of operators involved are largely the 
same.  In general, these systems have focused largely on 
the challenges of interoperability and efficiency. 

More complicated tasks 
The nature of the Web is such that the expressivity 
provided by traditional query plans is often insufficient for 
solving other types of common, yet more complicated 
online information gathering tasks.  In particular, the Web 

is unique in at least two major respects: (a) it is primarily a 
visual medium and (b) its highly dynamic nature often 
invites the need for monitoring.  Let us consider how each 
of these aspects independently impacts online querying. 
 As a visual medium, data on the Web is often organized 
in a way that makes sense for visual consumption.  For 
example, querying a web source through an HTTP POST 
or GET often results in answers to that query being 
organized across multiple pages.  For example, a query to a 
search engine can result in hundreds of web pages that 
each contain part of the answer.  To collect the complete 
answer to such queries, it is necessary to navigate to each 
page, collect the results on that page, find the "next page" 
link, navigate to the next page, collect the results on that 
page, and so on.  This manner of alternating retrieval with 
navigation is unique to the Internet does not have an 
equivalent in traditional database systems.    
 Secondly, Web sources can be highly dynamic and often 
need to be monitored.  Unfortunately, the Web lacks a 
database-style trigger facility that notifies users when data 
has changed and does not provide any automated means 
for identifying differences between current results and 
those that existed prior to the update. Instead, updates to its 
data are only realized through a process of repetitive 
querying, collection of new results, and then comparison of 
these new results with prior results to discover the 
differences.  Thus, periodic execution and some sort of 
mechanism for comparison between queries is necessary. 

Example 
To demonstrate how more complicated types of 
information gathering problems require more expressive 
plans, it is useful to describe a detailed example.  Consider 
using the Internet to locate a new home to buy.  Suppose 
we wish to use a site like Yahoo Real Estate to periodically 
locate houses that meet our search criteria.  For example, 
we wish to find houses that meet a certain set of price, 
location, and number of rooms constraints.   
 First, let us discuss how users perform this task 
manually.  Figures 1a, 1b, and 1c show the interface and 
result pages for Yahoo Real Estate.  To query for new 
homes, users first fill the criteria shown in Figure 1a – 
specifically, they enter information that includes city, state, 
maximum price, etc.  Once they fill in this form, they 
submit their query to the site.  The initial results are shown 
in Figure 1b.  However, notice that this page only contains 
results 1 through 15 of 22. To get the remainder of the 
results, a "Next" link must be followed to the page 
containing results 16 through 22.  Finally, to get the details 
of each house, users must follow the link associated with 
each listing.  A sample detail screen is shown in Figure 1c. 
 In practice, performing this task requires manually 
repeating the above process over a period of days, weeks, 
or even months.  The user must both query the site 
periodically and somehow keep track of new results.  This 
latter aspect can require a great deal of work – users must 
note which houses in each result list are new entries.      
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 It is possible to automate part of this process with 
current data integration technologies.  For example, we can 
use mediators or network query engines to gather and 
extract data from web pages.  But most of these systems do 
not provide any means for monitoring sources and none 
provide the ability to gather data spread across multiple 
pages.  To accomplish both tasks, we need plans capable of 
expressing other types of control flow (such as looping) 
and operators that facilitate monitoring.  

We can consider how such plans generally might look.  
Figure 2 shows an abstract plan for monitoring Yahoo Real 
Estate.  As the figure shows, search criteria is used to 
generate houses from Yahoo Real Estate.  Houses are 
separated from their "next page" link and compared against 
houses that already existed in a local database.  Then, the 
resulting set of new houses are queried for their details and 
the results are e-mailed to the user.  These new results are 
also appended to the database so that future queries can 
distinguish new results.  Meanwhile, the "next page" link is 
followed and the resulting new houses go through the same 

process.  Next page links are followed until no more pages 
are found (i.e., no more next link). 

Expressive &  Efficient Information Gather ing  

In this section, we describe an information gathering plan 
language that makes it possible to construct plans that can 
accomplish more complicated information gathering tasks, 
such as the type shown in the abstract plan Figure 2.  There 
are several basic aspects of this plan language to consider – 
the dataflow representation of plans, the logical pipelining 
of data during execution, the typing and manipulations on 
data, the set of operators that are provided, support for 
modular design through the notion of subplans, and 
support for information gathering tasks that require looping 
through use of recursion.  

Dataflow representation 
All plans in the language we propose consist of a name, a 
set of input and output variables, and a set of unordered 
operators that represent the dataflow graph of the plan.  A 
dataflow representation of a plan is desirable from an 
efficiency standpoint because it describes the maximally 
parallel mode of execution (Dennis 1974).  In contrast to 
von Neumann models, which rely on an instruction counter 
to sequentially execute a list of instructions (or operators), 
a dataflow model allows execution to occur on any 
operator, whenever its data dependencies are fulfilled.  
This makes execution fully decentralized, independent for 
each operator.  Thus, execution can be highly concurrent. 
 Figure 3 shows an abstract plan.  As shown, a header 
part communicates the name of the plan (P1 in this 
example) and the list of input variables (a and b), and 
output variables (g).  The body section of the plan contains 
the set of operators.  The example below shows four 
operators – Op1, Op2, Op3, and Op4.   Each operator 
instance consumes one or more inputs and produces zero 
or more outputs.  As shown below, the set of inputs for 
each operator appears to the left of the colon delimiter and 
the set of outputs appears to the right of the delimiter.  
 Figure 4 illustrates how edges in the dataflow graph of 
operators are communicated through variable names.  For 
example, as described by Figure 3, operator Op1 produces 

Figures 1a, 1b, &  1c: Querying Yahoo Real Estate 

Figure 3: Sample plan 

PLAN P1 { 
    INPUT: a, b 
    OUTPUT: g 
 
    BODY { 
        Op1 (a, b : c) 
        Op2 (b, c : d, e) 
        Op3 (d : f)  
        Op4 (e, f : g) 
    } 
} 

Figure 2: Abstract plan for  Yahoo Real Estate 

GET house 
results page

FILTER OUT
thos e houses  
previousl y s een

LOAD DATAB ASE
of hous es

previousl y s een

EXTRACT
"next page" link

EXTRACT
hous e URLs

SEND E-MAIL
to the user

UPDATE D ATAB ASE
with new houses 

search
criteria

GET house
detail page
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c, which is consumed by Op2, and Op2 produces d and e, 
which are consumed by Op3 and Op4, respectively.  Figure 
4 shows the corresponding edges that between the 
operators.    
 Although the body part of the plan language lists 
operators in a linear order, this ordering does not affect 
when they are actually executed.  Per the dataflow model 
of processing, operators fire whenever their individual data 
dependencies are fulfilled.  For example, Op2 can execute 
when any of its individual inputs b or c are present.  Thus, 
Op2 executes once at the start of the plan (because b is 
available) and then shortly later on, when c becomes 
available.  In summary, the only ordering of execution that 
exists at the plan level is that which is communicated by 
the producer/consumer relationship between operators 

Logical data pipelining 
Each of the variables in the plan above are logically 
relational data streams.  A stream is a set of tuples in a 
relation, followed by an end of stream (EOS) marker.  
Operators in the plan logically execute when they receive a 
tuple for any of their input streams.  The conditions that 
describe when operators can execute is also known in 
dataflow literature as the firing rule.  
 For example, a set-theoretic Union operator would take 
two input streams – lhs and rhs – and output a stream 
called unioned_result that consists of the unique set of 
tuples defined by the intersection of lhs and rhs  This 
operator can fire whenever a lhs or rhs tuple is present and 
emit a unioned_result tuple for each firing.  In part, this is 
due to the nature of the operator.  A Minus operator, in 
contrast, would take two inputs named lhs and rhs and emit 
a minus_result stream that was based on the subtraction of 
rhs from lhs.  However, even though the Minus operator 
can fire upon receiving a tuple, it cannot emit a 
minus_result tuple until the rhs stream EOS has been 
received.   Both the Union and Minus operator must 
logically maintain state between invocations (both must 
not emit duplicates and Minus must keep all of the rhs in 
memory so that it can be applied to later lhs tuples).   

Data types and common manipulations 
Data in the system is communicated logically as relations 
and physically as tuples (i.e., through pipelining).  Each 
tuple consists of a set of attribute/value pairs.  Each 
attribute can be one of five types: char, number, date, 
relation (embedded), or document (i.e., a DOM object).  
Embedded relations are supported because they reduce the 
amount of data communicated during execution.   
 XML data is supported by the system and is associated  
with the Document attribute type.  The language contains 

specific operators that allow XML to be converted to 
relations, for relations to converted to XML documents, 
and for attributes that are XML documents to be queried in 
their native form using XQuery.  Since XML documents 
are encapsulated by tuples, they can be pipelined between 
operators; when/if it is desirable to pipeline the data 
contained in an XML document, the document is first 
converted to a relation, is streamed through the system, and 
can be put back together again as XML later, if desired.       
 In terms of common manipulations, operators vary on 
how they output their results with respect to the incoming 
data.  In particular, there are two modes of interaction that 
merit discussion: the performing of dependent joins and the 
packing/unpacking of relations. 
 In data integration plans, it is common to use data 
collected from one source as a basis for querying 
additional sources.  However, it is tedious (and sometimes 
impossible because of ordering constraints) to manually 
join the data input to an operator onto the output data it 
produces.  Instead, many of the operators in this language 
perform a dependent join of input tuples onto the output 
tuples that they produce.  For example, if the language 
supported an operator called Round that rounded a floating 
point value in a column to its nearest whole integer value, 
and if the input data consisted of the tuples ((Jack, 89.73), 
(Jill, 98.21)) then the result after the Round operator 
executes would be of ((Jack, 89.73, 90), (Jill, 98.21, 98)).   
Dependent joins simplify plans and solve problems related 
to the joining data when no unique key on the input 
relation exists.     
 A related mode of interaction to discuss involves the 
packing and unpacking of relations.  Packing relations is 
useful when you want to associate a relation with an 
aggregate function, such as count.  Instead of creating and 
managing two distinct results (which often need to be 
joined later), it is cleaner and more space-efficient to 
perform a dependent join on the packed version of an input 
relation with the result output by an aggregate-type 
operator.  For example, if the language supported an 
aggregate operator called Average, then the result of 
processing the input described earlier would be (((Jack, 
89.73), (Jill, 98.21)), 93.97).  Unpacking a relation is 
necessary to get at the original data.  Packing and 
unpacking is a common activity when a conditional 
operator needs to evaluate an aggregate measure of a 
relation and then route it to the proper set of consumer 
operators which then unpack the data. 

Operators 
To accomplish more complicated types of information 
gathering tasks, three basic types of operators are 
necessary; those that: 

� Gather  and manipulate data: These include the 
traditional relational operations as well as those 
capable of processing XML data. 

� Facilitate monitor ing: To effectively monitor data 
sources, the language includes operators that can 
access local databases, so that intermediate results can 

Figure 4: Plan represented as a dataflow graph 

Op1 Op2 Op3 Op4

a

b

c d g

e
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be stored and then compared against later.  In addition, 
other monitoring operators enable results to be 
communicated asynchronously – for example, through 
e-mail, fax, or cell phone. 

� Promote extensibility: Generally, operating on data 
either involves operating on individual tuples (single-
row functions) or operating on sets of tuples 
(aggregate functions).  The language includes 
operators that allow users to extend the existing plan 
language to meet any kind of single-row or aggregate 
data manipulation necessary. 

 
We now describe the operators in more detail and focus on 
those not found in other types of network query engines. 

Operators for  gather ing and manipulating data.  The 
language supports basic operators for gathering data from 
the Web and manipulating it (filtering, combining, etc.).  
These operators are shown in Table 1. 
 Of these, the Wrapper  operator is the most interesting.  
Its purpose is to use values from an input relation as the 
basis for querying a specified Web source.  In general, 
wrappers are mechanisms for querying a remote semi-
structured Web site as if it were a local relational database.  
Calling a wrapper involves providing input constraints (if 
any), executing the wrapper, and then collecting its results. 
Correspondingly, our Wrapper operator uses values from 
each tuple of an input relation as the input constraints and 
queries the remote site accordingly.  Results generated by 
each input tuple are combined with the input that generated 
them – this is referred to as a dependent join.   The 
language also includes operators for manipulating XML 
data, including XQuery for querying XML and Xml2Rel 
and Rel2Xml for converting XML data to relational and 
vice versa.  The bulk of the remaining manipulation 
operators are familiar and can be found in current network 
query engines and mediators.   

M onitor ing operators.  There are two aspects to the 
monitoring process – the ability to keep track of past 
results and the ability to asynchronously notify users of 
updates.  To accomplish these tasks, the plan language we 
propose supports a set of monitoring-related operators.  
These are shown in Table 2. 
 The DbQuery, DbAppend, DbExport, and DbUpdate 
operators allow plans to interact with local databases.  This 

makes it possible to robustly monitor data sources for long 
periods of time.  The Email, Fax, and Phone operators 
allow data to be accumulated and sent to recipients 
asynchronously.  By its very nature, monitoring is a non-
interactive process between user and agent and thus some 
form of offline propagation of updates is needed. 

Extensibility operators.  To increase the expressive power 
of the language, two additional operators – Apply and 
Aggregate – are included.  Both are shown in Table 3.  
Apply calls user-defined single-row functions on each 
tuple of relational data and performs a dependent join on 
the input tuple with its corresponding result.  For example, 
a user-defined single-row function called SQRT might 
return a tuple consisting of two values: the input value and 
its square root.  The Aggregate operator calls user-defined 
multi-row functions and performs a dependent join on the 
packed form of the input and its result. For example, a 
COUNT function might return a relation consisting of a 
single tuple with two values: the first being the packed 
form of the input and the second being the count of the 
number of distinct rows in that relation.   

Subplans 
To promote language supports references to subplans 
reusability and to facilitate recursion (described later), the.   
Executing a subplan simply refers to the calling of one plan 
from another.   
 Recall that all plans are named and consist of a set of 
input and output streams.  Thus, plans present the same 
interface as operators.  It is thus a simple matter to refer to 
a plan as if it were an operator.  For example, consider the 
example plan P1 introduced earlier.  Figure 5 shows how 
another plan P2 can reference P1as a subplan. 
 Subplans encourage modularity and re-use.  Once 
written, a plan can be used as an operator in any number of 

Figure 5: Calling a subplan 

PLAN P2 { 
    INPUT: w, x 
    OUTPUT: z 
 
    BODY { 
        Op5 (w : y) 
        P1 (x, y : z) 
    } 
} 

Table 2: M onitor ing operators 

Name Purpose

dbquery Fetches relation from DB based on query

dbappend Append to existing relation in DB 

dbexport Export relation to DB

dbupdate Processes an update query (no results returned)

email Emails data to specified e-mail address

fax Faxes data to specified fax number

phone Sends text message to specified cell phone number

null Conditionally routes stream based on if another is empty

Nam e Purpos e

w rapper Extracts w eb page data as relation

xm l2rel Converts XML document into a relation

r el2xm l Converts a relation to an XML document

xquer y Manipulates attributes that are XML documents

s elect Filters relation based on specified criteria

project Extracts specif ied attributes from relation

jo in Combines relations based on specif ied criteria

union Performs set union of  tw o relations

m inus Performs set minus of tw o relations

inter s ect Performs set intersect of tw o relations

pack Embeds relation in single attribute tuple

unpack Expands embedded relation from single attribute tuple

Table1: Data manipulation operators 

Nam e Purpos e

apply Apply single row  function to each relation tuple

aggr egate Apply multi-row  function to relation

Table 3: Extensibility operators 
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future plans.  This effectively allows users to build 
whatever operators they need by combining the set of 
existing operators as necessary.  At the same time, 
subplans can be easily scheduled as part of a dataflow-style 
plan and can benefit from data pipelining - just like any 
other typical plan operator does. 
 For example, one could develop a simple subplan called 
Persistent_Diff, shown in Figure 6, that uses the existing 
operators DbQuery, Minus, Null, and DbAppend to take 
any relation, compare it to a named relation stored in a 
local database.  This plan determines if there was an 
update, appends the result, and returns the difference.  
Such a subplan could be as an operator in many types of 
other plans.  Note that executing a subplan does not force 
us to sacrifice the efficiency of dataflow execution and 
data pipelining: the Null and DbAppend operators execute 
at the same time that result is returned to the higher level 
plan; they also execute on data as soon as it becomes 
available from the Minus operator. 

Recursion 
In addition to promoting modularity and re-use, subplans 
make another form of control flow possible: recursion.  As 
described earlier, a number of online information gathering 
tasks require some sort of looping-style control flow.   
 For example, when processing results from a search 
engine query, an automated information gathering system 
needs to collect results from each page, follow the "next 
page" link, collect results from the next page, collect the 
"next page" link on that page, and so on – until it runs out 
of "next page" links.  If we were to express this in von-
Neumann style programming language, we might use a 
Do...While loop to manage this type of information 
gathering need.  However, under a dataflow-model of 
execution, such an approach in practice requires a fair of 
synchronization and additional operators.   
 Instead, this problem can be solved quite elegantly with 
recursion.  We can use subplan reference as a means by 
which to repeat the same body of functionality and we can 
use the Null operator as the basis for the exit condition.   
 As an example of how recursion is used, consider the 
abstract plan for processing the results of a search engine 
query.  A higher level plan called Query_Search_Engine, 
shown in Figure 7, posts the initial query to the search 
engine and retrieves the initial results.  It then processes 
the results with a subplan called Gather_and_Follow.  The 
search results themselves go to a Union operator and the 
next link is eventually used to call Gather_and_Follow 
recursively.  The results of this recursive call are combined 
at the Union operator with the first flow.   
 There are a few notable aspects to the plans shown in  

Figure 7.  First, a recursive approach requires very few 
operators: through the subplan facility, we are able to re-
use the body of the gathering-and-following task.  Second, 
data pipelining is exploited: even though recursive 
execution might go quite deep, results from higher levels 
are streamed out, back to the higher level 
Query_Search_Engine plan as soon as possible via the 
pipelined Union operator.  Third, notice that we continue 
to merely require one type of conditional – the Null 
operator.  When the last page is reached, Null routes the 
EOS to Union (and not to Wrapper, as it normally does).  
This ends the Union at the lowest level of recursion and 
this EOS trickles all the way back to the top of the plan, 
per standard tail-recursive execution.   

Revisiting the example 
Let us now revisit the earlier house search example and see 
how such a plan would be written with the proposed plan 
language.  Figure 8 shows one of the two plans, 
Get_Houses,  required to implement the abstract real estate 
plan in Figure 2. Get_Houses calls the subplan Get_Urls; 
this plan is nearly identical to the recursive subplan 
Gather_And_Follow in Figure 7, so it is omitted for the 
sake of brevity.  The rest of Get_Houses works as follows: 

a. A Wrapper operator fetches the initial set of 
houses and link to the next page (if any) and 
passes it off to the Get_Urls recursive subplan. 

b. A Minus operator determines which houses are 
distinct from those previously seen; new houses 
are appended to the persistent store. 

c. Another Wrapper operator investigates the detail 
link for each house so that the full set of criteria 
(including picture) can be returned. 

d. Using these details, a Select operator filters out 
those that meet the specified search criteria. 

e. The result is aggregated and e-mailed to the user. 

DbQuery Minus DbAppend

relation

external_name

Null

result

Figure 6: The Persistent_Diff subplan 

WRAPPER
house-list

GET_URLS WRAPPER
house-details

SELECT EMAIL

FORMAT
"price < %s AND beds = $s"

� � � � � � � �

DBQUERY
already-seen

MINUS
already-seen

DBAPPEND
already-seen

Figure 8: The Get_Houses plan 

Figure 7: Example of recursion 

WRAPPER
initia l-results

GATHER_AND_FOLLOW

UNION

NULL

WRAPPER
next-results

GATHER_AND_FOLLOW

false

true

keywords

QUERY_SEARCH_ENGINE

PROJECT
web_page

DISTINCT
next_pa ge

results

web pages

GATHER_AND_FOLLOW
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An Efficient Plan Execution Architecture 

In this section, we describe an architecture that can 
efficiently execute the types of plans described in the last 
section.  This architecture is composed of two parts: the 
language described in the previous section and a dataflow-
style executor that efficiently processes these plans. 

High-level design 
The high-level design of the architecture is shown in 
Figure 9.  The figure shows that the input to the executor is 
a plan; in addition, a schedule for execution (once, daily, 
hourly, etc) is input.  During each execution, the plan may 
interface with a local database (e.g. to store tracking 
information).  The figure also shows that it is possible for 
the plan to communicate updates through a variety of 
asynchronous communication mechanisms. 
 Once an input plan is received by the executor, it 
constructs an internal dataflow graph based on plan 
operators.  At this time, any subplan and recursive 
relationships are resolved, merging in operators from those 
plans as appropriate. The system then feeds in input data 
and execution commences.  The input data triggers a subset 
of plan operators to start firing; their execution and 
subsequent production trigger other operators that consume 
their output and so on.  If the plan is interactive, output 
data will be immediately returned to the user as it is 
produced.  Otherwise, it is assumed that the method of user 
notification (such as email) is already encoded in the plan. 
 Thus, in the Yahoo Real Estate example, a user can 
submit the main part of the plan, a set of input data shown, 
and the schedule of "daily" to the system.  The plan will 
then be executed once (immediately) and an initial set of 
house search results will be e-mailed to the user.  The plan 
will then be automatically run the next day.  

Parallelism dur ing execution 
The executor uses threads to service operator execution, 
and thus functions similar to a threaded dataflow machine 
(Papadapoulous & Traub 1991).  When a tuple becomes 
available (either via input or through operator production), 
a thread is assigned to execute a method on the consuming 
operator with that data. Threads are drawn from a fixed 
pool, to throttle excessive parallelism and prevent machine 
resources from being swamped. 
 The first time that input arrives for a particular operator, 
an initialization method for that operator is called.  During 

this time, stateful data structures are initialized.  All future 
firings may use this state data structure as is appropriate for 
that operator.  For example, the Union operator uses the 
state to save all tuples that it has previously output so that 
it does not output duplicates.  The Minus operator keeps 
this information as well as the entire set of rhs tuples in its 
state – thus, when new lhs tuples arrive, they are first 
compared to the rhs set and, if not in this set, output only if 
they have not been previously output. When EOS markers 
have been received on each of an operators’  inputs, all 
accumulated state is deleted.  State is maintained per level 
of iteration; thus re-entrant, recursive execution is 
guaranteed to be correct.  
 In summary, the executor we describe functions as a 
virtual threaded dataflow machine.  By using threads to 
service operator firings, operator execution can be as 
horizontally parallel as the number of threads in the fixed 
pool.  Furthermore, it is possible for a producer and 
consumer operator to fire concurrently on the same logical 
relation (the consumer operating on an earlier tuple while 
the producer operates on a later tuple in the stream) thus 
implementing a form of pipelined, or vertical parallelism. 

Data color ing for  re-entrancy.  Recursion implies that 
plans are re-entrant and thus introduces an additional 
complexity – distinguishing data between recursive levels.  
To address this, the system assigns a color to all data at a 
particular logical level of execution.  For example, during 
the execution of Get_Houses, the input data and any data 
produced at the same level as a result is assigned the same 
color.  Whenever a subplan like Get_Urls is called 
(including when recursive calls are made), the tuples 
routed to that subplan are assigned a new color. This 
allows tuples at multiple levels of execution to be correctly 
managed by operators in the recursive subplan. 

Related Work 

In this section, we discuss two areas of related work: that 
of efficient Internet querying by network query engines 
and the set of more existing, more general, agent executors. 

Network query engines. Recently, network query engines 
(Ives et al. 1999, Hellerstein et al. 2000, Naughton et al. 
2001), have been proposed as means for efficiently 
gathering information on the Internet.  These systems are 
mostly concerned with the efficiency of query execution. 
and have proposed adaptive execution strategies to reduce 
I/O latencies.  Like the work described here, these systems 
represent plans as dataflow graphs and pipeline data 
between operators.  The major difference between existing 
network query engines and the work described here is in 
terms plan expressivity.  While network query engine 
research has proposed new operators related to XML 
processing and adaptive execution, they do not support 
operators that facilitate monitoring. These systems do not 
support conditional execution and it is not possible to loop 
through query results spread across multiple Web pages.   
In contrast, the plan language here supports conditional 

Executor

PLAN myplan  {
INPUT: x
OUTPUT: y

BODY    {
Op (x : y)

}
}

10101010100101
01010101010110
00011101101011
11010101010101

Local Database

Plan

Input Data

Figure 9: Executor  design and inter face 
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execution, allows plans themselves to be operators, and 
supports recursion as means for looping during execution.  

General plan executors.  It is also useful to compare the 
work here to existing and more general plan execution 
systems.  These systems have proposed highly concurrent 
execution models similar in spirit to dataflow machines.  
For example, RAPS (Firby 1994) described execution as a 
set of concurrent processes while PRS-Lite (Myers 1996) 
supported concurrent task execution as well as more 
complex synchronization and control flow.  Both projects 
focused on specifying an event-driven mechanism for the 
parallel execution of partially-ordered plans – similar to 
execution of a dataflow graph.  The work described here 
differs from these more generic architectures by focusing, 
like network query engines, specifically on plans that not 
only require the enablement of operators, but the routing of 
information between them. as well.  Thus, our work is 
more closer in spirit to the unified approach of 
(Williamson et al. 1996), yet it extends that work by 
specifying an actual plan language, adding support for 
recursion and subplan execution, and by proposing a 
dataflow execution architecture. 

Conclusion and Future Work  

In this paper, we have described an information gathering 
plan language that promotes better expressivity while 
retaining the efficiency of traditional plan representation.   
Support for subplans and recursive execution allow plans 
to loop through query results that are spread across 
multiple Web pages.  Operators that are extensible and are 
better integrated with the external world facilitate plans 
that are capable of monitoring an integrated set of remote 
sources for an extended period of time. Though expressive, 
the plan language is dataflow in terms of representation 
and its operators support the pipelining of data during 
execution.  Thus, such plans can be efficiently executed.  
 We are currently investigating a method for speculative 
execution for information gathering plans (Barish & 
Knoblock 2002) that uses machine learning techniques to 
analyze data occurring early during execution so that 
predictions can be made about data that will be needed 
later in execution.  The result is a new form of dynamic 
execution parallelism that can lead to significant speedups. 
We are also currently working on an Agent Wizard, which 
allows the user to define agents for monitoring tasks 
simply by answering a set of questions about the task.  The 
Wizard will work similar to the Microsoft Excel Chart 
Wizard, which builds sophisticated charts by asking the 
user a set of simple questions.  The Wizard will generate 
information gathering plans using the language described 
in this paper and schedule them for periodic execution.       
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Abstract

In this paper we address the problem of planning
with complex actions. We are motivated by the
problem of automated Web service composition,
in which planning must be performed using pre-
defined complex actions or services as the build-
ing blocks of a plan. Planning with complex ac-
tions is also compelling in primitive action plan-
ning domains because it enables the exploitation
of reusable subplans, potentially improving the
efficiency of planning. This paper provides a
formal, semantically-justified account of how to
plan with complex actions using operator-based
planning techniques. A key contribution of this
work is the definition, characterization, and com-
putation of preconditions and conditional effects
for complex actions. While we use the situation
calculus and Golog to formalize the task and our
solution, the results in this paper are directly ap-
plicable to most action theories and planning sys-
tems. In particular, we have developed a PDDL-
equivalent compiler that computes the precon-
ditions and effects of complex actions, thus en-
abling wide-spread use of these results. Finally
we provide an approach to planning that enables
us to exploit deductive plan synthesis or alterna-
tively ADL planners to plan with complex ac-
tions. Our approach to complex-action planning
is sound and complete relative to the correspond-
ing primitive action domain.

1 Introduction

Given a description of an initial state, a goal state, and a
set of actions, the planning task is to generate a sequence
of actions that, when performed starting in the initial state,
will terminate in a goal state. Typically, actions are prim-
itive and are described in terms of their precondition, and

(conditional) effects. Our interest is in planning with com-
plex actions as the building blocks for a plan. Complex ac-
tions are actions composed of primitive actions using typ-
ical programming language constructs. E.g.,complex ac-
tions move(obj,orig,dest) and goToAirpt(loc) are defined as:

move(obj,orig,dest)
�� 1 pickup(obj,orig);putdown(obj,dest)

goToAirpt(loc)
�� if loc=Univ then shuttle(Univ,PA);

train(PA,MB);shuttle(MB,SFO) else taxi(loc,SFO)

Our primary motivation for investigating complex action
planning is to automate Web service composition (e.g.,
[13]). Web services are self-contained Web-accessible
computer programs, such as the airline ticket service at
www.ual.com, or the weather service at www.weather.com.
These services can be conceived as complex actions.
Consider ual.com’s buyAirTicket(

�� ) service. This service
can be described as the complex action locateFlight(

�� );
if Available(

�� ) � OKPrice(
�� ) then buyAirTicket(

�� );...2. The
task of automated Web service composition is to au-
tomatically sequence together Web services such as
buyAirTicket(

�� ) or getWeather(
�� ) into a composition that

achieves some user-defined objectives. The task of auto-
mated Web service composition is, by necessity, a problem
of planning with complex actions. But how do we repre-
sent these complex actions (Web services) and how do we
plan with them?

What makes planning with complex actions difficult is that
the traditional characterization of actions as operators with
preconditions and effects does not apply, making operator-
based planning techniques such as Blackbox, FF, Graph-
Plan, BDDPlan, etc., inapplicable, at least at face value.
In this paper we provide a formal, semantically-justified
account of how to characterize, represent and precompile
the preconditions and effects of complex actions, such as
buyAirTicket(

�� ), under a frame assumption [16]. This en-
ables us to treat complex actions such as buyAirTicket(

�� )
as planning operators and to apply standard planning tech-

1Denotes “defined as.”
2Example is simplified for illustration purposes.
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niques to planning with complex actions. Planning results
in a plan in terms of complex actions from which a plan in
terms of primitive actions is easily expanded, if desired3.

A secondary motivation for this work is to improve the ef-
ficiency of planning by representing useful (conditional)
plan segments as complex actions. As we show, our ap-
proach to planning with complex actions can dramatically
improve the efficiency of plan generation by reducing the
search space size and the length of a plan.

The idea of planning with some form of abstraction or ag-
gregation is not new, and there has been a variety of work
in this area including ABStrips (e.g., [17]), planning with
macro-operators (e.g., [11] and [6]), and most notably HTN
planning (e.g., [5]). Our work is fundamentally different
from these approaches, and in particular from HTN plan-
ning, both in terms of i) the representation of complex ac-
tions (aka HTN non-primitive tasks), and ii) the method of
planning. In this paper we precompile complex actions into
planning operators described in terms of preconditions and
effects that embody all possible evolutions of the complex
action. In contrast, HTN planners do not use a declara-
tive representation of the preconditions and effects of tasks.
Rather, methods are associated with tasks, and tasks are
pre-arranged into a network of compositions, without the
full programming constructs we use to describe complex
actions [18]. Further, HTN planners operate by search-
ing for plans that accomplish task networks using task de-
composition and conflict resolution. In contrast, having
precompiled our complex actions, we can apply standard
operator-based planning techniques to generate a plan, fol-
lowed by plan expansion.

Our work is somewhat similar in methodology to [2],
which proposes to encode planning constraints by compil-
ing the constraints together with the original planning prob-
lem into a new unconstrained problem. The resultant plan-
ning problem can be solved using classical planning meth-
ods, and the resultant plan decompiled to provide a solution
in the original problem domain. The general methodology
of compilation and subsequent expansion is similar to what
we propose. Nevertheless, the general problem is different.
We are compiling complex actions into new plan operators.
These complex actions represent Web services that we wish
to reason with as black-box components. The constraints
used in [2] are constraints upon the domain, and thus cap-
ture different types of planning information than our more
procedural complex actions. Further the formal treatment
and results are different.

We also contrast our work to the use of Golog (e.g., [12])
in planning. In this paper we use Golog as the formal lan-
guage to describe complex actions, however the role these

3For many Web service applications, expansion is not relevant.

actions play in planning is very different. Golog complex
actions are traditionally used to specify non-deterministic
programs. In combination with deductive plan synthesis
[7], a Golog program expands to a situation calculus for-
mula which constrains the search space for a plan. This
is similar to the role of domain-specific knowledge, as ex-
emplified by systems such TALPlanner [4], BDDPlan [10]
and ASP [18]. In all these systems, complex actions con-
strain the search space, but are not used as operators in plan
construction.

The research presented in this paper is of both theoretical
and practical significance. From a theoretical standpoint,
we provide a semantically-justified means of characteriz-
ing the preconditions, effects and successor situations of
complex actions under a frame assumption, that embodies
all possible trajectories of a complex action. This enables
us to not only use operator-based planning methods to plan
with complex actions, but also to prove formal properties
of our approach. In particular, we prove that our approach
to planning is sound and complete relative to correspond-
ing primitive action domains. From a practical perspective,
analysis shows a significant increase in the efficiency of
planning with complex actions, relative to primitive action
planning. We illustrate potential speedup with some ex-
periments on the briefcase domain, using the FF planner
([9]). Finally, this paper provides a principled approach to
automating Web service composition, that has far-reaching
application to automated component-based software com-
position

2 Background: Situation Calculus & Golog

We use the situation calculus and Golog to formalize the
task and our solution. The expressive power and formal
semantics of the situation calculus provide the theoretical
foundations for our work, and for the later translation to
PDDL.

Briefly, the situation calculus is a logical language for spec-
ifying and reasoning about dynamical systems [16]. In the
situation calculus, the state of the world is expressed in
terms of functions and relations (fluents) relativized to a
particular situation � , e.g.,

�������� �
	 . A situation � is a his-
tory of the primitive actions, e.g., � , performed from an ini-
tial, distinguished situation 
�� . The function ������������� maps
a situation and an action into a new situation. A situation
calculus theory � comprises the following sets of axioms:
� domain independent foundational axioms, � .
� successor state axioms, � �!� , one for every fluent

�
.

� action precondition axioms, � "$# , one for every action %
in the domain,which define &'�����
���(�)��� .
� axioms describing the initial situation, � ��* .
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� unique names axioms for actions,
�������

.

Successor state axioms, originally proposed [15] to address
the frame problem, are created by compiling effect axioms
into axioms of this form4: �
	��
������ 	�� ������������� 	��
�� � � ���
where ��� 	��
�� � �����"!$#�%� 	��
&� � � �'�)( 	*�
	��
������)+-,&#/.� 	��
&� � ������� .
(See [16, pg.28-35] for details.)

Example: In the interest of simplicity, we illustrate con-
cepts in this paper in terms of an action theory with three
actions 021*3547680/	 
9�:� 026<; ���'=?> 	 
@� & ��A'� 0/	 
9� , and three fluentsB �DCE� 1 >@F 	 
9� , G AD� 4�H > 	 
9� &

B � ;5	 
9� . (1)-(3) comprise IKJ�L , and
(4)-(6) comprise INM7M 5.

O ���'� 	P021*3Q4R680&	 
9�:�����S� , B �DCE� 1 >9F 	 
������ (1)O ���'� 	 ��A'� 0&	 
9�:�����S� B �DCE� 1 >@F 	 
&����� (2)O �8��� 	P026<; ���D=?> 	 
9�:�����S� B �DCE� 1 >@F 	 
&����� (3)B ��CT� 1 >@F 	 
&�U��� 	�� �������V� � ! 0<1W3Q4R6�0/	 
9�9(B �DCE� 1 >@F 	 
&�����9+ �YX! 026�; ���'=Z> 	 
9�9+ �[X!\��AD� 0/	 
9� (4)
G AD� 4RH > 	 
&�U��� 	�� �������V� � !]��A'� 0/	 
9�9( G AD� 4�H > 	 
&���'� (5)B � ;5	 
&�U��� 	�� �������V� B � ;5	 
&� �'� (6)

Golog (e.g., [12, 16, 3]) is a high-level logic programming
language for the specification and execution of complex ac-
tions in dynamical domains. It builds on top of the situa-
tion calculus by providing extralogical constructs for as-
sembling primitive situation calculus actions, into complex
actions ^ . [3] shows how these complex actions can be con-
sidered to be first-class objects in the language. _ � 	�^ �������'`E�
is an abbreviation that macro-expands into a situation cal-
culus formula, as defined inductively below. The formula
says that it is possible to reach � ` from � by executing a
sequence of actions specified by ^ [16].

Prim. action: _ � 	�� ������� ` �ba! O �8��� 	�� � ����+c� ` !\��� 	��9d �Qe*�����
Test: _ � 	*f�g �:����� ` � a! fhd �Qe�+i�Z!�� `
Seq.: _ � 	�^�jlk�^�m ������� ` � a!on�� ` ` a _ � 	�^�j ������� ` ` ��+ _ � 	�^�m ��� ` ` ��� ` �
Nondet. act.: _ � 	�^8jZp'^�m ������� ` �ba! _ � 	�^�j ������� ` ��( _ � 	�^�m �:����� ` �
Nondet. arg.: _ � 	�	�q 
9� ^R	 
9�:������� ` � a!�nR
 a _ � 	�^R	 
9�:������� ` �
The construct, if f then ^�j else ^�m endIf is defined asd f�g8kU^�j e prd , f�g�k ^�m e . The Golog language also includes
nondeterministic iteration, ^7s , which executes ^ zero or
more times. The while-loop construct,while f do ^ end-
While is defined in terms of nondeterministic iteration asd f�g�t�^ e s k , f�g . For now, we exclude nondeterministic iter-
ation, and while-loops, whose macro-expansions are sec-
ond order, and which may be non-terminating. Instead,
we define a bounded notion of while, while uR	*f � ^ , which
is guaranteed to terminate, and is commonly used in Web
services. while u7	*f � ^ executes like the original while-loop
except that it loops at most v times, even if f still holds af-
ter the v2wWx iteration. Formally, while uR	*f � ^ corresponds tov conditional branchings as follow:

while j 	*f � ^ a! if f then ^ endIf 6 (7)
while uR	*f � ^ a! if f then d ^Rk while u . j 	*f � ^ e endIf (8)

4For space, we will only consider relational fluents here.
5Notation: formulae are universally quantified with maximum

scope unless noted. Action arguments suppressed.

A deterministic version of the choice construct ( q ` ) is de-
fined in a longer paper. These constructs are used to specify
complex actions such as buyAirTicket( �
 ) or goToAirpt(loc).
Traditional usage of Golog is to apply deductive plan syn-
thesis to find a sequence of actions �� ! d � j � a5aQa � �Ry e that
realizes a Golog program, ^ relative to domain theory,
I . I.e., Izp! _ � 	�^ ��{9|������ 	��� �:{9|l��� . _ � 	�^ ��{9|������ 	��� ��{�|5��� de-
notes that the Golog program ^ , starting execution in { |
will legally terminate in situation ��� 	��� �:{ | � , where ��� 	��� � { | �
is an abbreviation for ��� 	�� y ����� 	�� y . j � aQa5a ����� 	��9j ��{ | ����� .

3 Problem: Planning with Complex Actions

Given a set of primitive actions, } together with an associ-
ated set of complex actions, ~�� , our objective is to use an
operator-based planner to compose complex and primitive
actions to achieve some goal. To do this, we must charac-
terize the preconditions, effects, and the situation resulting
from performing a complex action.

3.1 Preconditions, Effects, Resulting Situations

For analysis, our actions } are axiomatized in a situation
calculus action theory I , and our complex actions ~ � are
described in Golog. For now, we restrict our focus to ter-
minating complex actions described in Section 2.

Resulting Situation: We wish to characterize the situation
resulting from performing the complex action ^ . Observe
that many complex actions are nondeterministic. They may
have several different executions, each terminating in a dif-
ferent situation. As such, we can’t define a function anal-
ogous to ��� 	�� � �'� . Instead, we introduce the abbreviation���'� J 	�^ � ��� to denote a situation resulting from performing
complex action ^ in � . ���D� J 	�^ ����� ranges over the set of exe-
cutable situations and corresponds to a so-called ghost sit-
uation [16, pg.52-53], when ^ is not physically realizable.
The interpretation of ��� � J<	�^ � ��� is constrained by the fol-
lowing axiom, which is added to I producing theory I � J .

For all complex actions ^ and situations � :
_ � 	�^ �:�8�U���D� J 	�^ ��������(

	 ,)n�� ` ` a _ � 	�^ �:����� ` ` ��+c, H 
 Hl3Q6<;��RG C H�	 ��� � J�	�^ � ������� (9)

where H 
 Hl3:6<;U�7G C H7	 ��� denotes a situation, all of whose ac-
tions in the situation action history are

O ����� -ible [16]. I.e.,H 
 Hl3Q6<;��7G C H�	 ����a! 	E�@� � � s � a ��� 	�� ��� s ��� 7 ��� O ����� 	�� ��� s � It
follows that:

I � J p ! � � a H 
 Hl3Q6<;��RG C H�	 ���@+ _ � 	�^ �:���U���'� J 	�^ �������)�
H 
 Hl3:6<;U�7G C H7	 ��� � J7	�^ � ����� (10)

6if -then -endIf is the obvious variant of if -then -else -endIf.
7The order relation on situations in the situation tree [16].
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Preconditions: ���������	��

������� denotes the preconditions of
complex action � . Intuitively, the preconditions of a com-
plex action are the preconditions of all the actions that make
up the execution of � . E.g., for ��������� ,

������� �	� 

��������������������������

� ���!���#"$��������

������%&��

�����!������'

This is captured tidily in the inductive definition of ()� . We
define the precondition of complex action � , ���������*��

�������
as:

���������	��

���!�����,+.-/ 
0��� (11)

where + -/ 
0���1�324��50' ()��

����������56� . These are intermediate
action precondition axioms.

Proposition 1 (Properties of ������� �	� 

������� )
These axioms follow from 7��	�981
;:�:�� .

���������	��

���!���<� ()��

���!����%&���	��

���!�����
=?>�=?@�A4B �DC�E = 
0����"$���������	��

���!���<� =?>�=?@FA�B �DC�E = 

%&���	�D

���������

Effects: Intuitively the effects of a complex action are
the effects of each action in the execution of � , modulo
the effects of subsequent actions. We assume that fluents
whose truth value is not changed by an action, persist.G 
�H> �;%&���*�4

��������� denotes that fluent I is true in the situa-
tion resulting from performing complex action � in � . We
capture the effects of complex actions as successor state ax-
ioms. Since all but trivial complex actions involve multiple
intermediate situations, strictly speaking, we cannot define
successor state axioms for complex actions. Rather, we de-
fine the notion of a pseudo-successor state axiom. Here we
define intermediate pseudo-successor state axioms, making
them “Markovian” in the section to follow via regression.

���������	��

��������JLK G 
?H> ��%&���*��

���!�������NMO-P 
�H> �����!���*QR� where,
MO-P 
�H> �����!���S��2�� 5 ' ()��

�������!� 5 ��" G 
?H> �!� 5 ��"T� 5�U %&� �	� 

���!����' (12)

We need the �?5 U %&���*�4

������� since some complex actions
are nondeterministic. This enables us to identify the partic-
ular sequence of actions in the instantiation of the complex
action that leads to the truth/falsity of the fluent

G
.

3.2 Pseudo-Markovian Complex Actions

In order to plan with complex actions as operators, we must
make our characterization pseudo-markovian. That is, we
wish to characterize the preconditions strictly in terms of
the situation in which the complex action execution is ini-
tiated, and the effects, strictly in terms of the initiating
and terminating situations of the complex action. To do
so we appeal to regression rewriting [19], regressing over
the successor state axioms for the primitive actions in our
domain theory 7 . Unfortunately, the formulae over which
we need to regress are not, by definition, regressable us-
ing V [16, pg.62], since we are not regressing to WYX , and
since the macro-expansion of ()��

���!���!� 5 � does not yield a
nested representation of situations. Since regression is a

syntactic rewriting, this is problematic. We define a suit-
able (small) variant of Reiter’s regression operator, VTZ , that
first rewrites the macro-expansion of ()� so that situations
are expressed as nested [�\ ’s, and that enables regression to
an arbitrary situation � , rather than to W#X . We define the
preconditions and effects of � in terms of a set of action
precondition axioms, 7 �*����] , of the form of (13) and a set
of pseudo-successor state axioms, 7^�	��_D_ , of the form of
(15).

Preconditions:
Action Precondition Axioms, 7 �*����] , one for every �a`cb :

������� �*� 

���!�����d+ / 
0��� (13)

where + / 
0��� � VeZ�K + -/ 
0���*Q from (11), i.e.
VeZ�K 24��5R' ()��

���!���!��56�*Q .
Example (continued): Consider the complex actionfhgR@�iDA�f 
 > ��� if j4� B 
 > � then %&k�� f 
 > � else fhA4B %&��l9m�
 > � endIf,
which we denote as � � for parsimony. Its action precondi-
tion axiom is defined as follows.

������� �*� 

���?�������
V Z K 24� 5 �!� 5 5 ' ��������
 fhgR@�iDA�f 
 > ��������"T� 5 5 U %&��
 fhgR@Fi�A�f 
 > ��������"

�
Rj4� B 
 > ��� 5 5 ��"n�������&

%&k�� f 
 > ���;� 5 5 ��"c� 5�U %&��

%&k�� f 
 > ����� 5 5 ���o 
0pqj4� B 
 > �!� 5 5 ��"n��������
 fhA�B %&��lrm�
 > ������� "
� 5 U %&��
 fhA�B %&��lrm�
 > ����� 5 5 �����*Q (14)

Following our regression, ������� �	� 

�����!������p�j���Es% g m�t 
 > �!��� .
Successor State Axioms: Observe that while a situation
calculus axiomatization has one successor state axiom for
every fluent, we currently define one pseudo-successor
state axiom for every fluent-complex action pair.

Pseudo-Successor State Axioms, 7^�	�?_�_ , one for every
fluent-complex action pair:

������� �	� 

��������J3K G 
�H> �;%&� �*� 

���!�����S��M P 
�H> ���������*Q (15)

where M P 
�H> �����!���u�vVeZ�K M -P 
�H> ���������*Q , VeZ�K M -P 
�H> ���������*Qw�
VeZ�K 24��5R' ()��

���!���!��56��" G 
�H> ���?5s��"$%&���	�4

������� U �?5xQ
Example (continued): The pseudo-successor state axiom
for fluent CFk�� i�= m�
 > ��%&� �*� 

���F�!����� is:

������� �*� 

���?������JLK C�k�� i�= m�
 > �;%&� �*� 

���?���������
V Z K 24� 5 �!� 5 5 ' ��������
 fhgR@�iDA�f 
 > ��������"T� 5 5 U %&��
 fhgR@Fi�A�f 
 > ��������"

�
Rj4� B 
 > ��� 5 5 ��"n�������&

%&k�� f 
 > ���;� 5 5 ��"c� 5�U %&��

%&k�� f 
 > ����� 5 5 ���o 
0pqj4� B 
 > �!� 5 5 ��"n��������
 fhA�B %&��lrm�
 > ������� "
� 5 U %&��
 fhA�B %&��lrm�
 > ����� 5 5 ������"
CFk�� i�= m�
 > �!� 5 ��"$%&� �	� 

�����!��� U � 5 Q (16)

Applying our y{z regression operator, (16) becomes:

���������	��

� � �!����J3
4CFk�� i�= mS
 > �;%&���	�4

� � �!�����S�
pqj4��Es% g m�t 
 > �!��� "|K j4� B 
 > �!��� "
%&���	��

� � �!��� U %&��

%&k�� f 
 > ���*%&��
 fhgR@Fi�A�f 
 > ���!�����o pqj4� B 
 > �!����"$CFk�� i�= m�
 > �!��� "
%&���	��

� � �!��� U %&��
 f4A4B %&��lrm�
 > ���	%&��
 f4g0@Fi�A�f 
 > ���������*Q��
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Though the computation looks complex, regression rewrit-
ing is a powerful tool and the final pseudo-successor state
axiom is simple. Observe that a pseudo-successor state ax-
iom not only defines the conditions under which fluent � is
true after performing complex action � , but it also defines
the action trajectory upon which the truth of � is predi-
cated. This is most valuable with nondeterministic actions.

Note that when the definition of ���������
	��
������� and the in-
termediate pseudo-successor state axiom, ((11) and (12),
respectively) are conjoined to ���
	 , they entail the complex
action precondition axioms and the complex action pseudo-
successor state axioms.

Proposition 2 ����	���������������������� ������	 	�!��"�#��	�$%$
Effect axioms: While we have encoded the effects of our
complex actions, together with a solution to the frame prob-
lem in terms of pseudo-successor state axioms, many plan-
ners use effect axioms, rather than successor state axioms,
solving the frame problem in the procedural code of their
planner, rather than representationally. Hence, for comple-
tion we define effect axioms for complex actions, � �
	'&)( .

Effect Axioms � ��	'&)( , up to one positive effect axiom and
one negative effect axiom for every fluent - complex action
pair, where the execution of � can potentially change the
truth value of fluent �+*", :

������� �
	��
��������-".0/12��34 �����657�8��34 �)9:����	;��34 �)�������)� (17)

������� ��	;�
�������<-=. >1 �'34 �����?5A@B�8��34 �)9:����	;��34 �)�������)� (18)

Proposition 3 (Effect Axioms Entailment)

�C�"� �
	 	0! �"� �
	�$%$ � �D����	'&�(

I.e., the positive and negative complex action effect axioms
are entailed by the pseudo-successor state axioms. Hence,
we can easily extract effect axioms for complex actions
from our pseudo-successor state axioms.

In this section we have provided a representation of the
preconditions, successor state axioms and effects of com-
plex actions under a frame assumption. They are char-
acterized in terms of ���
	 	0! , and ���
	�$%$ , and follow from
the semantically-justified account of actions in the situation
calculus. In the section to follow, we show how these rep-
resentations of complex actions lead to a simple approach
to planning with complex actions.

4 Complex Actions Planning

Given our operator-based characterization of complex ac-
tions in terms of their preconditions and effects, we turn to
the problem of operator-based planning with these complex
actions. For now, we restrict our consideration to the sub-
set of complex actions that are deterministic, I.e., primitive

actions E , sequences ��F'G)��H , conditional if I then ��F else ��H
endIf, and while J%�KIL�M� , plus others described in a longer
paper.

Following the problem statement in Section 3, our ap-
proach is to take as input [ NPO , QRO ] – an action theory
N;O and a set of complex actions Q8O , both defined in terms
of actions in S . Following the results in the previous sec-
tion, we COMPILE [ N O , Q O ] into a new theory N OUT , in
terms of actions SWV (generally SYXCSWV ), where each com-
plex action in Q O corresponds to a new primitive action
in SZV . Next, PLANning is performed in N O[T to produce a
plan in terms of SWV . To extract a plan in terms of the primi-
tive actions, we REWRITE the theory, replacing primitive
actions from SZV by their corresponding complex actions,
Q O . Finally, using N O , the resulting sequence of primitive
actions is EXPANDed from the plan in S V into a plan in
terms of S .

Next, we show how this approach is realized, first using the
situation calculus and deductive plan synthesis, and then
using an arbitrary operator-based planning system that al-
lows conditional effects of actions in PDDL.

4.1 Deductive Plan Synthesis and Expansion

The following is the theory with primitive actions NPO .

N O �C\]�^��	0!_�^�Z$%$W�^��`�a�	��=�Z$�b .
(1) COMPILE[ N O , Q O ] cdN O[T :e Define ���
	 	0! and ����	�$%$ as described in Section 3.2.e � T	0!Zf ����	 	�!M�^��	0! . � T$;$ f ����	�$%$ . SZV f S .ehg �'i�*jQRk : Create a primitive action E Ti . Substitute “ E Ti ”
for “ �'i ” in � T	0! & � T$%$ . SZV f SZV^�ml'E Ti�n .e � T$;$ f MERGE( � T$%$ �o��$;$ ). Update ��`�a�	 to � T`�a�	 .

COMPILE produces a situation calculus theory in actions
S V , comprising all the original primitive actions S plus
new primitive actions corresponding to each complex ac-
tion in QRO . N O[T �p\]�"� T	�! �"� T$;$ �"� T`�a�	 �"� $�b
(2) PLAN[ N O[T ,goal] c plan[ S V ]: Given a goal formula,q ��E�r
�s��� in the language of N O , planning can be achieved
via deductive plan synthesis in N O[T . Following [7, 16], N O[T�tu ��v q ��E�r
�s��� . From the binding of � , we can read off a planw E T F v'v vx�)E Ta%y �oE Ti *zSZV , a plan in SWV . [16] describes a variety
of situation calculus planners implemented in Prolog.

(3) REWRITE[plan[ SWV ]] c plan[ S , Q O ]: Rewrite the
plan

w E T F v v v'�)E Ta:y �)E Ti2{ SWV as a plan
w | F'�'vxv v � | a y in ( S , Q O ),

where }�~���� T~ , for all � T~ { S , otherwise }2~ equals the
corresponding ��~ from the compilation in Step (1).

(4) EXPAND[plan[ S , Q8O ], N;O ] c plan[ S ]: Use our same
deductive machinery to extract a final plan in S from
our plan in ( S , Q O ), by expanding the complex actions inw | F'� v v'vx� | a y . We do so by trivially rewriting our plan as a
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sequence of complex actions in Golog ���������
	��
��	�������	���� .
A Golog interpreter, written in Prolog will return a
binding for situation �
� where ������������� �!� "$#��%� ��& � & �
�'�)(* #,+�-.��� � � . From the situation � � we can read off a plan/ + � �
��� & +�021 & +�35476 .

Note that every plan our approach finds is also a plan in the
original primitive action theory, and vice-versa.

Theorem 1 � ��8 and � � are defined as in Section 4.1. Let9;:=<?>A@CBED
be a formula uniform in

B
such that

9;:=<F>!@.BGDIHJK@ ��� D�L�JM@ � � 8 D , the intersection of the languages of �F� and
� � 8 respectively. For all ground situations NPO of � � 8 , � � 8!Q RSETUSGV
WYX <[Z
> S @ N O D]\^9;:=<?>A@ N O D iff there exists a ground situ-
ation N of ��� such that ��� Q R SETUSGV
WYX <[Z
> S @ N D2\_9;:=<?>A@ N D
and EXPAND[REWRITE[seq( N`O )], aM� ] = seq( N ), whereB SGb @�cF:[@ed<�feBGD!D R d<

.

Proof Sketch: First, by construction of � �Y8 ,JK@ � � DhgiJK@ � ��8 D , and, for any action
<

in � � , � ��8 contains
the successor state and action precondition axioms of

<
in

��� . It follows that, for any term
B

which denotes a situation
in the language of ��� , ��� Q R 9;:=<?>!@.BGDK\ SETUSGV
WYX <?Zj> S @.BGD
iff � � 8!Q R 9;:=<?>A@.BGDI\ S�TYSGV
WUX <[Z
> S @.BGD

. Second, since
in any situation

B
, the expansion of an executable

complex action is also executable and has the same
effects, for any executable complex plan k < O l fe< Om f,n'n'nofe< OpFq
in � � 8 , EXPAND[REWRITE k < O l fe< Om f,n'non'f!< Op?q , a � ] Rk < l f!< m f�non'n'f!<?r q is an executable plan in � � 8 , andcF:[@ k < O l f!< Om f,n'non'f!< OpFq fes�tGD

and
c�:[@ k < l f!< m f,n'non'f!<?r q f�s�tED

are
the same states in � ��8 (i.e. fluents has the same truth
value in both situations). Finally, by definition of
the REWRITE and EXPAND steps,

< l f!< m f�non'nofe< r
are

actions in ��� . It follows that
c�:[@ k < l fe< m f,n'n'nofe< r q fes t D

is a term in the language of �F� which denotes a
situation, and thus �F� Q R 9;:=<?>A@�cF:[@ k < l n'n'n < r q f�s t D!Du\
SETUSGV
WYX <[Z
> S @�cF:[@ k < l n'non < r q fes t DAD

if and only if � � 8!Q R9;:=<?>A@.c�:[@ k < O l non'n < OpFq fes t DAD`\ SETUSGV
WYX <[Z
> S @.c�:[@ k < O l n'non < OpFq f�s t DAD
.

Planning in � � 8 is sound and complete with respect to plan-
ning in � � . Thus our approach to complex action planning
via transformation of the theory is well-founded.

4.2 Exploiting Existing Operator-Based Planners

Our approach is not limited to planners realized in the sit-
uation calculus. Most popular planners don’t use a suc-
cessor state axioms representation of the effects of actions.
E.g., all of the planners that participate in the AIPS Plan-
ning competition use PDDL as an initial specification of
the action theory. In this section we show how to exploit an
arbitrary operator-based planner that accepts PDDL plan-
ning domains with conditional effects [14], in order to plan
with complex actions.

(1) COMPILE[ � � , a � ]: Rather than employing succes-

sor state axioms, PDDL describes the effects of actions
in terms of (conditional) effects without a solution to the
frame problem. Section 3.2 provides a semantic justifica-
tion for an intuitive algorithm that compiles a PDDL rep-
resentation of the preconditions and effects of actions in��� , together with complex actions a;� into a new PDDL
representation of preconditions and effects in � � 8 , without
going through the intermediate stage of creating successor
state axioms. (We have such an algorithm, but space pre-
cluded its inclusion in this paper.) Intuitively, the effects
of a complex action are the effects of each action in the
execution of � , modulo subsequent effects.

(2) PLAN[ � ��8 ,goal]: Given a compiled PDDL represen-
tation � ��8 , we can generate a plan with any planner that
accepts PDDL with conditional effects. (We used FF [9].)

(3) REWRITE & (4) EXPAND: We can use STEP (3)-
(4) from Section 4.1. Alternatively, we can write a (fairly
straightforward) algorithm to expand the final plan in 6 � .
For maximal efficiency, we would cache the conditions that
uniquely determine the expansion of each complex action
in a situation.

5 Elaborations on Complex Action Planning

In this section we examine elaborations on complex action
planning. In particular, we examine the conditions under-
which adding complex actions to a theory causes other ac-
tions to be redundant and thus removable. Removing re-
dundant actions is desirable because it reduces the plan
search space. In an extended version of this paper, we dis-
cuss concurrency in complex action planning.

5.1 Removing Weaker Actions

When a complex action � � is compiled into a primitive ac-
tion theory as a new primitive action +v� , another primitive
action, +�� may become redundant in the sense that in any
situation � , if +F� is possible, +w� is also possible and has ex-
actly the same effects as +F� . More generally, we define the
notion that primitive action +w� is stronger than primitive ac-
tion +F� , +[�)x�+�� (and conversely that +F� is weaker than +w� )
as follows:+[��xy+��]z /j{ #E�j�G�%+F� & �j�P|{ #E�j�G�%+ �!& �j�U(7}`}��%~=#��%+ �
& �j� & ~=#��%+ ��& �j���w1 (19)

where }`}���� & � � � is an abbreviation for the first-order for-
mulae that is true iff situations

B
and

B O have the same state.
The relation � is a preorder (it is reflexive and transitive).
It follows that for any situation calculus theory � and goal
formula

* ���j� , ��� �����E� * ���j� iff � � � �����G� * ���j� , where � � is �
with all weaker actions removed.

Note that removal of weaker primitive actions may result in
removal of the optimal plan. In particular, if +v�]xy+�� and +[�
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is a compiled complex action that can expand into multiple
primitive actions, then by removing ��� , we may lose the
optimal plan with respect to the number of primitive actions
in our initial domain. Also note that the notion of stronger
actions does not capture all the conditions underwhich an
action is redundant. In particular, � � may be conditionally
redundant, or it might be redundant relative to ��� in some
situation, and redundant relative to ��� in others.

Example: Let � � and ��� be primitive actions in
��	

,
let ��� achieve the preconditions for � � , and let 
���
�
���� ���
be the situation suppressed expression [16, pg.112] for

���
�
���� ��� 
 � . Define complex action ��� as if ��
���
�
���� ���
then ��� endIf ; � � . If we compile � � , ��� and ��� in

��	
into

primitive actions ��� � , ��� � and ���� in
� 	! , following Section

4.1, then it follows that �����" ��� � .

5.2 Irrelevant Actions with Respect to a Goal

Let #$�%
 � be a goal predicate that is true iff & satisifies the
goal formula. If the direct effect of an action � can never
make #$�%
 � true, and if � cannot directly achieve the pre-
conditions of any of the actions, then � is irrelevant with
respect to goal predicate #$�%
 � and can be removed. For-
mally, given a primitive action � � and goal predicate # , we
consider �'� as ( -irrelevant in

�
if and only if, for � � rang-

ing over all actions in
�

except �'� , it follows from ) that:

*�+,*�-/.�0 ��1/2 * ��34����� �5� 
 �6�87:9 �%#$��34����� ��� 
 �6�<; #$�%
 �6�>=
�?
���
�
������ � 34����� ��� 
 �6�<; 
���
�
������ � 
 �6�'@ (20)

If � � is ( -irrelevant, then � � will not be in any optimal
successful plan to achieve # , and can be removed from the
set of actions when planning to achieve # .

Example (continued): In the previous example, we
showed that � � � could be removed from

� 	  . It then fol-
lows that, � � � will never be needed to make � � ��ACB &�& -ible.
If � � � can never directly achieve the preconditions for any
other actions in the theory, then for all goal predicate (EDF&�G
which are not among the effects of � � � , � � � is ( -irrelevant.

6 Web Service Composition

The primary motivation for our work was to be able to
compose Web services using operator-based planning tech-
niques. With the results of Sections 3 and 4, we have ad-
dressed a fundamental barrier to automated Web service
composition. Service providers such as Amazon or United
Airlines will describe their Web services (Web-accessible
programs) as processes. In our vision of the Semantic
Web, this will be done using the DAML+OIL Web ser-
vice ontology, DAML-S [1], whose process description
constructs are similar to Golog. (The relationship between
DAML-S and the situation calculus is well-defined and has

been used to define the semantics of DAML-S.) To pro-
duce black-box or compiled representations of Web ser-
vices for automated composition, we can exploit the com-
pilation techniques described in this paper. Using them, we
compile process-oriented program descriptions of services
into black-box component descriptions. Once Web services
process descriptions have been compiled, we can use stan-
dard operator-based planning techniques to automatically
compose Web services.

7 Efficiency of Complex Action Planning

A secondary motivation for our work was to potentially im-
prove the efficiency of planning (e.g., [11, 8]) through our
operator-based approach to complex action planning. We
restrict our attention to complex action planning with the
deterministic actions listed in Sect. 4. Compiling a com-
plex action � is polynomial in the number of primitive ac-
tion occurrences in its definition. Note that this step can be
performed offline, and is amortized over multiple planning
runs. The expansion step is itself linear in the length of the
plan, and in the number of branchings in the complex ac-
tion definition. Of no surprise, plan generation dominates
the computational cost. In particular: i) complex action
operators tend to have more complex preconditions and ef-
fects than primitive actions, and ii) the size of the search
space will be changed. However, i) causes only a linear
slowdown and thus, the crucial point is ii).

Although the following analysis can be adapted to almost
any classical planner, for simplicity of the argument, let’s
consider a breadth-first search forward planner. Given H
ground actions, if the shortest successful plan is of lengthI
, the size of the primitive action domain search space isJ D?H�KLG . Adding M ground complex actions yields HON>PQHSRTM

ground actions in the compiled domain. [8] claims that
adding actions that correspond to compositions of other ac-
tions will yield a larger search space. We identify condi-
tions under which this is false.

Suppose the use of complex actions results in success-
ful plans of length

ILU�V
,
VXWZY

. One way to ensure
this is by requiring complex actions to correspond to non-
overlapping subplans in the shortest plan. In this case, the
number of states visited to find a plan of length

I[U�V
will

be
J D?H<N K]\�^�G and the difference between the search spaces

will be
J D%H�K`_aH<N K]\�^�G . If D?HO^C_bH<NcG has a strictly positive

lower bound for any problem, the new search space will
be exponentially smaller than the old, as problem complex-
ity increases. Informally, complex action planning reduces
the planning search space when the complex actions signif-
icantly shorten the smallest successful plan relative to the
increase they cause in the breadth of the search space.

Finally, in addition to this potential search space reduction,
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some complex actions remove conflicts between the goals.
This results in less backtrackings and enables the use of
very efficient hill-climbing techniques (e.g., [9]).

8 Experimental Results

The techniques of Section 4.2 were implemented using
the operator-based breadth-first search forward planner, FF
[9]. FF supports conditional effects and uses its “enforced
hill-climbing” whenever possible. We tested our approach
on the ADL BRIEFCASE domain (BCD) 8. This domain
moves objects between locations using a briefcase. Three
experiments were run on multiple instances of the problem,
varying numbers of locations (#l) and portables (#p)9.

The first experiment was simply BCD alone. Note that FF
struggles as we increase (#p) and (#l). The next experi-
ments involved the addition of the complex action Move-
object. Move-object MO(locInit, locObj, Obj, locFinal) takes
as input the location of the briefcase locInit, an object Obj,
its location locObj, and a destination locFinal. It moves the
briefcase to locObj, puts the object in the briefcase, moves
the briefcase to locFinal, and removes Obj. MO is not a sub-
plan of the shortest plan, so we would not necessarily ex-
pect it to do well. Further, it does not reduce the search
space as it does not shorten the successful plan enough
to compensate for the number of ground complex actions
( ���������	��
 is not positive). Nevertheless, adding the complex
action move-object (BCD+MO) turns on FF’s hill-climbing
techniques, which reduce the number of nodes considered.

Finally, we designed a complex action that does correspond
to subplans of the shortest successful plan and thus reduces
the search space. The complex action LOC(loc-bc, loc),
takes as input the location of the briefcase loc-bc, moves
the briefcase to location loc, removes all the objects in the
briefcase that should be at loc, and puts all other objects
at loc in the briefcase. The goal defines where an object
should be. To encode this complex action in PDDL, the ac-
tion must know the goal at the time it executes. Hence, we
added a persisting predicate ��
��������������������! #"%$'&(��)*
 to the
domain. This predicate always has the same values as the
���+���! '",$-&.�/)�
 predicate in the goal statement. This complex
action reduces the search space ( 0214365	7/38�9$'�:1438� ) and
allows the use of hill-climbing techniques. Of no surprise,
(BCD+LOC) presented the best results of all three experi-
ment runs.

#l:5, #p:20 #l:6, #p:30 #l:7, #p:42
BCD 5549 (1.39) 201006 (2261) ? ( ; 40h)
BCD+MO 859 (11.83) 2345 (201.47) 5195 (2211)
BCD+LOC 75 (.08) 139 (.27) 260 (.85)
Number of nodes (and time of run in seconds).

8http://rakaposhi.eas.asu.edu/domain-syntax.html
9Experiments run on Sun Sparc v9, 2 < 750GHz, 4GB of mem.

9 Discussion and Summary

The work in this paper was motivated by the problem of
automating Web service composition. In particular, we
posed the problem of composing Web services such as
UAL’s buyAirTicket( => ) or CNN’s getWeather( =? ) in order to
achieve a user-defined goal. These Web services are de-
scribable as simple programs, using typical programming
language constructs. We conceived this task as the problem
of planning with complex actions, with the restriction that
the complex actions had to be the primitive building blocks
of a plan. Consequently, we posed the problem of how to
represent and plan with complex actions, using operator-
based planning techniques. To this end, we embarked upon
a theoretical analysis of the problem of how to represent
complex actions as operators. The situation calculus pro-
vided the formal foundation for our work, enabling us to
provide a formal definition of the preconditions, successor
state axioms, and effects of complex actions under a frame
assumption.

With this representational problem addressed we turned to
the practical matter of how to plan. We proposed a method
of planning that produced sound and complete plans rel-
ative to a corresponding primitive action domain. We
showed how to use our results to plan via deductive plan
synthesis as well as using an arbitrary operator-based plan-
ning system that accepts ADL as input.

We are currently incorporating these representation and
compilation results into DAML-S [1], an AI-inspired
markup language ontology for Web services. We’re also
incorporating the results into ongoing Web service compo-
sition work [13].

Finally, the second motivation for this work was to poten-
tially improve either the efficiency of planning or the qual-
ity of the plans generated, by exploiting complex actions
that capture some preferred subplans. We have shown how,
in some domains, using relevant complex actions will re-
sult in a dramatic speedup of the planning process. We dis-
cussed the impact of our approach on the planning search
space and illustrated predicted speedup with experiments.
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Abstract

The problem of information gathering has received consider-
able attention from the planning community in recent years.
However, research in this area has generally assumed a user’s
information goal is perfectly represented by the query, and
typically adopts a relational database model for representing
query operations and information sources. In this paper, we
present a planning and execution framework intended to ad-
dress the more general information retrieval (IR) problem in
which queries are only approximate representations of the
user’s true information goals, and complete models of the
content of information sources are not available. Our ap-
proach reformulates traditional IR techniques such as syn-
onym expansion and relevance-feedback as domain opera-
tors, explicitly modeling the uncertainty of action outcomes
and of satisfying the user’s information needs, and taking
into account resource constraints such as time. A forward-
chaining planning and execution algorithm guides action se-
lection, execution and replanning decisions using a user-
defined utility function. We have implemented this approach
in the INSPIRE (INtegrated System for Planning and Infor-
mation REtrieval) architecture.

Introduction
Traditional ad-hoc approaches to information retrieval (IR)
are becoming increasingly inadequate for today’s large, dy-
namic, heterogeneous document collections, the most ob-
vious example of which is the World Wide Web. Current
IR systems place most of the burden on the users, relying
on them to identify sources likely to contain relevant infor-
mation, compose an appropriate query, and sift through re-
trieved documents to extract relevant information. Clearly,
as document collections continue to grow, it will become
impractical for users to perform these tasks for all but the
simplest requests. Even today there are more sources than
a person could possibly access in a reasonable amount of
time, many of which contain redundant, irrelevant, outdated,
or even erroneous information.

Ideally, a user should be able to state a high-level request
to an IR system and it would take care of the rest. Although
we are far from achieving this goal today, one promising
approach is to use planning to automate more of the IR pro-
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cess. In addition to the obvious benefit of reducing user ef-
fort, a planning approach has two important advantages over
traditional approaches. First, it provides a structured frame-
work for learning which IR tools are best-suited for different
types of retrieval tasks. Second, it frees system developers to
try radically different IR techniques without worrying about
their comprehensibility to novice users. However, before a
planning and execution system can successfully apply to IR,
it must address several challenges presented by the task:

� Incompletely-specified goals: A query is often a poor
approximation of the user’s true information goals, and
different information goals may be expressed by identical
queries.

� Partial and incremental goal satisfaction: For many in-
formation goals, retrieval is not an all-or-nothing proposi-
tion. Partial satisfaction of a user’s request is common and
may be achieved incrementally via multiple iterations.

� Incomplete knowledge of information source contents:
It is virtually impossible to determine the full extent of in-
formation available from many large heterogeneous col-
lections (e.g. the web pages indexed by Google).

� Uncertain action outcomes: The performance of IR
techniques varies from one use to the next. For example,
synonym expansion will produce better results on some
queries than others, and retrieval times will vary with net-
work and machine loads.

� Resource constraints: Most users are not willing to wait
more than a few seconds for a response unless the infor-
mation is extremely valuable to them.

� User interaction: Success is uncertain until we actually
execute a plan and receive feedback from the user. An im-
plementation capable of interleaving execution with plan-
ning is essential, as is support for interaction with, and
possibly intervention by the user.

This paper presents an integrated planning and execu-
tion framework that addresses these issues. Our domain
operators are drawn from traditional IR techniques such
as synonym expansion and relevance feedback. We define
an abstract representation of the user’s goals and resource
constraints using a set of real-valued metrics and a utility-
function specifying their relative importance. A forward-
chaining planning and execution algorithm searches through
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:name ( expand-query-with-synonyms )
:parameters ((?q query) system-time-spent est-query-quality )
:preconditions (

:symbolic ( (not (applied-op-expand-with-synonyms ?q)) )
:metric ( (< est-query-quality 0.8) ) )

:effects (
0.70 (:symbolic ( (del (not (applied-op-expand-with-synonyms ?q)))

(add (applied-op-expand-with-synonyms ?q)))
:metric ( (est-query-quality += 0.3)

(system-time-spent += 0.4)))
0.28 (:symbolic ( (del (not (applied-op-expand-with-synonyms ?q)))

(add (applied-op-expand-with-synonyms ?q)))
:metric ( (est-query-quality -= 0.2)

(system-time-spent += 0.4)))
0.02 (:symbolic ( (del (not (applied-op-expand-with-synonyms ?q)))

(add (applied-op-expand-with-synonyms ?q)))
:metric ( (system-time-spent += 0.5))) )

:execute ( synonym-expansion ?q )

Figure 1: Operator specification for expand-query-with-synonyms.

the space of belief states, sets of possible states and their as-
sociated likelihood, using expected utility and belief state
uncertainty to guide action selection, execution, and replan-
ning decisions.

This work contributes to planning research in two ways.
First, it identifies planning challenges posed by the general
IR task and presents a model that addresses them. Second,
it presents an approach to handling incompletely-specified
goals using an integrated planning and execution process.

The remainder of the paper is organized as follows. First,
we describe the domain and problem representations we use.
Secondly, we present our planning and execution algorithm.
We then briefly describe the INSPIRE architecture that im-
plements the approach, and discuss ongoing work in learn-
ing parameters to estimate the efficacy of domain operators.
We further discuss the relationship between our work and
previous research in planning and execution. We conclude
with a discussion of current and future research directions.

The IR Planning Domain
An IR planning problem consists of a domain definition
and a problem statement. The domain defines the problem-
independent knowledge of the IR task which is common
to different retrieval requests. The problem statement de-
fines a problem-specific search context, the user’s informa-
tion goals, and resource constraints. In this section, we de-
scribe our representational choices for each.

Domain

An IR domain consists of:
� A set of types defining classes of objects (e.g., a QUERY)
� A set of metrics declaring resources, costs (e.g.,
(ELAPSED-TIME 5)) and quality estimates that will
be monitored within states

� A set of operators defining the available atomic actions

Metrics are declared as part of the domain description,
and initialized within a problem statement. Like literals,
they may be altered as either a side-effect or a primary ef-
fect of actions. In addition to representing consumable re-
sources and execution costs, we also use metrics to define
special quality estimates that are used to estimate how well
the current state of knowledge will achieve a particular sub-
goal (e.g., (est-query-quality 0.3)). Represent-
ing knowledge goals in this way lets us compare the relative
values of different states when the goals are only partially
satisfied. (Discussion of how these quality estimates can be
generated is deferred to a later section. For now, we will just
assume the estimates are available to us.)

An operator is defined by its preconditions and effects,
plus an execution function that declares the procedure that
will actually be called during execution, along with the op-
erator bindings to pass as arguments.

Preconditions are conjunctions of literal and metric ex-
pressions. Literal preconditions may contain typed vari-
ables, negation, and inequality constraints on numeric fea-
tures. Metric preconditions specify inequality constraints on
the metric values.

Effects consist of literals to be added to or deleted from
the state, and update functions to apply to metrics. We can
express uncertainty in these effects by declaring multiple ef-
fect sets that enumerate all possible sets of outcomes and the
joint probability distribution for each.

A complete specification for a simple expand-query-
with-synonyms operator is shown in Figure 1. This op-
erator is used to revise a query by adding synonyms of in-
dividual query terms. For example, if applied to the single-
word query ‘car’, we obtain a new query containing ‘car,
auto, automobile, machine, motorcar’. It takes one variable
of type QUERY, modifies two metrics, and has three pos-
sible outcomes: a state in which the query quality has im-
proved, one in which it has remained unchanged (because
no synonyms were available), and one in which the quality
degrades. A metric precondition on estimated-query-
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:objects ((Q1 query) (LYCOS search-engine) (GOOGLE
search-engine))

:util ((system-time-spent C1 (user-time-spent C2)
(est-results-quality G1) (est-query-quality G2))

:init (:symbolic ((available-search-engine GOOGLE)
(available-search-engine LYCOS)
(query-confidence Q1 0.2)
(query-terms Q1 2))

:metric ((user-time-spent 0)
(system-time-spent 0)
(est-query-quality 0.2)
(est-results-quality 0)) )

:goal (:util-criteria (threshold 0.4)
:succ-criteria (threshold 0.8)
:utilfn ((1 C1) (10 C2) (100 G1) (20 G2)) )

Figure 2: Sample problem statement specifying the initial state, goal criteria and utility function to use.

quality limits applicability to queries whose quality is
below the given threshold. We also specify a literal precon-
dition and effect that restrict it to one-time application, as
this technique is generally only effective the first time it is
used on a particular query.

Problem Statement
A specific problem instance is defined by a set of available
objects and their types, an initial state description, and a goal
specification. The initial state declares the set of literal facts
that are known to be true, and assigns initial values to each
of the metrics. A goal specification defines the three compo-
nents needed to evaluate the success or failure of the plan-
ning and execution session:

� A function
�������

that estimates state utility from the cur-
rent metric values in the state

� A minimum utility value for successful termination�	��

������

� A minimum satisfiability threshold � ��
�������


The utility function defines the relative importance of the
knowledge goals, costs, and resources. It is used to esti-
mate progress towards our information goals, and guides the
action selection process by comparing the expected utilities
of the resulting states. Thus, to be useful, a utility func-
tion must accurately reflect the user’s goals by providing a
relative ordering on the states consistent with the user’s pref-
erences, correctly mapping goal states to high utility values
and non-goal states to low values.

Our domain language currently limits utility functions to
weighted combinations of functions for individual metrics� in the domain, each of which produces a normalized value
between zero and one:

��������������� � � � �����
� � � �

The utility threshold
�!��

������


specifies the minimum util-
ity value required for a satisficing solution. Any executed
sequence with a utility value greater than this is assumed to
have achieved the goals.

For example, the problem statement shown in Figure 2
defines a simple utility function comprised of two cost met-
rics and two quality metrics. Each metric has its own utility
function (e.g., system-time-spent maps to "$# ), and
the goal statement declares the relative weights to assign to
each. The diagrams at the left of the statement depict two
very simple mappings; others are possible.

In addition to a utility threshold, a goal declares a satis-
fiability threshold � ��
�������
 between zero and one, indicating
how confident we must be in our success likelihood before
we can declare planning “successful”. A lower value indi-
cates a greater tolerance for risking a lower utility outcome
and wasted execution. We elaborate on the relationship be-
tween this and our planning and execution algorithm in the
next section.

Interleaving Planning and Execution
As previously noted, the incompletely-specified knowledge
goals of information-seeking tasks necessitate use of a
forward-chaining algorithm. Moreover, although we can es-
timate the likelihood that our plan succeeds, until we receive
feedback from the environment (via evaluation of retrieved
documents and explicit user-feedback), we cannot be certain
we have actually achieved the goals. Thus, execution and re-
planning must be an integral part of the planning process.
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We use an integrated planning and execution algorithm
that performs a best-first search across belief states. Our
algorithm, presented in Table 1, is supplied with a domain
model

�
, and a problem statement consisting of: an initial

belief state � , a user-defined utility-function
�

, a utility suc-
cess threshold

�!��
�������

, and a value specifying a confidence

threshold for termination � ��
�������
 .

GenerateOrExecutePlan(domain � , belief state � , utility
function � , goal threshold ���	��

����� , satisfiability threshold� �	��
������ )

1. Initialize the current belief state and candidate successor
belief states����� 
�� �� ����� �!�!"$#�#�%'&(#*) �,+ �-��� 
 +.�0/
2. If ProbabilisticallySatisfies(

����� 
 , � , �0�	��
������ ,
� �	��

����� )1 � UnexecutedActionSequence(

� �2� 
 )
If (

143576 )��8 ��9:� Execute(PopFront(
1

))
Update(

� ��� 
 , � ,
� 8 ��9 )

If (ChooseReplanOrContinue(
����� 
 , �

) == re-
plan)

GenerateOrExecutePlan( � ,
�;8 ��9 , � ,�0�	��

����� ,

� �<�*

����� )
Else goto 2.

Else return success.

3. Else if (ReachedSearchLimit() or
(
� 5�576 and UnexecutedActionSequence(

����� 
 )) 5�56 )) return failure.

4. If (ChooseExecutionOrExpansion(
� ��� 
 , � ) 5�5 ex-

pand)�-��� 
-� ChooseBestOne(
�

)� �=) �?> � ��� 
 /A@ ��� �!�!"$#�#�%'&(#*) �,+ � ��� 
 +.�0/
Goto 2

5. Else1 � UnexecutedActionSequence(
���2� 
 )� 8 ��9 � Execute(PopFront(

1
))

Update(
����� 
 , � ,

�;8 ��9 )
If ChooseReplanOrContinue(

� ��� 
 , � ) == replan)
GenerateOrExecutePlan( � ,

�;8 ��9 , � , �0�	��
������ ,� �	��
������ )
Else goto 2.

Table 1: The planning and execution algorithm.

Beginning with the initial belief state as the root and an
empty plan, the planner evaluates all successor belief states
reachable from the current state by applying a single oper-
ator, and selects the one with the highest expected utility.
The current belief state BDC�E � is updated to the projected be-
lief state, and the selection process repeats. The actual plan,
the sequence of operator applications required to transform
the initial state into the projected current belief state B C�E � , is
implicitly maintained within each belief state by storing its
generating operator and parent belief state.

At each step, the algorithm considers the tradeoff between

executing the first unexecuted operator in the plan and con-
tinuing to plan with the uncertain outcomes of the projected
belief states. If an execution step is carried out, it is followed
by an assessment of the need for replanning.

The algorithm terminates when all steps in the plan have
been executed and the confidence and utility thresholds for
goal satisfaction are met, or there are no additional actions
the planner can take. We now provide details on the belief
state representation and supporting functions.

State Representation
We represent the state-space at two levels: the individual
state level, at which individual operators are applied, and
the belief state level, at which the planning and execution
algorithm operates.

An individual state consists of grounded metrics and liter-
als. (Note that we do not make a closed-world assumption;
the absence of a fact does not imply its falsehood.) In turn,
a belief state consists of a finite set of individual states rep-
resenting all possible current states and their corresponding
likelihoods. This gives us the ability to represent the degree
of uncertainty in our state knowledge.

During the planning and execution process, new belief
states are generated by the Successors() function shown
in Table 2.

Successors(domain � , belief state
�

, utility function � )

1. Generate the set of all applicable operators F for the cur-
rent belief state

�
.

F 5 G
�.HI���KJ��<���.L(MON

P*Q R Q S
Q.TVU�W XZY�Q W\[ ) �]/.+ T^WIU�_$Q `�ab[ ) Q /dc [ e

2. For each operator
X]S F , generate a successor belief state� J ,

and calculate it’s expected utility fg�
� J 5 P [�hiR*jA[0Sk[!Y�XZY�U [ ) � /.+ j�U�SkU lVlmU�_.Y�[ ) X /dnoKp Y�U�WqX o [ ) [ h / 5 oKp Y�U*W X o [ ) [ /$@ X'aZab[ ) U / > a'U o U!Y�Uq[ ) U / ;r U!Y�W p _�[ ) [!h / 5 X*T\T ots ) r l^um` ) U /.+ r U!Y�W p _�[ ) [ /�/1 ) [ h / 5 1 ) [ / 1 ) U / e
� Jwv TmX'WqU�`�Y � �
� Jwv X'_.Y p Qq` � X
� Jwv fg� 5 ���xyHI���KJ��<���.L(M�z�N

1 ) [ h /
� ) [ h /

3. Return the set of successor belief states.

Table 2: The Successors algorithm.

Given an applicable operator, the function simulates the
effects of applying it to the current belief state B C�E � . The
result is a new belief state containing the set of all possible
outcome states and the probabilities of seeing each outcome.
Note that a pair of outcome states within a belief state may
contradict one another. However, once we actually execute
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the plan steps leading to this belief state, only a single out-
come state will remain.

An operator is considered to be applicable in the current
belief state if all of its preconditions are satisfied in every
state within the belief state. This ensures we have a valid
plan regardless of which state we are actually in. Although
it is not explicitly represented in Table 2, the generation of
the successor belief states works with fully instantiated op-
erators. Figure 3 shows a pictorial view of the generation
process.
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Figure 3: A pictorial view of the generation process.

When a new belief state is created, we also compute its
expected utility

� �
. This value is equal to the weighted

sum of the estimated utilities of each outcome state com-
prising the belief state. It is used for action selection by the
function ChooseBestOne() that simply selects the belief
state with the highest expected utility. B C�E � is advanced to
this new state, and the operator that generated the belief state
becomes the next step in the plan.

Execution

The main advantage of executing in the IR domain is that
it provides the planner with additional information that can
be used to estimate how well the retrieval process is going,
reducing the uncertainty and the number of possible states
the planner must consider during forward projection. It may
also allow us to terminate earlier if we are fortunate enough
to discover our actual state was much better than our projec-
tions.

The main disadvantage of execution in this domain is
that we cannot recover resources such as time once they are
consumed, potentially leading to a worse (less optimal) re-
sult than if we had continued planning. In the worst case,
where resources are severely limited, foolishly executing
steps without sufficient lookahead may result in failure to
find any solution because we no longer have the resources
available to complete the task.

Our system supports three different execution strategies,
the first two of which clearly represent the extremes of pos-
sible approaches:

� Conservative (Deliberative) - Always plan until we are
forced to execute, i.e., no more planning is possible

� Reactive - Always execute as soon as an unexecuted plan
step is available

� Informed - Base our execution decision on the features
of our current belief state and alternate candidates.

We are currently exploring several different versions of
informed strategies. Table 3 shows a simple one.

ChooseExecutionOrExpansion(belief state
�

, candi-
dates

�
)

1. If ((
�

== 6 ) or (Var(Utilities(
[!Y�XZY�U [ ) � / )) �� �	��

����� ))

return execute
2. Else return expand

Table 3: Sample decision for execution vs. planning.

This function chooses execution when it is the only choice
available, or when the variance of utilities in the current be-
lief state exceeds a fixed threshold. The intuition here is that
planning is probably not a very good option in belief states
with bimodal utility distributions consisting of very high and
very low utility outcomes. If executing puts us in a high util-
ity state, we may be done without additional planning; if it
puts us in a low utility state, then now we know that we are
probably better off pursuing other options. Either way, we
benefit.

In addition to considering the distribution of utilities in
our current belief state and the number of alternatives we
have, other strategies include consideration of the potential
that execution has to change our view of the world (i.e., the
number of alternatives execution introduces), and how costly
the next step is to execute.

After executing an operator, an update function records
the plan step as having been executed, removes candidates
at branches of the search tree above the executed node, and
recomputes our current belief state.

Replanning

Currently, for simplicity, we always choose to replan after
executing a step. However, we eventually intend to replace
this with a true decision point, taking into consideration:

� How consistent our new belief state is with respect to the
original plan.

� Whether operators that were previously not applicable
have now become applicable.

� The relative cost of updating the existing belief state tree
versus the cost of replanning from scratch.

26      



Termination
There are three different termination conditions that may
occur during the planning and execution process: a solu-
tion may be found, the process may hit a pre-defined search
limit, or it may fail because there are no additional actions
available to take. We limit out discussion to just the success
condition as both failure cases are straightforward.

The function ProbabilisticallySatisfies() (Tabel 4) uses
the � ��
�������
 satisfiability threshold to determine when the
goal is considered “satisfied”. The intuition behind this
function is that if we have a plan that is already very likely to
produce a successful outcome, additional planning may not
be very useful. It is probably more productive to switch into
execution mode to obtain feedback verifying or disproving
the possibility that we are done.

ProbabilisticallySatisfies(belief state
� ��� 
 , utility

function � , goal threshold ���<�*

����� , satisfiability
threshold

� �	��

����� )

��.H\M �����
1 ) [ / � ) [ /�� � �	��

�����

where: � ) [ / 5
�
	 � � � ) [ /
� � �	��

������ %���� "q&�� � #�"

Table 4: Probabilistic goal satisfaction.

As defined earlier, this user-specified threshold � ��
�������

is a value between zero and one that indicates how willing
the user is to risk a suboptimal solution and wasted execu-
tion. A threshold of one indicates a user who is not willing
to tolerate any risk (a strong satisfiability requirement); a
small non-zero value indicates a user who is very risk toler-
ant (a weak satisfiability requirement). It is worth pointing
out that although this threshold influences how suboptimal
the result may be, it does not make any guarantees for opti-
mality. Even in the risk-averse case, we are still only looking
for satisficing solutions.

Implementation
We have implemented this approach as part of the INSPIRE
(INtegrated System for Planning and Information REtrieval)
architecture pictured in Figure 4. INSPIRE consists of three
major components: the planner (IRplan), the execution man-
ager (IRexecute), and the user interface. The user interface
module is responsible for handling all the direct interactions
with the user. It also takes care of translating the user in-
put into an abstract representation that the planner can use.
Upon receiving a new request in the form of a text query,
the interface stores it in the data-repository, and generates
a new problem statement containing the identifier by which
the query was indexed, the query features and other state in-
formation, and a goal statement. This in turn initiates the
planning and execution algorithm contained within the IR-
plan module. When an execution decision is made, the plan-
ner sends an execution request to the IRexecute module. The
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model

IRplan execution lexical
manager utilities

display
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query expansion
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...

user
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IRexecute

search engines and 
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Figure 4: The INSPIRE Architecture.

execution manager retrieves any data it needs from the data
repository and proceeds to carry out the requested task. Af-
ter execution, it saves any new data to the repository, gener-
ates a results summary for the planner and returns control to
the process.

At present, the display tools required to support post-
processing operators are not implemented (as indicated by
the dotted box). The results returned to the user consist
of the first few lines from the 10 most-highly-ranked doc-
uments. We also do not provide mechanisms that allow the
user to interrupt the system. User-control is returned only
after the planning and execution process is finished or when
a feedback request is executed.

Estimating Domain Parameters
One important aspect of our approach, which we have yet
to address here, is the origin of the parameters used in the
domain model. Currently, we use static prior values for the
probabilities of operator outcomes and estimates of metric
effects (including quality estimates). However, the devel-
opment of better models and the addition of the infrastruc-
ture necessary to support learning is the major focus of our
present research. We briefly outline two of the more inter-
esting issues we are currently considering below.

� Categorization of information needs: Users of infor-
mation retrieval systems have very diverse information
needs ranging from requests for a specific document, to
exploratory searches (Belkin et al. 1995). The ability to
pre-classify incoming requests into a set of general goal
categories could help us generate problem statements with
more precise goal requirements.

� Quality Estimates: Research in information retrieval has
long focused on defining useful measures of document
‘relevance’ (Rijsbergen 1979). However, for the pur-
poses of planning, estimating the quality of intermediate
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products and resources such as queries and sources are
also important. Similar to (Kekäläinen & Järvelin 1998),
we are currently evaluating methods for predicting query
quality both in stand-alone requests and in the context of
incremental search.

Related Work
The challenges presented by the IR task touch upon many
different areas of planning research. In this section we de-
scribe a representative sample of this work.

The area that is perhaps most relevant to the current
work is the problem of planning for information gathering.
It has been the focus of considerable attention within the
planning community in recent years (e.g.. (Golden 1998;
Knoblock 1996; Levy, Rajaraman, & Ordille 1996; Kwok
& Weld 1996; Barish et al. 2000)). As in the general IR
task, the goal of information gathering is to obtain infor-
mation that satisfies a user’s query, often in the face of in-
complete knowledge and resource constraints. Unlike the
current work however, many of these systems are mod-
eled after database paradigms: they are restricted to query-
ing structured sources, require a model of source contents,
and assume that the information goal is perfectly repre-
sented by the query. Information gathering systems such as
Sage (Knoblock 1995), and XII (Golden, Etzioni, & Weld
1994) interleave execution to gather information, but adopt
the simple policy of delaying execution for as long as possi-
ble (based on (Ambros-Ingerson & Steel 1988)). PUCCINI
(Golden 1998) adopts a slightly more relaxed approach to
execution. It allows execution to occur even when it is un-
certain that the plan will be satisfied, as long as the outcome
is verified afterwards.

In addition to information gathering systems that inter-
leave planning and execution to support sensing, others have
considered this problem in a more general planning context.
Stone and Veloso (Stone & Veloso 1996) describe an ex-
tension to the Prodigy planner to support user-guided ex-
ecution. They also suggest other execution policies based
on abstraction hierarchies and learning from observing the
user. Nourbakhsh (Nourbakhsh 1997) develops a set of three
types of termination conditions under which the execution
can start. They are based on abstraction, assumptive plan-
ning, and relative partial plan quality.

The problem of planning for uncertain outcomes has
been addressed by several researchers within the context of
conditional planning (e.g. (Peot & Smith 1992; Pryor &
Collins 1996; Weld, Anderson, & Smith 1998)) and prob-
abilistic planning (e.g. (Draper, Hanks, & Weld 1994;
Kushmerick, Hanks, & Weld 1995; Blythe 1998; Blum &
Langford 1998)). However, unlike the current work these
systems generally work with completely specified goals and
don’t include execution support. Typically the probabilisitic
systems declare success when a probability threshold value
is exceeded.

Recently, there has been increased interest in heuristic
search techniques for planning. One example is the GPT
planner (Bonet & Geffner 2000), which uses forward chain-
ing search heuristics, allows incomplete information, and
has a belief-space representation similiar to the work here.

We address this challenge within the context of information
processing tasks.

Decision-theoretic approaches to planning (e.g. (Had-
daway & Suwandi 1994; Haddawy & Hanks 1998;
Williamson & Hanks 1994; Boutilier, Dean, & Hanks 1999))
are also similar to the current work in that they use a utility
function to evaluate alternative plans and make it easy to
take into account resource contraints.

Other relevant work from outside the planning community
includes Microsoft’s Lumiere project (Horvitz et al. 1998),
which infers users’ needs within the context of a software
help system. Microsoft has also worked with developing
utility-based models for user interfaces (Horvitz 1999).

Conclusions
In this paper, we have defined a set of challenges presented
by the general real-world information retrieval task and de-
scribed an integrated planning and execution system de-
signed to address them. We have presented a represention
that models the various sources of uncertainty in the domain,
and uses the uncertainty in the state to guide our decisions
for planning, execution, and replanning.

From a planning perspective, the IR domain and our ap-
proach provide an interesting framework in which to ad-
dress a variety of difficult planning problems including: in-
terleaving execution and planning, planning with incom-
pletely specified goals, partial and incremental goal satis-
faction, and considering the role of the user in the plan-
ning/execution loop. The INSPIRE architecture aims at ad-
dressing these issues that are of great importance in bring-
ing automated planning tools to support user’s goal deci-
sion making and goal achievement. From an IR perspective,
the INSPIRE architecture presents an opportunity to provide
users with better support in the information retrieval process,
as well as to gain greater insight into the value of various IR
techhniques.

Our approach has been implemented and thorough eval-
uation with real users and tasks is part of our ongoing and
future work. We are in fact currently addressing question-
answering tasks to further focus the general IR task. The
INSPIRE architecture is the substrate for our work.

Although the questions of interleaving planning and exe-
cution and planning under uncertainty have been previously
addressed, our research aims at grounding these questions
within the task of information processing. Within this chal-
lenging domain that includes users, we envision learning the
values of the parameters of our approach.
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ABSTRACT 
AI planning has traditionally dealt with developing 
sophisticated plans for achieving well-defined goals in well-
defined domains.  In this paper we consider the problem of 
building marketing plans for massive customers to achieve a 
company’s financial goal in a business-planning domain.  
Corporations and institutions are often interested in strategic 
planning for marketing strategies to target their customers and 
outperform their competitors.  For example, a stockbroker 
company may draft a marketing plan for retaining valuable 
customers or for switching a potential customer to a true 
customer.  Planning in these applications consists of market 
segmentation, marketing-action selection and validation. For 
such problems, the traditional planning frameworks no longer 
apply.  Instead, planning is done based on statistical reasoning 
of previous cases and patterns.  In this paper, we present a 
novel framework that incorporates data mining, case based 
reasoning and planning to support marketing-strategy planning.  
In our approach, we discover case bases by data mining on the 
customer database and formulate plans based on the mined 
cases or “ role-models” .  These plans are not guaranteed to 
work for each individual; however, based on previous 
experience, they have a high probability of succeeding.  We 
explore the tradeoff among time, space and quality of 
computation in this framework.  We demonstrate the 
effectiveness of the methods through empirical results. 

 

1. Introduction 
AI planning has traditionally focused on generating 
plans for a single user to achieve some well-defined 
goals.  In this paper, we consider the problem of 
generating marketing plans to be acted on massive 
customers who achieve a company’s financial goals, 
where the actions and goals are only implicitly defined.  
Our work is motivated from the realistic problems of 
developing marketing strategies to increase a company’s 
overall profit, and is based on a statistical consideration 
of the given dataset by building actionable classification 
models using data mining algorithms. Compared to 
traditional data mining tasks, we take one step further 
than simple classification of data; we not only use 
statistical models to classify customers, but also produce 
marketing plans to be acted on the customers that make 

them to switch classes.  As we shall see, the traditional 
planning framework where goals and actions are 
formally and logically specified no long applies.  
Instead, we propose a statistical planning framework for 
constructing these plans using data mining and case 
based reasoning. 

  Consider the example shown in Table 1.  Suppose that 
we are given a customer database from a mobile-phone 
company.  The last attribute records whether the 
customers signed on to a new service contract after some 
marketing actions, such as sending a free gift, has been 
applied to the customer.  Based on these marketing data, 
we are interested in knowing what marketing plans 
would be the most effective in order to increase the 
chance of valuable customers to sign on to a new service 
contract.  For example, for a customer Basil, we are 
interested in knowing whether we should give the 
customer a fee reduction, sending him a new gift or 
allowing him longer free airtime.  We are also interested 
in how much fee reductions we should provide for Basil 
to achieve our purpose while keeping the marketing cost 
at a minimum. 

 

Table 1.  A Cell Phone Company’s Marketing Planning 
Problem 

 

  This example introduced a number of interesting issues 
for planning.  Traditionally, this type of problems were 
not considered as planning problems, because there are 
no logically formulated actions with preconditions and 
effects, no logically provably correct goals and initial 
states.  However, on a close examination, there are many 

Fee Reduction 
($) Gift Free calls Stayed?

John 10 Y 80 min Yes
Beatrice 20 Y 100 min Yes
Mary 30 N 120 min Yes
Mathew 20 N 100 min No
Steve 15 Y 150 min No
Basil ? ? ? Yes

Mobile Phone Data
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aspects of the marketing plan problem that are of interest 
to planning researchers.  First, although goals are not 
explicitly given, they can be discovered.  For example, a 
possible goal is to identify a potential role model, say 
John, as a potential marketing goal for Basil, and 
formulate marketing actions to make Basil resemble 
John as much as possible.  This may involve giving Basil 
a fee reduction of $10.00, sending him a gift and 
allowing for no less than 80 min of free airtime.  Second, 
although there are no logically formulated actions such 
as the Strips representation, the actions are clearly 
present.  For example, fee reduction for a customer is 
indeed a potential marketing action that can be taken.  
Third, similar to considerations in planning with 
uncertainty, the marketing plans are not guaranteed to 
work for any particular customer.  Both the costs and 
probability of success are taken into account.  The goal 
here is to maximize the expected utility of the overall 
marketing plan for all customers.  

   The marketing plan problem also has a wide range of 
applications that are beyond business marketing.  For 
example, it can be formulated as an advice generation for 
students who apply for graduate schools.  Instead of 
rejecting a graduate school applicant with only a “no”  
answer, we suggest steps that might be taken by the 
applicant in the future to increase his/her chance of being 
admitted the next time around.   

 

Table 2. An example customer database.   

 

Table 3.  Prescribed plans for Steve. 

 

  Similarly, plans can be constructed to give advice to 
customers who fall short of loan applications.   As an 
example, consider a customer database shown in Table 
2.  Suppose that we are interested in providing an advice 
for Steve (the last row) who failed to apply for a bank 
loan.  Obviously, there are many candidate actions that 
one can advise Steve to take in order to succeed in his 
next loan application.  For Steve, we can advise him to 

find another job with a salary close to 80K and increase 
his car number from one to three; this will make him 
look more like John.  Alternatively, we can advise Steve 
to take up a mortgage from the bank worth at least 300K.  
This will make Steve look more like Mary.  In either 
situation, Steve might have a higher chance of 
succeeding than before, but the actions come with 
different costs. The prescribed actions for Steve are 
shown in Table 3. 

  The above-formulated problem can be stated as a 
combination of data mining problem and case-based 
reasoning problem [6, 14], where the key issue is to look 
for low-cost plans with high success probabilities for 
customers based on previous experience.  These plans 
can be generated on a case-by-case basis as in the 
previous situation for Basil and Steve, or the plans can 
be a single strategy that is applicable for a subset of 
customers; for example, a decision might be to send 
gives to all customers whose income is over $50,000.00 
a year. The actions are only given implicitly in the form 
of attributes and their combinations, and the effects of 
actions can only be discovered statistically. 

  In this paper, we present a novel formulation of the 
above marketing plan problems for AI planning. We 
explore a case-based planning solution to the problem, 
where the case bases are extracted from a large raw 
customer database using data mining techniques.  We 
consider the overall utility of the marketing plans 
developed, and propose solutions that provide tradeoff 
between quality of solution and speed of computation. 

  

2. Understanding the Problem 
 

The marketing strategy-planning problem departs from 
traditional planning significantly.  First, the goals are not 
clearly given in a logical manner, as is done in many 
other planning algorithms.  The goal in marketing is to 
increase the overall profit of a company while keeping 
the cost low.  This goal has to be translated to individual 
actions for each customer.  A second difference from the 
traditional planning is that actions are not given in the 
traditional way.  Instead of starting out with a well-
defined set of actions schemata, in business marketing 
the actions are only implicitly given.  These actions must 
be constructed as the marketing strategy takes shape.  
For example, in direct marketing in a cell phone 
company, the effects of actions such as reducing the 
customer fees can only be measured when all customers’  
responses are known in the end.  Finally, the marketing 
strategic plans themselves are not necessarily partially 
ordered action sequences.  Instead, they are a set of 
actions on a segment of customers or on all customers 
that change the attribute values of a database. 

Customer Salary Cars Mortgage Loan  

Approved? 

John 50K 2 None Y 

Mary 40K 1 300K Y 

… … … … … 

Steve 40K 1 None N 

Advice for Steve Salary Cars Mortgage 

Plan 1 40K
�

50K 1
�

2  

Plan 2   0
�

300K 
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    We formulate the problem as a combination of data 
mining and case-based planning problems.  In this 
approach, we first identify typical positive cases from a 
large dataset to form a case base, and then use the case 
base formulate the actions that adapt each incoming 
problem by finding its nearest neighbor in the case base.   

    More specifically, we first classify the training data 
into two classes: the “good”  data set contains data that 
belong to customers who have already been accepted 
into the good class and the bad set those who have not.  
Given this labeled dataset, our second step is to perform 
a clustering analysis to find out a number of 
representative good cases of customers that can be “ role 
models”  for the rest and that represent the centroids of 
the good class distribution.  We also identify a subset of 
highly relevant and actionable attributes of the database 
table that can be used to generate actions.  The relevant 
actions are derived based on a feature extraction 
algorithm.   The actionable attributes help project both 
the good and the bad databases on this set of attributes. 

  The representative data points discovered by data 
mining comprise a case base.  For each new customer in 
the testing data, we compute a nearest neighbor from the 
case base for each customer in bad class.   The new 
customers are then given advise on what actions are 
needed to transform themselves to a good case.   

  There are two important issues in this approach.  The 
first issue is how to construct a concise case base from a 
large database.  In this paper, we consider three 
approaches.  The most naïve one is to simply use the 
original database as the case base.  While this model 
allows the creation of optimal plans from the past data, 
this approach is highly inefficient.  The second approach 
constructs clusters from the database, and takes the 
centroids of the clusters as the potential cases for the 
case base.  This approach can be very efficient, but the 
quality of the cases is still not optimized.  This is 
because in creating role models for the positive class, it 
is more desirable to find cases that are “close”  to the 
majority of the negative instances.  These cases are often 
located near the “boundary”  of the distributions of these 
classes.  In order to find these boundary cases, our third 
approach is to apply a support vector machine-learning 
algorithm for extracting the support vectors as cases.  
These cases can give rise to more cost-effective plans. 

  A second important issue is that for each advisee, how 
to select the target role model for advice generation.  
Here we consider two approaches.  The first is to apply a 
nearest neighbor algorithm, which computes the distance 
between cases from the cost of actions attached to the 
attributes.  While this approach provides plans that 
minimize the total costs, it does not give advice on the 
success likelihood of the plans.  In practice, it is not 
always guaranteed that a switching plan will work.  The 

probability of success is highly dependent on the 
distribution of classes around a role model. Thus, our 
second approach is to consider the utility of each 
potential role model, taking into account both the cost of 
switching and the probability of success.  We show that 
this approach provides a much better advice plan for the 
customers. 

  From an AI planning perspective, this paper raises 
several challenging issues.  First, instead of considering 
a well-defined goal, we need to consider the problem of 
finding goals to achieve.  These goals correspond to role 
models in our case base.  Second, instead of finding 
plans for a single user, we need to find plans for massive 
users and consider their overall gain.  Third, instead of 
given logical representations of actions ahead of time, 
we have to compose these actions statistically.  Finally, 
instead of delivering the plans for a robotic system to 
execute, our plans are in the form of advises for users to 
follow.  These advises have immediate applications in 
the financial and marketing applications. 

  Our approach is related to several existing areas of 
research.  The first is data mining and machine learning.  
In this area, researchers are interested in building 
statistical models of the database for classification and 
data analysis [4, 5, 8].  A typical statistical model 
partitions the test data into different classes according 
the trained model learned from the training data.  A large 
literature exists in this area, such as work on decision 
tree analysis [8] association analysis [11] and Bayesian 
network models.   

  A second area of research is case-based reasoning, in 
particular case-base maintenance [9, 10] and case-based 
planning [14].  In the case-based planning work of 
Veloso [14], a new problem is solved by consulting a 
case base of past solutions.  A new solution is then 
formed by deriving the difference between a past 
solution and the new problem by applying case-
adaptation methods.  However, to apply case-based 
planning to our problem, a case base have to be known 
and the plans in the case base have to be logically well 
formed.  We don’ t have this luxury in marketing strategy 
planning, because the case base have to be discovered 
from the customer data first.  Related to this issue is the 
so-called case-base maintenance problem, which has 
received much attention lately.  In case-base 
maintenance [10] the focus has been on how to update 
case bases from problem solution pairs, and not on least-
cost case-base generation for class-transformation. 

  In AI Planning, the objective has been to find a 
sequence or sequences of actions to achieve a user 
specified goal or objective.  In our situation, the goal to 
be achieved is only implicitly given; that is, the goal is to 
enable a customer to become eligible for credit loan.  
The plans are to convert all the bad customers into good 
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ones, using the case base as guide.  This objective is 
related work in decision theory [12, 13], but the problem 
of scaling up using a small case base has not been 
addressed.  The key issue again is to find a good case 
base from the database so that the overall cost of 
negative-case transformation is minimized. 
 

3. Case-Base Mining By Cluster ing 
 

We formulate the case-mining problem formally.  Given 
a database of customer records, we assume that each 
customer record is labeled as either a positive or 
negative class.  Multiple class generalization is possible 
but will be considered separately in future work.  Each 
attribute is labeled either as actionable or non-actionable. 
For each actionable attribute A and values v1 and v2 of 
A, there is a cost function: cost (A, v1, v2) which is a real 
value. 

  The problem to be solved is to find a case base of K 
positive instances, such that the total cost of converting 
from all negative instances in the test set to their nearest 
neighbors in the case base is minimal.  We will present 
two approaches to the problem, one requiring that the 
use specify the value for K, and the other does not. 

In the extreme situation, the value of K is equal to the 
size of the population of all positive instances.  In this 
case, the system is able to find the optimal solution, 
where each bad case is paired with its closest positive 
case.  The drawback of this extreme situation is that the 
computational cost for planning for each individual 
negative instance is too large; in the realistic situation, 
the database may contain millions of customers.  Finding 
the optimal solution for all negative instances is neither 
feasible nor necessary in practice.  

  Our first step is to find K near-optimal instances to 
populate the case base.  When K is not known in 
advance, we can apply a second method discussed below 
to find the optimal cases.  This case base will consist of 
K instances that are highly representative of the 
distribution of the customer information in the original 
database.  In this work, we use all positive instances as 
training data for the case base model, and the negative 
instances as testing data set for evaluation.   To see the 
interplay of efficiency with the size of case base, we 
show experimental results of quality of advice versus the 
time to come up with the switching plans of a certain 
quality.  The case base quality is defined as the total cost 
to transform all negative instances into a positive 
counterpart in the testing set.   

  Our first case-base mining algorithm is described in 
more detail in Table 3.  Given an input database, we 
divide the database into a training database and a testing 
database.  The training database consists of the positive 

instances of the original database, whereas the testing 
data are the negative instances.   

 

Table 3. Algor ithm Centroids-CBMine (database DB, 
int K) 

Steps Begin 

1    casebase= emptyset; 

2    DB = RemoveIrrelevantAttributes(DB);     

3    Separate the DB into DB+ and DB-; 

4    Clusters+ = ApplyKMeans(DB+, K); 

5    for  each cluster in Clusters+, do 

6           C = findCentroid(cluster); 

7            Insert(C, casebase); 

8    end for ; 

9   Return casebase; 

  End 

  

In the algorithm Centroids-CBMine in Table 3, the input 
database is DB. There are two classes in this database, 
where the positive class corresponds to population of 
desired cases and the negative class the unconverted 
cases.  Step 2 of the algorithm performs feature 
extraction by applying a feature filter to the database to 
remove all attributes that are considered low in 
information content.  For example, if two attributes A1 
and A2 in the database are highly correlated, then one of 
them can be removed.  Similarly, if an attribute A has 
very low classification power for the data, then it can be 
removed as well.  In our implementation, we apply a 
C4.5 decision-learning algorithm to the database DB.  
After a decision tree is constructed, the attributes that are 
not contained in the tree are removed from the database; 
these are the irrelevant attributes. 

Step 3 of the algorithm separates the training database 
into two partitions, a positive-class subset and a 
negative-class subset.  Step 4 of the algorithm performs 
the K-means clustering on the positive-class sub-
database [2].  K-means finds K locally optimal centroids 
by repeatedly applying the EM algorithm on a set of 
data.  Other good clustering algorithms can also be used 
here in place of K-means.  Step 6 of the algorithm finds 
centroids of the K clusters found in the previous step.  
These centroids are the bases of the case base 
constructed thus far, and are returned to the user. Finally, 
Step 9 returns the case base as the output. 

Once the case base is built, it can then be applied to a set 
of testing negative-class cases to see what the total cost 
would be for converting all the negative cases to positive 
ones.  For each negative class case C1 in the test data set, 
a one-nearest neighbor algorithm is applied to the case 
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base to find the most similar case C2.  The difference 
between C1 and C2 are used to generate the switch plan. 

A critical issue for this approach is the tradeoff among 
the size of the case base, the quality of the model built 
and the time taken to build the case-base model.  The 
quality measure is defined in terms of the total cost of 
converting negative instances to positive ones based on 
the basic cost elements of performing a conversion from 
one value to another for the actionable attributes.  Recall 
that these elementary cost functions are cost(A, v1, v2), 
which is a real value denoting the cost of switching 
attribute A from value v1 to value v2.  Then, the cost of 
the model on an entire population of test data is the sum 
of all costs for all actions on each datum in the testing 
set.  Assuming that the jth attribute for an ith customer is 

ijA , Equation (1) shows the cost formula. 
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The specification of the cost of switching an attribute 

ijA  from v1 to v2 can depend more than the attribute 

and its two values; it can in fact depend on the context of 
the switching.  In this paper we simplify this 
consideration by only considering the attribute itself; but 
this restriction can be relaxed later. 

 
4. Case-Base Mining by Suppor t Vector  
Machines 
 

The centroid-based case-mining method extracts cases 
from the positive-class cluster centroids and takes into 
account only the positive class distribution.  By 
considering the distribution of both the positive and 
negative class clusters, we can do better.   

    The key issue then is to identify the positive cases on 
the boundary between the positive and negative cases, 
and select those cases as the final ones for the switching-
plan generation.  The cases along the boundary hyper-
plane correspond to the support vectors found by an 
SVM classifier [3, 7].  These cases are the instances that 
are closest to the maximum margin hyper-plane in a 
hyperspace after an SVM system has discovered the 
classifier [3]. 

    By exploiting the above idea, we have a different 
case-mining algorithm, SVM-CBMine(). In the first step, 
we perform SVM learning on the database to locate the 
support vectors.  Then we find the support vectors and 
insert them into the case base.  This algorithm is 
illustrated in Table 4.  

    Compared with the Centroids-CBMine algorithm, the 
SVM-CBMine algorithm has several advantages.  First, 
because the cases are the support vectors themselves, 

there is no need to specify the input parameter K as in 
the Centroids-CBMine algorithm; the parameter K is 
used to determine the number of clusters to be generated 
in K-means.  This corresponds to parameter-less case 
mining.  Second, because the cases are themselves the 
boundary cases, they are naturally better examples for 
the entire negative-class members to switch to; the costs 
would be lower.  However, the SVM based methods 
have also their drawbacks.  A potential drawback is that 
SVM based classifiers are usually very costly to generate 
and are highly dependent on the data distribution.  As we 
will see below in the experimental section, there are 
many datasets for which the SVM classification fails to 
produce any result within a limited amount of time, 
resulting in no case bases at all.  As we will also point 
out, such situations occur when there is no clear 
boundary between the two classes. 

 

Table 4.  Algor ithm SVM-CBMine ( database DB, int K) 

Steps Begin 

1   casebase = Emptyset; 

2   Vectors = SVM(DB); 

3   for  each positive support vector C in Vectors do 

4            Insert(C, casebase); 

5     end for  

6    Return casebase; 

  End 

 
 

5. Experimental Results 
 

Our experiments are aimed at finding out the tradeoff 
among the system execution time, which is the model-
building time plus the model-application time on test 
cases, the size of the model (the number of cases) and 
the total cost of switching plans for converting all 
negative examples into positive ones.  We are also 
interested in the effect of distribution of the training data 
on the model quality.  In our experiments we tested on 
both artificially generated data and some real data sets.  
The comparison made here did not use any attribute 
filtering algorithm to remove the irrelevant attributes.   
The experiments are performed on an Intel PC with one 
Gigahertz CPU. 

  We first tested the algorithms on a artificial data set 
generated on a two-dimensional space (x, y), using a 
Gaussian distribution with different means and co-
variance matrix for the + and the – classes.  When the 
means of the two distributions are separated, we 
expected the class boundaries are easy to identify by the 
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SVM-based method (see Figure 1).  On the other hand, 
when the two means are very close to each other, there 
will not be an easy-to-find boundary; in this case the 
centroid-based method will perform better.  The cost of 
switching a negative case to a positive one is defined as 
the Euclidean distance on the (x, y) plane.  

In this distribution, the mean for the positive case 
distribution is mean1=(7, 8), with a co-variance matrix 
[(0.6, 0.3), (0.3, 1.8)].  For the negative class, the 
location of the mean mean2 moves from being far away 
from the mean1 to being close to it.  The co-variance 
matrix for the positive class is defined as [(0.8, -0.5) (-
0.5, 3.2)].   Table 5 shows the test results.  In this table, 
SVM stands for the SVM-CBMine result.  SV=3 
indicates that three support vectors were found to 
populate the case base.  Parameter K indicates the 
number of clusters generated by K-means algorithm for 
the Centroids-CBMine() system.  In the table, the time, 
size and cost values are all indicated.  Finally, Optimal 
(last row) indicates the cost and time for the model using 
all positive examples as the cases in the case base.  
Similarly, a second distribution is listed in Table 6, 
corresponding to the situation when the centers for the 
negative distribution are moved closer to that of the 
positive distributions. As can be seen from the 
progression of the data distribution, as the two classes 
are distributed farther apart from each other, the SVM-
based method is a clear winner.  This is because it uses 
far less time than the optimal method, and yet its total 
cost is nearly the same as that of the optimal method.  As 
can be seen from the K-means based method, as the 
number K of clusters increases, the cost of switching 
plans also decreases.  However, the time it takes to build 
and execute the model also increases with K.  On the 
other hand, as the two distributions move close to each 
other such that there are no clear boundaries, as in the 
case of Table 6, the SVM method selects nearly all the 
positive examples as cases in the case base, rendering it 
useless.  Thus, its time expense is also very high.  In this 
case, the K-means based method is recommended. 

 

Table 5.   Result for mean2 = (3, 4) (See Figure 3) 

 Cost Time (s) 

K = 10 1934.2 1.3 

K = 50 1464.6 6.6 

K = 100 1420.8 13.8 

SVM SV = 3 1225.6 0.9 

Optimal 1220.0 7.03 

 

Figure 1. Distribution of the class 1=positive (+) and 
class 2=negative (* ) data. 

 

Table 6. Result for mean2 = [7 8] 

 Cost Time (s) 

K = 10 259.3 1.3 

K = 50 133.4 6.5 

K = 100 101.6 12.0 

SVM SV = 487 58.5 25.6 

Optimal 56.7 8.5 

 

We next compared the three models on the some UCI 
data sets [1].  In Table 7, which is the data from German 
credit approval data, the SVM based method is unable to 
find any clear boundaries between the two classes; thus 
in this case the K-means based method wins.  SVM 
cannot produce any case base either for other UCI data 
sets including the adult Database, the Liver-disorders 
Database, etc. 

 

Table 7. German Credit dataset: 20 attributes, 2 classes 
1000 instances (700 +, 300 -) 

 Cost Time (s) 

K = 10 1211.2 3.3 

K = 50 1108.9 7.6 

K = 100 1060.8 14.9 

SV = 700 934.6 18.8 

Optimal 934.6 17.5 

 
6. Utility Guided Plan Generation 
 

35      



 

The previous sections solved the plan generation 
problem using a nearest neighbor approach.  The plan 
used to advice a customer is one that is associated with 
the least cost.  While this is guaranteed to generate a cost 
effective plan, it is not guaranteed to generate a plan that 
will achieve its intended target all the time.  In reality, 
the positive and negative cases are often distributed in a 
mixed manner.  Several negative cases may surround a 
positive case.  When executing a customer-switching 
plan, it is likely that the customer following the plan will 
land on a wrong target; it is wrong because it 
corresponds to a “unreliable”  positive case whose 
neighborhood is dominated by negative instances, 
rendering the switching low probability of success.  A 
more sensible method will consider not only the cost of 
switching, but also the probability of success of each 
switching. 

    We can estimate the probability of success of 
switching to a certain target to be the probability density 
of positive instances around a target. More formally, let 
p(+ |t) be the probability density of an instance t, cost(x, 
t) be the cost of switch from x to target case t, and 
maxCost be the maximum value among the different 
costs of switching from x to every possible case y in the 
case base.  The utility function we use for ranking cases 
in a case base is defined in Equation (2) below.  The 
target case t with the maximum rank is chosen as the role 
model for switching-plan generation for customer x. 

Cost
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     Finally, we performed a scale-up test using the by 
IBM QUEST synthetic data generator.  We generated the 
training dataset with nine attributes, 50% positive class 
and 50% negative class. An excerpt of the database is 
shown in Table 8.   Our results are shown in Table 9.  It 
is clear from the table that with large data, the centroid-
based method is able to scale up much better than the 
SVM based method. 

 

Table 8. An excerpt from the synthetic dataset. 

 

 

 

Table 9.  CPU-time comparison of Centroid-based 
Method and SVM-based method. 

 

 

7. Conclusions and Future Work  
 

In this paper, we proposed a case-based solution for the 
switching-plan generation, a problem that arises in 
business planning.  The central issue of the problem lies 
in the discovery of high-quality case bases from a large 
data set.  This problem corresponds to finding goals to 
achieve for each customer.    We proposed two solutions 
for the problem.  For the data distribution where the two 
classes are clearly separated, the SVM-CBMine 
algorithm, which is an SVM-based method, should be 
used.  When the data distributions are not separated well 
by a boundary, the cluster-centroids based method is 
recommended.  Furthermore, we compared the solutions 
where plan generation is done based on distance alone 
and the solution where the probability of success is also 
taken into account.  It was shown that the solution with 
utility consideration is superior.  In addition, the 
centroid-based method is shown to scale much better 
than the SVM-based method, demonstrating a quality-
speed tradeoff. 

    In the future, we will continue to explore other forms 
of case mining and the related problem of switch-plan 
generation.  Other cost functions will be considered.  
Attributes weights will be taken into account as well. 
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Abstract

Domains like bioinformatics arecomplexdata integration do-
mains because data from remote sourcesand specialized ap-
plications need to be combined to answer queries. An im-
portant characteristic of such a domain is that actions may
be mutually exclusive or causally related. Moreover, there
is (partially complete) domain specific knowledge about how
queries should be answered since an average user is a sophis-
ticated domain expert. Query plans in these domains should
not only answer the query but also respect any user intent or
domain guidance provided to improve the perceived quality
of the result and query execution time. Previously, meth-
ods like rule inversion and view unfolding have been found
to be more effective than AI planning in obtaining access se-
quences for sources without interactions, a case when sources
are just repositories of data.

We present a solution in SHQPlanner, a hierarchical temporal
planner for query planning and execution monitoring in com-
plex domains based on previous theoretical work on HTN
planning with partial domain knowledge on one hand and
temporal reasoning for query cost on the other. SHQPlan-
ner is a sound, complete, and efficient domain-independent
query planner that can incorporate partial query decomposi-
tion, source preferences, data and application interaction, and
temporal constraints.

Introduction
The amount of genomic data available for analysis online
is vast and ever growing. Yet, a biologist wishing to gain
insight from them is lost in data model, data formats, and in-
terfaces of particular data sources. Many sources have data
as formatted file with specialized Graphical User Interfaces
(GUIs) and retrieval packages. The design choices made
by the autonomous data sources considers the complexity
of data, efficiency of analytical tools, multi-platform sup-
port and cost of implementation, but not integration issues
which would have lead to more adoption of database man-
agement systems. The heterogeneity of the data sources and
the multitude of non-standard implementations makes pro-
viding uniform access for such data sources an integration
nightmare.

The computer science field of data integration (also
known as information integration or information gather-
ing(Lambrecht & Kambhampati1996)), which lies at the

cross-roads of Artificial Intelligence and Databases, stud-
ies how to provide access to multiple autonomous hetero-
geous data sources in a uniform fashion(Levy1998). Given
a global world model, a set of information sources, a map-
ping of contents of information sources to the world model,
and a query on the world model, the objective is to return in-
formation contained in the information sources that answers
the query on the world model. An agent integrating the dif-
ferent heterogeneous sources must return only the actual in-
formation that satisfies the user’s query and no more.

It turns out that biology1 is both complex and large com-
pared to previously considered domains in data integration.
The specific characteristics are:
� In bioinformatics, data from sources and specialized ap-

plications (either located at the sources or implemented by
the mediator) must be combined to answer queries. For
example, gene expression data from biochips is clustered
by a suitable application or a search for proteins should be
fed to the BLAST application for protein similarity search
and only similar proteins, which is the result of the appli-
cation, should be used for pathway analysis.

� The user, a biologist, is a specialist of the domain and
has (partially complete) domain specific knowledge about
how queries could be efficiently answered for meaningful
insights. A form of domain knowledge, the search control
knowledge, may dictate that subgoals of actions may be
mutually exclusive or causally related.

� Additionally, since there is considerable choice for
sources and applications (pre-processing, post-processing
or analytical) of a particular type(Baxevanis2002) (e.g.,
protein, pathway, publication, gene expression data), the
user usually has strong preferences about which sources
and applications are used to answer queries.

� Query decomposition in bioinformatics has a mixed-
initiative planning flavour. The reason is that queries in
biology can take very long time due to extreme range of
data sizes that may be retrieved. Hence, biologists quickly
want to decide if a line of biological exploration is worth-
while before investing more time in it looking for refined
results.
1We are particularly interested in Bioinformatics, which is the

application of information sciences (mathematics, statistics and
computer science) to increase our understanding of biology.
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Conventional data integration approaches consider the data
sources as repositories of data but not as applications
(which may in turn embody complex interactions with other
sources), and they do not provide any mechanism for lever-
aging domain-specific user guidance.We argue that data
integration in domains with these characteristics are best
addressed by using AI planning for query decomposition.

AI Planning has been considered in conventional data in-
tegration to determine the best way to integrate data from
different sources(Knoblock1995; Knoblock & Ambite1998;
Kwok & Weld1996), and monitor the actual execution of
source requests. Planning tackles the problem of compos-
ing a sequence of actions so that an agent can go from
the initial state to the goal state given the set of legal exe-
cutable actions(Kambhampati & Srivastava1995). However,
planning for query decomposition seems to have lost sup-
port in favour of cheaper methods (Levy1998) like rule in-
version(Duschka1996) and view unfolding(Qian1996). The
main reason is that since the search space is made up ofin-
formationstates, there is no subgoal interaction among ac-
tions as they can always be executed on the sources to gain
the information needed. Hence, the conclusion drawn was
that using planning for just sequencing source-call actions
is an over kill. But when sources can also be applications,
they may encode physics of their interactions2 which may
prevent an action from being always applicable. For exam-
ple, if a user’s authentication request is denied (by a trusted
third-party), her already available credentials (information
like password or certificate) to access a source may become
invalid. Hence, we need to revisit planning for data integra-
tion to address action interactions.

Hierarchical Task Network (HTN) Planning (Erol1995) is
a paradigm in planning to capture user intent about desirable
solutions and what actions are used in them. However, dura-
tion (temporal properties) of an action has not been widely
modeled in HTN. In this paper, we extend a recent forward
chaining (also called forward state-space) temporal planner,
Sapa(Do & Kambhampati2001) to handle task hierarchies
(also calledschemasin HTN planning) and other features
useful for biology. Specifically, we describeSHQPlanner, a
hierarchical temporal planner, for query planning and exe-
cution monitoring in biology and other such domains where
data from sources and applications have to be integrated, and
user has background knowledge about what kind of plans are
acceptable. The advantage of our approach is that the hier-
archy can embody the domain knowledge while the tempo-
ral specification can help reasoning with query cost models.
Important features ofSHQPlannerare: (a) it has the abil-
ity to incorporate partial query decomposition and source
preferences, data and application interaction, and incremen-
tal updates (b) it is a domain-independent query planning
algorithm (c) it reasons with temporal constraints for cost
estimates and (d) it is sound, complete, and efficient.

Our work is in the context of an end-to-end XML-based
Bioinformatics application callede2e(Adak et al2002) that

2The fact that some predicates are not true as the result of an
action but not others, is governed by the physical knowledge about
the world being modeled.

facilitates analysis of gene expression data by providing a
uniform access to diverse online data sources (i.e., proteins,
literature, pathways and gene expression data) and repre-
senting the annotations on the intermediate data in a XML
format, eXpressML(Adak et al2001). For example, text
summarization can be performed on the result from a lit-
erature source and the top few keywords are represented in
eXpressML. Ine2e, eXpressML can be queried by a XML
language or processed by advanced statistical tools. We are
in the process of integratingSHQPlannerinto e2e.

Here is the outline of the paper: we describe the bioin-
formatics domain in the next section and survey the existing
methods here for data integration. Next, we pose query de-
composition as a planning problem and show howSapa, a
temporal planner, can be extended to support schemas. We
then describe the working of the new planner,SHQPlanner,
and present initial results. Finally, we conclude with point-
ers to future work.

Bioinformatics: A complex data integration
domain

We are interested in data integration in the large and com-
plex domain of bioinformatics to facilitate data analysis.
Here, according to a recent survey(Baxevanis2002), there
are atleast 335 data sources in early 20023 with at least 6-
10 sources of similar type (for example, protein, pathway,
publication, gene expression data, etc.). In contrast, con-
ventional data integration solutions have dealt with very few
sources with little overlap in content. Moreover, there is rich
domain information on how results for queries should be ob-
tained and strong user preference for sources (example, one
biologist may prefer SWISS-PROT to PIR for protein infor-
mation due to its affiliation). The completeness (but not cor-
rectness) of the results is negotiable in favor of performance
and timeliness. The data size can be large (in megabytes or
gigabytes). Finally, the user may want to employ the unique
native data analysis capabilities of the data sources.

Data analysis in bioinformatics is done in two phases:

1. Identify genes which constitute an interesting regulatory
pattern by applying a set of statistical analysis/ cluster-
ing methods like hierarchical, k-means, fuzzy and self-
organizing feature maps.

2. Identify functional relationships among selected genes
based on maximum number of information/ data sources
to develop and verify hypotheses. In a sense, the clusters
from the first step are characterized by a set of meaning-
ful features from the databases. Additionally, relationship
among the genes is predicted and validated/understood.

Karp (Karp1996) has identified the issues in data integra-
tion in bioinformatics and alluded to the need of a planning
module through what he calls a Relevance Module. An ex-
ample of a query that the biologist may want to ask ine2eis
(modified slightly from (Karp1996)):

Q: Find examples of co-expressed genes that code for en-
zymes in a single metabolic pathway.

3Up from 281 in 2001.
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QueryQ can be more precisely described as - find a set of
genesG from a pathwayP where:

� There existsR, the set of all reactions inP

� There existsE, the set of all enzymes that catalyze a re-
action inR

� G is the set of genes that encode an enzyme inE, and

� Genes inG are similar in their expression level according
to some algorithm.
To answer the query, the system needs to access a pro-

tein pathway database like KEGG, the user’s gene expres-
sion data and a pathway similarity algorithm. We generate
the necessary query plan usingSHQPlannerat the end.

Existing Approaches
A data integration system can be characterized by the
amount of transparency it provides to the user. The differ-
ent types of transparency, in increasing degree of abstraction
are:

1. Format transparency or the user not having to know about
the data formats supported by a source and the individual
ways to access them.

2. Location Transparency or the user not having to know
about the location of a piece of information on the source.
This gives the impression of a single location for all infor-
mation while the access details to the source is handled by
the system.

3. Schema Transparency or the user not having to know the
schemas of individual sources to reconcile the final result.
This allows the user to query data across sources in an
integrated manner.

4. Source Transparency or the user not having to know if
a particular source exists. For example, the user will
know that protein information can be obtained from the
system but she will not have to know the source from
which such an information can be obtained. Source
transparency necessitates a domain ontology(Benjamin et
al1998; Critchlow et al1998) so that the user interacts with
the system using domain concepts and the concepts are in
turn reconciled with available sources.

A variety of approaches have been developed for inte-
grated access to heterogeneous data sources in genomics.
In the link-driven federationapproach (e.g., SRS(Etzold &
Argos1993), LinkDB(Fujibuchi et al2001)), the user can
browse the content of a source and also switch sources us-
ing system-provided hyperlinks. These systems provide lim-
ited format transparency to the user. Inview integration
(e.g., DiscoveryLink(Haas et al2001), K2/Kleisli(Davidson
et al2001)), a virtual global schema in a common data
model is created using the source description. Queries on
the common data model are then automatically decomposed
to source level queries. A variation of view integration is
thewarehousing approach(e.g., GUS(Davidson et al2001),
(Widom1995)) where instantiation of the global schema is
created, i.e., all data of interest is locally stored and main-
tained for integrated access. Both view and data integra-
tion provide format, location and schema transparency to the

user. The holy-grail in data integration is to provide source
transparency as well, which leads tosemantic integration. In
the TAMBIS(Goble et al2001) system, a common ontology
of molecular biology describes the concepts of interest and
data source characteristics are directly mapped to the com-
mon concepts. The user interacts in the ontological realm
while the system deals with the sources.

While transparency is a desirable property to have in ge-
nomics, users may selectively want to lose it to gain con-
trol over how the queries are answered and utilize source
specific features. The drawback of the existing systems is
that while they handle transparency for the user, they do
not model the relationships between the applications and
the data sources in a formal and general framework. Conse-
quently, evenif available, they fail to leverage a biologist’s
(user’s) background knowledge about how a query should be
answered for her purpose or respect user’s intent in the final
plan. Since a typical data integration system is interactive, it
makes sense to employ additional inputs from the user about
query optimizations or preferences of data sources.

A Hierarchical Temporal Planning Solution
The requirements for gathering information in bioinfor-
matics domain lead us to look back at AI Planning for
query decomposition4. A planning problemP is a 3-tuple
hI;G;Ai whereI is the complete description of the initial
state,G is the partial description of the goal state, andA is
the set of executable (primitive) actions. An action sequence
S is a solution toP if S can be executed fromI and the re-
sulting state of the world containsG.

A HTN planning problem(Kambhampati et al1998) can
be seen as a planning problem where in addition to the
primitive actions, the domain contains schemas which rep-
resent non-primitive (abstract and non-executable) actions
and acceptable rules to reduce non-primitive actions to prim-
itive and other non-primitive actions (hence an hierarchy
of actions). All non-primitive actions are eventually re-
duced to primitive actions so that the resultant plan is ex-
ecutable. The acceptable solutions to a HTN problem not
only achieve the top-level goals but can also be parsed in
terms of the non-primitive actions that are provided for the
top-level goals(Barrett & Weld1994).

Sapa(Do & Kambhampati2001) is a heuristic forward
chaining (also known as forward state space) planner that
can handle actions with durations, metric resource con-
straints and temporal deadlines. It starts from the initial
state and applies actions as they become applicable taking
into account their duration and when (either start or end of
the duration) each effect becomes valid. In order to guide
its search, Sapa builds a temporal relaxed planning graph,
and uses action and resource measures to calculate heuristic
distance to the goal.

We presentSHQPlannerin whichSapais extended by in-
troducing non-primitive actions into the domain actions,A,
and providing reduction schemas for them. Moreover, we

4An altogether different reason to consider planning in data in-
tegration is execution monitoring(Knoblock & Ambite1998) but
we do not focus on this here.
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Input Query (in Quilt/ Kweelt)

Planning Problem in PDDL

 A Query Plan

Query Result

Translation

Reformulation

Execution

Figure 1:Stages in processing the XML Kweelt/Quilt query
of e2ewith SHQPlanner.

allow users to give preferences over parameter values of ac-
tions and schemas. We leverage the duration modeling of
actions so that we can reason about query costs. We also
modify the heuristic estimates to account for merged actions
in the partial plan.

An XML Kweelt(Sahuguet2001) query ine2e goes
through the stages described in Figure 1. Each query posed
by the user corresponds to a new query planning problem,
Pi where the initial statesI andG states are different but it
uses the same domain actions,A. The solution toPi is exe-
cuted by the query executor to obtain the final result. In case
of failure, the query executor will pose a different planning
problemP

0

i
based on failure and any partial result it already

has accumulated.

Schema Specification

The specification of schema inSHQPlanneris allowed
through the: schema construct which is described in Fig-
ure 2. In this, the: duration field records the minimum and
maximum duration of each sequence of actions which are
permissible while reducing this schema. The: precondition
field is a place holder to specify additional preconditions be-
yond those of the constituent primitive actions which should
be true to apply the merged action. The: effect field
records theprimary effects(Kambhampati et al1998) of the
schema for which the merged action should be introduced
into the plan. This takes care of basic concern in HTN plan-
ning that a very complex plan is considered because a non-
primitive action is used to achieve secondary effects. The
:method field specifies the sequence of actions that are to
be used for reductions. If there is more than one sequence, a
choicedelimiter is used.

As an example, in Figure 3, a schema is given which en-
codes that the primary reason to make use of this schema is
to prepare the data. In order to achieve the effect, there is a
choice between three sequences of actions corresponding to
the alternative reductions available.

(:schemahschema-namei
:parameters

(fh?vari - hvar-typeig)
;; Static duration
:duration

(hmin-duri, hmax-duri)
;; Preconditions true at the start
:precondition

[(and]fhpredicatei - (hstart-timei, hend-timei)g[)]
:effect

[(and] hpredicatei) - heffect-timei [)]
:method

[(choice] [f(sequence]f hactioni - hdurationi g [)] g [)] )

Figure 2:The format for schema specification. Fields in [ ]
are optional while fields inf g are one or more.

(:schema RESULT-PREPARE-SCHEMA
:parameters

(?d - data ?q - query)
;; Static duration
:duration

(st, + st 4)
;; Preconditions true at the start
:precondition

()
:effect

(prepareddata ?d) - et
:method

(choice
(sequence

(CLUSTER-DATA ?d)
(PREPARE-DATA ?q ?d))

(sequence
(ALIGN-DATA ?d)
(PREPARE-DATA ?q ?d))

(sequence
(SUMMARIZE-PUBLICATION ?d)
(PREPARE-DATA ?q ?d))))

Figure 3:An example schema.
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Algorithm: Generate-Merged-Actions
Input: Schemas

Output: M = [] ; set of primitive actions
1. For each action sequenceLi in s, create actionMi

2. Mi.name = Make-unique-name(s)
3. Mi.parameters =s.parameters
4. Mi.precondition =s.precondition
5. Mi.duration = 0
6. Mi.primary =s.effect
7. For each actionaj in Li

8. If aj is non-primitive, iterate over
Generate-Merged-Actions(aj )

9. Mi.duration =Mi.duration +aj .duration
10. If(Mi.duration3 [s.min dur,s.max dur])

continue
11. Mi.parameter =Mi.parameter

S
aj .parameter

12. Mi.precondition=Mi.precondition
S

aj .precondition
- Mi.effect

13. Mi.effect =Mi.effect
S

aj .effect
14. End-for
15. M = M

S
Mi

16. End-for

Figure 4: Procedure to produce primitive (merged) actions
based on reductions in a schema.

Reduction of a Schema

A HTN planner can transform any non-primitive action into
executable actions by recursively applying the available re-
duction information from the schemas. SinceSapais a for-
ward chaining planner, one can interpret the reduction of a
schema eventually into asequenceof primitive actions. We
use this insight to pre-process (specifically, top-down parse)
the schema into a set ofmerged actionsthat correspond to
the sequential execution of the primitive actions in the final
reduction. Figure 4 describes a procedure to create such ac-
tions in a top-down manner. The merged actions along with
the original primitive actions are fed to Sapa for its normal
execution.

The merged actions are like primitive actions except that
they also record primary effects which will be used during
search. Also, if the duration of a sequence lies outside the
range of permissible durations, no corresponding merged ac-
tion is created. The merged actions can be now used bySapa
to plan in the regular way.

Specification of Value Preferences

A : prefers construct is introduced in the domain descrip-
tion to allow a user to specify her preference for a vari-
able’s values. This information is used while instantiating
variables of a particular type in an action. In Figure 5 for
example, while considering variables ofType1, value11 is
the most preferred value followed byvalue12, and so on.
Using this mechanism, the user can provide information to
the planner like query PIR only if a query on data source
SWISS-PROT has failed.

(:prefers (hType1i hvalue11i hvalue12i ...)
(hType2i hvalue21i hvalue22i ...))

Figure 5:Specification of value preferences.

Algorithm: Heuristic-Adjust-Minimal
Input: Partial plan,P
Output: Adjusted heuristic value of the plan

1. length = Sapa-heuristic(P )
2. solution = Sapa-relaxed-plan(P )
3. Foreach merged action,Mi in the
solution of relaxed problem
4. Foreach action,aj constituting

the merged action
5. If aj2 solution
6. numMergeRedundantActions ++
7. End-if
8. End-for
9. End-for
10. length = length + numMergeRedundantActions

Figure 6: Heuristic adjustment for potential non-minimal
plans.

Heuristic Adjustments
Sapauses heuristics based on actions and resource usage to
guide its search. With merged actions also added to the set
of original primitive actions, we have to account for the fact
that the merged actions signify user intent. We ensure this
by increasing the heuristic estimate of a plan by some� for
each effect supported by a primitive action in place of an
available merged action.

We also want to discourage plans where primitive as well
as the merged actions are present to provide the same effect
because the plan could possibly be non-minimal. In Fig-
ure 6, a procedure is described to capture this requirement
by increasing the heuristic value of such a plan by the num-
ber of potentially redundant primitive actions.

Soundness and Completeness
A planner is sound if it generates executable plans and it is
complete if the planner will find a solution whenever one
exists. SinceSapais both sound and complete(Do & Kamb-
hampati2001), the only complication is introduced by the
merged actions that are produced as a result of schema re-
ductions.

In SHQPlanner, as part of the schema elicitation process,
a verification procedure ensures that (a) all the primitive ac-
tions mentioned in the schema are declared, and (b) each
action sequence in the reductions lead to some executable
sequence of primitive actions. Therefore, the merged actions
are ensured to be executable and consequently, any plan pro-
duced bySHQPlanneris sound.

Completeness is guaranteed inSHQPlanneras long as no
plan without the merged actions are pruned away. We never
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hA0i. 0.0 – RETRIEVE-DATA (stanford geneexp)
:duration 2.0

hA1i. 0.0 – RETRIEVE-DATA (kegg pathway)
:duration 2.0

hA2i. 2.0 – EXTRACT-GENES-ENCODING-DATA (pathway)
:duration 1.0

hA3i. 2.0 – CLUSTER-DATA (geneexp)
:duration 1.0

hA4i. 3.0 – FIND-COXPRESS-GENES (pathway geneexp)
:duration 3.0

hA5i. 6.0 – PREPARE-DATA (q1 pathway)
:duration 3.0

Figure 7:Query plan for the example queryQ.

hA0i. 0.0 – RETRIEVE-DATA (pir protein )
:duration 2.0

hA1i. 0.0 – RETRIEVE-DATA (swiss-prot protein )
:duration 2.0

hA2i. 2.0 – ALIGN-DATA (protein )
:duration 1.0

hA3i. 3.0 – PREPARE-DATA (q1 protein )
:duration 3.0

hA4i. 6.0 – VISUALIZE-RESULT (q1 protein )
:duration 1.0

Figure 8:A query plan without schemas.

prune such a plan but only penalize it through heuristic ad-
justments to be further down in the search queue.

Hence,SHQPlanneris both sound and complete.

Initial Results
We have incorporated the discussed extensions inSapa(and
a few search pruning tricks known to work well in forward
chaining algorithms) to build theSHQPlanner. Additionally,
we have built a small domain describing the actions to query
gene expression, protein, publication and pathway sources,
and run clustering, sequence alignment and text summariza-
tion applications for bioinformatics.

RunningSHQPlanneras a traditional query planner, we
show the query plan returned for the example query,Q.
Stanford refers to a public gene expression database while
KEGG is a pathway database. Two data sources and a stan-
dard clustering application are needed to complete the query.
Thus, the query planner does not have to depend on user in-
put for generating a valid query plan.

hA0i. 0.0 – MERGED:DATA-FETCH-SCHEMA:
%RETRIEVE-DATA%ALIGN-DATA
(pir protein )
:duration 3.0

hA1i. 0.0 – MERGED:DATA-FETCH-SCHEMA:
%RETRIEVE-DATA%ALIGN-DATA
(swiss-prot protein )
:duration 3.0

hA2i. 3.0 – PREPARE-DATA (q1 protein )
:duration 3.0

hA3i. 6.0 – VISUALIZE-RESULT (q1 protein )
:duration 1.0

Figure 9: A query plan with schemas. The merged actions
will be replaced with the corresponding action sequences in
a post-processing step.

Now, suppose the biologist wants to retrieve aligned pro-
tein data and see the matched sequences in a viewer. In
Figure 8, a query plan is shown for the problem where
data is retrieved from the two protein sources and then they
are aligned with each other. But if the user only wants to
align proteins of each source respectively, it is much simpler
to realize the requirement with a suitable schema(DATA-
FETCH-SCHEMAhere). Figure 9 has the resultant plan.

Running the query planner in the bioinformatics domain
for a number of user queries has shown that the end users are
generally favorable to specifying schemas in order to control
the resulting query plan. The main challenge currently is to
provide a suitable user interface so that the biologist is free
from syntactic hassles. The query plan is generated in a few
milliseconds.

Query decomposition as mixed-initiative planning:
Queries in biology can take very long time due to sheer size
of data to be retrieved. The domain is also characterized by
high variability in data sizes – some attributes are in a few
hundred bytes while others are in megabytes. The ability of
SHQPlannerto reason with action durations is very useful
for the biologist in exploring alternative query plans based
on changing deadlines. Specifically, they want to quickly
decide if a line of biological exploration is worthwhile be-
fore investing more time in it looking for refined results. In
future, we propose to use runtime statistics from the query
executor to update duration information.

Conclusion and Future Directions
In this paper, we considered data integration in a complex
domain (bioinformatics) where sources can be data reposi-
tories as well as applications, and presented a hierarchical
temporal planner to perform query. Another characteristics
of the domain - bioinformatics - is that the user is a biologist
who has specialized knowledge about the domain. Specif-
ically, the user has (partial) schemas or domain knowledge
about how a query should be resolved, e.g., a solution for
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protein search may be to fetch data, merge results, run a
particular application, and show the result. Prior work in
hierarchical task network (HTN) planning has approached
such problems with partial schemas and actions. The ap-
proach considered non-primitive actions and their reduction
schemas as part of the domain specification (i.e., the set of
available actions) and generalized the usual refinements to
handle non-primitive actions. We used similar techniques in
Sapato capture user intent. Additionally, we used Sapa’s
temporal engine to model query costs and prune long plans.

In future, we plan to extend the work in many directions.
First, the role of planning can be extended to query execu-
tion by allowing for plan monitoring and replanning in the
event of failure(Knoblock & Ambite1998). Second, we have
to make the bioinformatics domain richer with more primi-
tive actions for additional types of sources. Third, a conve-
nient user interface must be developed to make schema elic-
itation from the biologist easier. Finally, sinceSHQPlanner
itself is a domain independent planner, we want to investi-
gate its usage in more conventional temporal planning do-
mains.
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Abstract

Planning and control are critical problems in industry.
In this paper, we propose a planning framework called
PRUDENT to address many common issues and chal-
lenges we are facing in industrial applications, includ-
ing incompletely known world models, uncertainty, and
very large problem spaces. This framework considers
planning as sequential decision-making and applies in-
tegrated planning and learning to develop policies as re-
active plans in an MDP-like progressive problem space.
Deliberative planning methods are also proposed under
this framework. This paper describes the concepts, ap-
proach, and methods of the framework.

Introduction
Planning and control are critical problems in industry. At
Boeing, we are facing a wide range of problems where
effective planning and control are crucial and the key to
business success. In manufacturing, we are dealing with
highly challenging problems that require integration of the
functions from plan generation to execution from low-
level, largely automated factory control to high-level enter-
prise resource planning (ERP) and supply-chain manage-
ment (SCM). In the autonomous-vehicles business sector,
we face challenges in solving a variety of planning and con-
trol problems in designing unmanned vehicles for us in air,
space, ground, and underwater. In enterprise computing net-
work protection and security, our business must deal with
the challenges of building effective intrusion-detection and
system-monitoringpolicies—like universal plans (Schop-
pers 1987)—that can ensure the security of a computing
environment as well as accurate, timely response to unpre-
dictable events and novel patterns.

While operator sequencing is an important family of tech-
niques that can be applied for building plans in these task
domains, it does not necessarily address all of the important
technical challenges. In a completely deterministic world, it
is possible to build a plan perfectly before execution, thus
when the plan is executed—following the pre-planned or
scheduled sequence of actions—the desired outcome will
result. In the real world, however, incompletely foreseen

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

events are often considered normal, thus a useful planning
system must be able to know what to do when things go
unexpected and for many circumstances must consider such
uncertainty as aregular structure as opposed to the excep-
tion.

This nature is shared by all the problems listed above.
To provide more competitive solutions, we take a broader
view of planning where the tasks of a planner go inside
all the stages of problem solving, including initial planning
and possibly many iterations of replanning (interleaved with
plan execution) to build and continuously improve plans and
problem-solving policies. With this view, we turn our atten-
tion to the contents of planning, or plans, as opposed to the
activity itself (a one-step task-arrangement activity), thus,
the focus of planning can be perfectly described assequen-
tial decision making—the process of determining sequences
of actions for achieving goals. We refer to this view of plan-
ning asprocess-based planning so as to emphasize continu-
ous policy (plan) improvement throughout a whole problem-
solving process.

This paper presents a framework for dealing with real-
world planning problems from this point of view. The
framework is called PRUDENT, short for Planning in
Regular Uncertain Decision-makingENvionmentT, de-
signed for addressing problems with regular uncertain struc-
tures across their whole problem space. A major con-
tribution of the PRUDENT framework, from the technical
point of view, is the introduction of sequential-decision-
making techniques—specifically,partial-policy reinforce-
ment learning techniques—to perform bothreactive plan-
ning anddeliberative planning in a process parallel to plan
execution. From the practical standpoint, with integrated
planning and learning, PRUDENT provides a promising tool
for solving the problems described above. While reac-
tive plans—plans reacting to a sensed environment—are the
primary means to act in non-deterministic environments,
adding deliberative plans may improve problem-solving ca-
pability significantly, particularly when facing problems re-
quiring timely response to unpredictable events. A purely
reactive plan lacking carefully pre-planned sequences of ac-
tions is slow and often fail to proceed when problems occur
during sensing and data processing.

The paper is organized as follows. The following section
first provides some necessary background for the PRUDENT
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framework and then describes basic PRUDENT concepts.
The main body of the paper describes an approach proposed
using partial-policy reinforcement learning for developing
reactive plans, world models, and deliberative plans. The
paper concludes with a brief summary.

Planning as Sequential Decision Making and
PRUDENT

Background
Markov Decision Processes (MDPs), originated in the study
of stochastic control (Bellman 1957), is a widely applied,
basic model for describing sequential decision making un-
der uncertainty. In general, an MDP can be considered as
an extension of the deterministic state-space search model
for general problem solving. This extension allows mod-
elling of non-deterministic state transitions, which are de-
scribed as stochastic processes withstatic probabilistic state
transition functions. The model comprises five components:
(1) a finite state spaceS = {si|i = 1,2, ...,n}, (2) an action
space that defines actions that may be taken over a state
space:A = {A(s)|∀s ∈ S} whereA(s) is a finite set of ac-
tions defined on states, (3) a probabilistic state transition
function P(si,a,s j) describes the probability of making a
state transition from any one arbitrary statesi to a states j
(which maybe the same) when an actiona defined onA(s i)
is taken, (4) a reward function (or cost function)R(s i,a,s j)
over the problem space that specifies an instant reward that
the agent will receive after an action is performed (under a
corresponding state transition) , and (5) a discrete time space
T = {0,1,2, ...}. Note the form of state-transition functions
above says that the possible next states depend and only de-
pend on the current state, independent of the previous ones.
This characteristic is called theMarkov property.

The task for anagent in an MDP environment is to deter-
mine, for a given futuretime horizon H ∈ T (whereH may
be finite or infinite), apolicy to apply over time that results in
the maximal expected total future reward. This policy is re-
ferred to as anoptimal policy. Specifically, a policy specifies
an action to be taken in each state. At any states, taking the
action provided by an optimal policy, specified with respect
to its time horizonH, guarantees maximizing the expected
total future reward in the time frame.

While MDPs provide a powerful way to allow modeling
state-space search under uncertainty, they also possess math-
ematical beauties to allow structured, efficient policy com-
putation. With limited space, we summarize these algorith-
mic aspects as follows.

• Value function: A value functionV of a policy π de-
fines thevalue—the expected total future reward with re-
spect to a time horizonH—of a states ∈ S using this
policy over all states:V π

H(s) = E[∑H
t=0 γtR(st ,at ,st+1)].

V π
H can computed recursively fromV π

H−1: V π
H(s) =

∑s′∈S|a=π(s) P(s,a,s′)[R(s,a,s′)+γV π
H−1(s

′)]. Hereγ, 0≤
γ≤ 1, is the discounting factor controlling the influence
of rewards in the past with a degree ofexponential decay.

• Value iteration: The value iteration algorithm, or dy-
namic programming, for computing an optimal pol-

icy π∗ is developed usingBellman update of opti-
mal value function V ∗ (Bellman 1957): V ∗

H(s) :=
maxa∈A(s)

(
∑s′∈S P(s,a,s′)[R(s,a,s′)+γV ∗

H−1(s
′)]
)
. Once

the optimal value function (with respect to a time horizon)
is computed, an optimal policy can be obtained by execut-
ing aone-step greedy lookahead search using the optimal
value function. This means knowing theV ∗ is equivalent
to knowing aπ∗ (NoteV ∗ is unique but it may correspond
to multipleπ∗s).

• Infinite time horizon with discounted rewards: Under the
infinite time horizon, 0≤ γ < 1 should be applied. The
optimal value function forH →∞ converges by value iter-
ation under various conditions. While there are many in-
teresting theoretical convergence results, our interest lies
in real-world problems where limited time space is con-
cerned.

• Policy iteration: When H is large, it may be more effi-
cient to use thepolicy iteration algorithm. Policy itera-
tion starts with an arbitrary policyπ and then repeats the
following policy evaluation-improvement steps: (1) eval-
uation: computeV π, and (2) improvement: obtain greedy
policy π(s) := argmaxa∈A(s) ∑s′∈S P(s,a,s′)[R(s,a,s′) +
γV π

H−1(s
′)].

In the last decade, the MDP framework has been heav-
ily revisited and studied in AI and machine learning com-
munities, leading to the advances in reinforcement learning
(Bartoet al. 1995, Kaelblinget al. 1996, Sutton and Barto
1998) and decision-theoretic planning (Deanet al. 1995,
Boutilier and Puterman 1995). The PRUDENT framework is
developed based on these advances.

PRUDENT Concepts
PRUDENT is designed to address real-world problems that
share the following common properties and challenges.

• Incompletely known world model: PRUDENT considers
real problems where the world model is not completely
known but underlying structures of the model exist and
these structures may be explored and learned.

• Uncertainty: PRUDENT deals with problems where
uncertainty is considered normal, possibly appearing
throughout a problem space. This makes an MDP-like
state-space model a favorable choice. In a quitestatic
environment, knowledge of environment can be gained
relatively easily by executing a process. This knowl-
edge normally results in a reduced level of uncertainty
for a learned model by eliminating unlikely transitions
and making other transitions more certain. In a ratherdy-
namic environment, however, new problems may occur
during execution. This could introduce additional uncer-
tainty into a model.

• Non-Markov problems: Problems are not Markovian
under a natural view. For example, in a manufacturing
process we collect sensor data every second. In the nat-
ural representation that uses the original state configura-
tions (based on sensing and other conditions) and a regu-
lar time scale (by second), we find it clear that dependen-
cies exist between future states and historical conditions.
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The problems we face under a natural view normally are
not Markovian.

• Very large problem space: Problems are complicated
and require use of massive states to describe all the de-
tails. Such a large state space makes it impossible to build
a complete universal plan. Standard dynamic program-
ming and policy iteration for computing policies are not
feasible.

• Progressive state space: A progressive state space is
not anergodic space where any state in the space can be
reached from any other with finite steps. States are largely
partially ordered. Making moves in a progressive space
without a purposeful plan (say following a random walk)
is likely to lead an agent from one end of a space to the
other (the finish) end. In general, a progressive state space
allows inclusion of a relatively small number of loops for
modeling often occurred UNDOs and REDOs of a task or
a sequence of tasks.

Accordingly, the PRUDENT design is baded on the follow-
ing key concepts.

• Planning: The PRUDENT architecture is built on the
MDP-like state-space structure. This makes PRUDENT
a reactive planner. A partial-policy reinforcement learn-
ing approach is developed for this architecture to incor-
porate deliberative planning into this reactive-planning
based framework. This paper argues that such a design
is a natural choice for addressing the type of the problems
discussed above.

• Sensing: Sensing is a basic requirement for reactive plan-
ning. PRUDENT utilizes sensing for three purposes: get-
ting environment state information for a reactive plan,
providing possibly useful information for a deliberative
plan, and learning to better describe world models.

• Learning: The data received from sensing enable learn-
ing. Learning can be performed either during real-time
or off-line. The task of learning is two-fold: (1) learn-
ing to better describe world models under various degrees
of world dynamics, from quite static to more dynamic,
and (2) coordinating with planners to learn to build and
improve plans to act properly and more optimally in an
environment.

• Problem solving: As a generalized planning system,
PRUDENT supportsiterative problem solving. We refer
to agoal-oriented task from a start state to a goal (finish)
state as a single problem-solving process. This process
in PRUDENT supports interleaved planning (including re-
planning) and execution with incorporated learning func-
tions. Such a process may continue for many iterations,
possibly with different start points and different goals and
change of conditions.

• Problem formulation and transformation: PRUDENT
also provides functions for transforming original plan-
ning and control tasks into a state-space model, facil-
itating formulation of an MDP-like problem. A well-
formulated problem can avoid many difficulties for plan-
ning and learning algorithms. It is important to notice that

a non-Markov state space often may be transformed into
a Markovian one by using a different state representation.
Dependencies between future states and historical condi-
tions may be removed by grouping temporally-dependent
states and restructuring a state space using generalized
states.

Approach and Methods
PRUDENT planning and learning follow the partial-policy
reinforcement learning paradigm. This section first presents
some important preparation issues, followed by the major el-
ements of the PRUDENT approach: (1) learning partial poli-
cies as reactive planning, (2) learning world models, (3) real-
time learning, and (4) planning sequences of actions.

Preparation Considerations
Applying PRUDENT planning first requires formulating an
MDP-like problem space, describing states, actions, state-
transition relations, and problem objectives in the form of
reward function, time scale, and search horizon. We say the
PRUDENT problem-space structure is MDP-like because it
adopts the same fundamental elements as MDPs.

One major difference between PRUDENT and MDPs is
that PRUDENT does not assume it has a complete knowledge
of state transitions and its model is learned and updated dur-
ing execution. Therefore, there is no need to carefully study
and hand-engineer the state-transition probabilities at the be-
ginning. An initial state-transition model can be quite rough.

Another difference is that a PRUDENT problem space does
not require satisfying the Markov property. However, as
an important principle, PRUDENT encourages use of more
MDP-like structures whenever possible, maximally remov-
ing the dependency between future states and the history.
A more MDP-like problem space can make planning and
learning much easier.

For many problems it may be quite straightforward to
come up with an MDP-like problem space for PRUDENT.
But in other cases, various difficulties may be encoun-
tered, making it hard to completely remove historical de-
pendencies for a transformed model. Typical problems caus-
ing these difficulties include historical dependencies across
long-time periods, historical dependencies in variable time
scale, incomplete sensing (the world may be partially ob-
servable), and incorrect sensing (errors and noise in sens-
ing).

Learning Partial Policies
This function learns apartial policy as a reactive plan off-
line under a fixed state-transition function.

When building a plan for a task involving in a very large
problem space, one basic strategy isdivide-and-conquer.
Set a number of sub-goals in an order (a partial order) and
accomplish these sub-goals in the defined order. PRUDENT
learns partial policies using the same strategy. Table 1 shows
the procedure.

The algorithm is a modified value iteration procedure,
which learns a partial value function to obtain a partial
policy—the policy greedy to this partial value function. It is
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Table 1: Partial Policy Learning Algorithm

procedure PARTIAL POLICYLEARNER(S,A,P,R,G,s0 ,σ)
inputs:

S = {si|i = 1,2, ...,n} // a finite state space

A = {A(s)|∀s ∈ S} // an action space

P = {P(s,a,s′)|∀s ∈ S&∀a ∈ A(s)} // a state-transition function

R = {R(s,a,s′)|∀s ∈ S&∀a ∈ A(s)} // a reward function

G = {Sg,Og} // Sg = {gi|i = 1,2, ...,m} ⊆ S is a set of goals

// andOg is a partial order of the goals

s0 // a start state

σ // a set of scope rules

INITVALUE() // initialize value functionV (s) := 0,∀s ∈ S

repeat until (STOPPINGRULES()) // repeat until stopping rules are satisfied

for all g ∈ Sg // selectg backward according toOg

BACKWARDUPDATE(g,S,A,P,R,σ) // perform backward updates fromg

FORWARDUPDATE(s0 ,S,A,P,R,σ) // perform forward updates froms0

for all g ∈ Sg // selectg forward according toOg

FORWARDUPDATE(g,S,A,P,R,σ) // perform forward updates fromg

end repeat

end procedure

designed for goal-oriented problems with progressive prob-
lem spaces. For problems with this structure, rewards (or
major rewards) are typically received when a goal or sub-
goal is achieved. In real applications, Tesauro’s backgam-
mon programs applied zero rewards on all states until they
reach the end of a game when the agent receives reward 1
if it wins or -1 if it loses (Tesauro 1992). In reinforcement
learning applications for space shuttle processing for NASA,
the program presented in (Zhang and Dietterich 1995) ap-
plies a measure of the quality of a schedule as a reward
when a final feasible solution (a sub-goal) is obtained, while
for other states, all operations (repairing steps for modify-
ing and improving a current schedule) are assessed with a
constant small penalty to encourage developing feasible so-
lutions with the smallest number of repairs.

The procedure works as follows. Initially, the value for
each state is set to 0. The main procedure updates values fol-
lowing a backward-forward update process iteratively until
a stopping rule encoded in the functionSTOPPINGRULES is
satisfied. Ideally, the procedure stops when the value func-
tion converges. Other rules may be included to allow a pro-
cess to stop at other conditions, such as running out of time.

Each iteration first updates values backward. The back-
ward update process starts with a final goal and then works
successively backward on the rest of the goals according
to the provided order of the goalsOg. When theBACK-
WARDUPDATE subroutine is called for selected goal state
g, it starts with states := g and updates its value,

V (s) := max
a∈A(s)

(
∑
s′∈S

P(s,a,s′)[R(s,a,s′)+γV(s′)]

)
.

Then it selects all states# that can directly lead tos with a
single action (P(s#,a,s) > 0) and for alls := s# updatesv(s)

using the same formula. This backward-update step pro-
ceeds until a scope rule inσ is satisfied.σ works as a set
of heuristic rules. If it is possible to estimate the pariwise
distance between all successive goals as well as the distance
betweens0 and the first set of sub-goals, one possibly good
σ rule is “set update steps to half of the largest distance”.
This rule expects that for any pair of successive goals,V (s)
can be computed by a backward process in the second half
of the space and for the first half the values can be computed
by a forward process.

After a backward update process is finished, in the same
iteration, a forward update process starts. Forward update
starts withs0 and works forward through the goal states.
EachFORWARDUPDATE call starts from the first states (s0
or a sub-goalg) and finds all possible next statess ′ of s and
putss′ into a pool. Then for alls in the pool, it popss and re-
peats the same step, putting all possible next states ofs into
the pool. This state-space growth process continues until a
scope rule inσ is satisfied. All processed states are selected.
After the state space is determined,FORWARDUPDATE sorts
the states according to their current values, from the largest
to the smallest, then updates values for all states using this
order. This allows efficient use of updated values on the
states that have been connected to goal states, because only
states connected to certain goals can receive large values.

Learning World Models

This function learns state-transition functions in the form of
world models. Learning utilizes existing incomplete models
to try to improve them to better describe the world.

Learning state-transition functions is based on observa-
tions of state transitions made during system execution.
PRUDENT employs the following three sets of learning pa-
rameters for learning and improving world models.

• Degree of environment dynamics. In a quite static en-
vironment, historical observations over a long period of
time can be employed. In a quite dynamic environment,
however, only data collected in a short history is used.
This set of parameters determines the time period when
data is selected for learning.

• Degree of observation reliability. This addresses real
problems with incomplete sensing and incorrect sensing.
Observations are carefully reviewed and selected. This set
of parameters controls selection of observations individu-
ally.

• Conditions of variations. Variations of state transitions
and their conditions are carefully studied. This attempts
to find conditions for non-deterministic state transitions.
If possible, states may be redefined by adding more con-
ditions to existing specified states and splitting them. This
may effectively remove many uncertain state transitions.
This set of parameters determines if states need to be re-
structured.

Once correct, relevant data are selected, updating state
transition probabilities is straightforward. PRUDENT applies
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the standard maximum-likelihood method:

p(x,a,y) =
na

xy

na
x

,

where na
xy is the number of cases that the environment

switches to statey after actiona is taken at statex andna
x

is the number of cases in the selected observations where
actiona is taken at statex.

Restructuring states is a difficult task. Presenting tech-
niques for accomplishing this task exceeds the scope of this
paper.

Real-Time Learning
This function is developed for applications with fairly poor
understanding of environments or quite dynamic environ-
ments. In such environments, since the current policy and
world model are not reliable and often fail, adjusting them
in real time by making use of current experience immedi-
ately is considered as a wise choice.

PRUDENT applies thereal-time dynamic programming
paradigm, or RTDP, developed by Barto et al (Bartoet
al. 1995). This employs trajectory-based reinforcement
learning to learn partial policies. For learning world mod-
els in real time, PRUDENT applies the maximum-likelihood
method described above as well as theadaptive real-time
dynamic programming method developed by Barto et al as
well.

Planning Sequences of Actions
This function attempts to develop deliberative plans based
on the state-space based reactive planning paradigm. It is
developed for applications with quite static environments
where there are various deterministic sub-problems or sub-
structures or knowledge can be learned to allow removal of
various uncertain structures in a world model.

There are basically two conditions preventing making a
deliberative plan from the MDPs based reactive planning
framework: uncertainty and the needs for sensing. These
two conditions are related. When state transitions are not
deterministic, sensing becomes necessary in execution be-
cause of the need for determining states. And this is true
vice versa.

While deliberative planning for an MDP-like environment
may not be applicable in general, special problems in such
an environment often exist that make building such a plan
important. Here are three families of such problems.

• Planning for worst possibilities. For example, playing
chess is a non-deterministic process. For quick response,
it is important for an agent to have a deliberative plan
to play against opponent’s best moves. Planning for the
worst possibility with a single worst case is a determinis-
tic problem. In this case, the sequence of actions can be
pre-determined without sensing.

• Planning for situations where the same sequence of ac-
tions is often applied. This involves part of a space where
state transitions are quite deterministic. Making a delib-
erative plan can help fast execution by possibly avoiding

most expensive step-by-step sensing and data processing
activities.

• Planning for situations where sensing often fails. In this
case, a deliberative plan can provide a backup plan that
doesn’t depend on sensing, replacing reactive plans.

PRUDENT considers developing deliberative plans for
these three families of problems. Additional steps are added
to the partial-policy reinforcement learning methods pre-
sented above to allow learning sequences of actions to come
up with a deliberative plan. PRUDENT basically provides
two methods. The first method returns sequences of actions
for dealing with worst possibilities. The second method re-
turns all sequences of actions corresponding to all possible
trajectories for a quite deterministic sub-space. Each re-
turned sequence of actions employs the greedy policy to the
learned values of the states along a trajectory. If too many
trajectories are generated, a useful parameter for controlling
the number is selecting only thek most-likely trajectories
(e.g., for planning a chess game, consider the trajectories
that your opponent is most likely to adopt).

Selecting thek most-likely trajectories for PRUDENT is
straightforward, because state transition probabilities are
available. PRUDENT employs a lookahead parameterκ (usu-
ally κ ≤ 5) to deal with possible combinatorial explosions.
In the lookahead region, it performs aκ-step exhaustive
search and computes the joint probability of state transitions
for each of the returned trajectories. Afterκ-step trajecto-
ries are generated, the method extends each of them by per-
forming 1-step lookahead greedy search, returning a single
“most-likely” trajectory (in terms of the greedy heuristic) for
each trajectory length,κ + 1,κ + 2, ...,N (N is a given limit
for the length). Finally, thek most-likely trajectories are re-
turned from the generated pool. Since longer trajectories re-
sult in smaller joint probabilities, we compare trajectories by
grouping them by the length. When comparing trajectories
of different lengths, we use a simple normalization method
that multiplies the likelihood value for ann-step trajectory
by 2n.

Summary
In summary, this paper proposed the PRUDENT planning
framework to address many common issues and challenges
we are facing in industrial applications, including incom-
pletely known world models, uncertainty, and very large
problem spaces. This framework considers planning as se-
quential decision-making and applies integrated planning
and learning to develop policies as reactive plans in an MDP-
like progressive problem space. Deliberative planning meth-
ods are also proposed under this framework.

Application of this framework to real-world problems is
in practice. Our practices are conducted mainly for the prob-
lems present in three domains: manufacturing, autonomous
systems, and security and network management. With in-
creased capability of collecting massive data from domain
processes, opportunities for applying integrated planning
and learning are increasingly large.

This paper is a work-in-progress. We expect to release
part of our application results in public in a near future.
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Abstract

In this paper we present an overview of recent developments
in the plan-based control of autonomous robots. We iden-
tify computational principles that enable autonomous robots
to accomplish complex, diverse, and dynamically changing
tasks in challenging environments. These principles include
plan-based high-level control, probabilistic reasoning, plan
transformation, and context and resource-adaptive reasoning.
We will argue that the development of comprehensive and
integrated computational models of plan-based control re-
quires us to consider different aspects of plan-based control
— plan representation, reasoning, execution, and learning —
together and not in isolation. This integrated approach en-
ables us to exploit synergies between the different aspects and
thereby come up with simpler and more powerful computa-
tional models.
In the second part of the paper we describe Structured Re-
active Controllers (SRCs), our own approach to the develop-
ment of a comprehensive computational model for the plan-
based control of robotic agents. We show how the principles,
described in the first part of the paper, are incorporated into
the SRCs and summarize results of several long-term experi-
ments that demonstrate the practicality of SRCs.

Introduction
In recent years, autonomous robots, including XAVIER,
MARTHA (AFH

�
98), RHINO (BCF

�
00; BAB

�
01), MIN-

ERVA, and REMOTE AGENT, have shown impressive perfor-
mance in longterm demonstrations. In NASA’s Deep Space
program, for example, an autonomous spacecraft controller,
called the Remote Agent (MNPW98), has autonomously per-
formed a scientific experiment in space. At Carnegie Mellon
University XAVIER (SGH

�
97), another autonomous mobile

robot, has navigated through an office environment for more
than a year, allowing people to issue navigation commands
and monitor their execution via the Internet. In 1998, MIN-
ERVA (TBB

�
00) acted for thirteen days as a museum tour-

guide in the Smithsonian Museum, and led several thousand
people through an exhibition.

These autonomous robots have in common that they per-
form plan-based control in order to achieve better problem-
solving competence. In the plan-based approach robots gen-
erate control actions by maintaining and executing a plan

Copyright c
�

2002, American Association for Artificial Intelli-
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that is effective and has a high expected utility with re-
spect to the robots’ current goals and beliefs. Plans are
robot control programs that a robot cannot only execute but
also reason about and manipulate (McD92a). Thus a plan-
based controller is able to manage and adapt the robot’s in-
tended course of action — the plan — while executing it
and can thereby better achieve complex and changing tasks.
The plans used for autonomous robot control are often re-
active plans, that is they specify how the robots are to re-
spond in terms of low-level control actions to continually
arriving sensory data in order to accomplish their objectives.
The use of plans enables these robots to flexibly interleave
complex and interacting tasks, exploit opportunities, quickly
plan their courses of action, and, if necessary, revise their in-
tended activities.

ActuatorsSensors

Tasks

Program

Plan

Figure 1: Plan-based control of robotic agents. The control
program specifies how the robot is to respond to sensory in-
put to accomplish its task. The plan is the part of the control
program that the robot explicitly reasons about and manipu-
lates.

To be reliable and efficient, autonomous robots must flex-
ibly interleave their tasks and quickly adapt their courses
of action to changing circumstances. Recomputing the
best possible course of action whenever some aspect of
the robot’s situation changes is not feasible but can often
be made so if the robots’ controllers explicitly manage the
robots’ beliefs and current goals and revise their plans ac-
cordingly. The use of plans helps to mitigate this situation
in at least two ways. First, it decouples computationally in-
tensive control decisions from the time pressure that dom-
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inates the feedback loops. Precomputed control decisions
need to be reconsidered only if the conditions that justify
the decisons change. Second, plans can be used to focus
the search for appropriate control decisions. The can neglect
control decisions that are incompatible with its intended plan
of action.

In the remainder of this paper we proceed as follows. In
the first part, we describe principles and building blocks of
computational models for plan-based control. In the second
part, we will then outline our initial steps towards such a
comprehensive computational model that contains the build-
ing blocks introduced in the first part.

Principles of Plan-based Control
Plans in plan-based control have two roles. They are both
executable prescriptions that can be interpreted by the robot
to accomplish its jobs and syntactic objects that can be syn-
thesized and revised by the robot to meet the robot’s crite-
rion of utility. Besides having means for representing plans,
plan-based controllers must also be equipped with tools that
enable planning processes to (1) project what might happen
when a robot controller gets executed and return the result as
an execution scenario; (2) infer what might be wrong with
a robot controller given an execution scenario; and (3) per-
form complex revisions on robot controllers.

Let us now consider some of the key issues in the plan-
based control of robotic agents: dynamic system perspective,
probabilistic reasoning, symbol grounding, and context and
resource-adaptive reasoning.

"rational agent"
Controller

Belief
State

Plan

State
Estimators

and
Monitors

Controlled Process

Controlling Process

Sensors

Environment
Robot
Behavior

Plant

Figure 2: Block diagram of our dynamic system model for
autonomous robot control. Processes are depicted as boxes
and interactions as arcs.

Dynamic System Perspective. Since flexibility and respon-
siveness to changing situations are important characteristics
of the robot behavior, we use dynamic systems as the pri-
mary abstract model for programming the operation of the
integrated plan-based controller (see figure 2). In this model,
the state of the world evolves through the interaction of two
processes: the controlling process – the robot’s control sys-
tem – and the controlled process, which comprises events in

the environment, physical movements of the robot and sens-
ing operations. For complex dynamic systems, it is often
useful to further decompose the controlled process into an
environment and a sensing process. The environment pro-
cess changes the world state and the sensing process maps
the world state into the sensor data received by the robot.
This suggests making a similar decomposition of the con-
trolling process into state estimation and action generation
processes. State estimation processes compute the robot’s
beliefs about the state of the controlled system. Auxiliary
monitoring processes signal system states for which the con-
trolling process is waiting. An action generation process
specifies the control signals supplied to the controlled pro-
cess as a response to the estimated system state.

The main consequence of this model is that robot action
plans must control concurrent and continuous processes both
flexibly and reliably.

Probabilistic Reasoning. Probabilistic reasoning is a key
technique employed in the control of autonomous robots.
Probabilistic reasoning is employed in a number of differ-
ent ways.

First, plan generation and revision methods compute
plans that have a probability of achieving a given goal with a
probability higher than a specified threshold or they compute
plans with the best expected cost benefit trade-off (BDH98;
KHW95; DHW94). To employ such probabilistic planning
techniques actions are represented through probabilistic ef-
fect models and the planning techniques consider proba-
bility distributions over world states rather than the states
themselves. The advantage of these techniques is that they
can properly handle the uncertainty caused by incomplete
knowledge and inaccurate and unreliable sensors and the
uncertainty resulting from non-deterministic action effects.
The main problem associated with these techniques are the
computational cost associated with the application of these
techniques.

The second area in plan-based control where probabilistic
reasoning techniques are heavily used is the interpretation
of sensor data acquired by the robots’ sensors (Thr00). The
plan-based high-level control of robotic agents is founded on
abstract perceptions of the current state of objects, the robot,
and its environment. In order to derive such abstract percep-
tions from local and inaccurate sensors robustly, plan-based
controllers often employ probabilistic state estimation tech-
niques (SB01). The state estimators maintain the probability
densities for the states of objects over time. Whenever state
information is requested by the planning component, they
provide the most likely state of the objects.

The probability density of an object’s state conditioned on
the sensor measurements received so far contains all the in-
formation which is available about the object. Based on this
density, one is not only able to determine the most likely
state of the object, but one can also derive even more mean-
ingful statistics like the variance and entropy of the current
estimate. In this way, the high-level system is able to reason
about the reliability of an estimate.

A third application field of probabilistic reasoning is
learning. Probabilistic reasoning techniques enable robots
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to learn symbolic actions, probabilistic action models, and
competent action selection strategies from experience.

Symbol Grounding. One of the key difficulties in the ap-
plication of plan-based control techniques to object manip-
ulation tasks is the symbol grounding or anchoring prob-
lem. In most plan representations constants used in the
instantiations of plan steps denote objects in the world.
This is a crude oversimplification because robots often do
not have direct physical access to the objects themselves.
Rather the control systems must use object descriptions
that are computed from sensor data in order to manipu-
late objects. The use of object descriptions rather than
objects to instantiate manipulation actions yields problems
such as ambiguous, inaccurate, and invalid object descrip-
tions. Powerful computational models of plan-based con-
trol must therefore have much more expressive represen-
tational means to make these problems transparent to the
planning techniques. Several researchers (Fir89; McD90;
CS00) have developed techniques to incorporate object de-
scriptions into plan-based control.

Plan Transformation. Another key issue in the plan-based
control of robots, in particular for those robots that are to act
in dynamic and complex environments, is the fast formation
and adaptation of plans. A very common idea for achieving
fast plan formation is the idea of a plan library, a collection
of canned plans for achieving standard tasks in standard sit-
uations (McD92b). However, such plans cannot be assumed
to execute optimally. In a situation where an unexpected op-
portunity presents itself during the execution of the robot’s
tasks, for example, a canned plan will have trouble testing
for the subtle consequences that might be implied by an al-
teration to its current plan. The decision criteria to take or
ignore such opportunities must typically be hardwired into
the canned plans when the plan library is built.

An alternative is to equip a robot with self-adapting plans,
which carry out plans with the constraint that, whenever a
specific belief of the robot changes, a runtime plan adapta-
tion process is triggered. Upon being triggered, the adap-
tors decide whether plan revisions are necessary and, if so,
perform them. Plan adaptation processes are specified ex-
plicitly, modularly, and transparently and are implemented
using declarative plan transformation rules.

Context and Resource-adaptive Operation. To make its
control decisions in a timely manner the plan-based con-
troller applies various resource-adaptive inference methods
(Zil96). These enable the controller to trade off accuracy
and the risk of making wrong decisions against the com-
putational resources consumed to arrive at those decisions.
Moreover, the results of the resource-adaptive reasoning are
employed to adapt the execution modes of the process in re-
sponse to the robot’s context (BACM98).

Building Blocks of Plan-based Control

The building blocks of plan-based control are the represen-
tation of plans, the execution of plans, various forms of au-
tomatic learning, and reasoning about plans, including plan

generation and transformation, and teleological, causal, and
temporal reasoning.

Representation

Reasoning

Learning Execution

Figure 3: The main components of plan-based control are
plan representation, execution, learning, and reasoning and
their interactions.

But before we dive in and discuss the building blocks of
modern plan-based control models let us first get an intu-
ition of how traditional robot planning techniques function.
Most of these techniques are based on the problem-space hy-
pothesis (New90): they assume problems can be adequately
stated using a state space and a set of discrete and atomic ac-
tions that transform states to successor states. A solution is
an action sequence that transforms any situation satisfying a
given initial state description into another state that satisfies
the given goal. Plan generation is the key inferential task in
this problem-solving paradigm.

As a consequence, representational means are primarily
designed to simplify plan generation from first principles.
Problem space plans are typically used in layered architec-
tures (BFG

�
97), which run planning and execution at dif-

ferent levels of abstraction and time scales. In these ap-
proaches planning processes use models that are too abstract
for predicting all consequences of the decisions they make
and planning processes cannot exploit the control structures
provided by the lower layer. Therefore they lack appropri-
ate means for specifying flexible and reliable behavior and
plans can only provide guidelines for task achievement.

Contrary to the plan space approach, plan-based control
of robotic agents takes the stand that there is a number of
inference tasks necessary for the control of an autonomous
robot that are equally important. These inference tasks in-
clude ones that enable the competent execution of given
plans, ones that allow for learning plans and other aspects
of plan-based control, and various reasoning tasks, which
comprise the generation and assessment of alternative plans,
monitoring the execution of a plan, and failure recovery.

These different inference tasks are performed on a com-
mon data structure: the plan. Consequently, the key design
issues of plan-based control techniques are representational
and inferential adequacy and inferential and acquisitional
efficiency as key criteria for designing domain knowledge
representations (RK91). Transferring these notions to plan-
based control, we consider the representational adequacy of
plan representations to be their ability to specify the neces-
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sary control patterns and the intentions of the robots. Infer-
ential adequacy is the ability to infer information necessary
for dynamically managing, adjusting, and adapting the in-
tended plan during its execution. Inferential efficiency is
concerned with the time resources that are required for plan
management. Finally, acquisitional efficiency systems is the
degree to which they support the acquisition of new plan
schemata and planning knowledge.

To perform the necessary reasoning tasks the plan man-
agement mechanisms must be equipped with inference tech-
niques to infer the purpose of subplans, find subplans with
a particular purpose, automatically generate a plan that can
achieve some goal, determine flaws in the behavior that is
caused by subplans, and estimate how good the behavior
caused by a subplan is with respect to the robot’s utility
model. Pollack and Horty (PH99) stress the point that main-
taining an appropriate and working plan requires the robot
to perform various kinds of plan management operations in-
cluding plan generation, plan elaboration, commitment man-
agement, environment monitoring, model- and diagnosis-
based plan repair, and plan failure prediction.

It does not suffice that plan management mechanisms can
merely perform these inference techniques but they have to
perform them fast. The generation of effective goal-directed
behavior in settings where the robots lack perfect knowledge
about the environment and the outcomes of actions and envi-
ronments are complex and dynamic, requires robots to main-
tain appropriate plans during their activity. They cannot af-
ford to entirely replan their intended course of action every
time their beliefs change.

To specify competent problem-solving behavior the plans
that are reasoned about and manipulated must have the ex-
pressiveness of reactive plan languages. In addition to being
capable of producing flexible and reliable behavior, the syn-
tactic structure of plans should mirror the control patterns
that cause the robot’s behavior — they should be realistic
models of how the robot achieves its intentions. Plans can-
not abstract away from the fact that they generate concur-
rent, event-driven control processes without the robot losing
the capability to predict and forestall many kinds of plan
execution failures. A representationally adequate plan rep-
resentation for robotic agents must also support the con-
trol and proper use of the robot’s different mechanisms for
perception, deliberation, action, and communication. The
full exploitation of the robot’s different mechanisms re-
quires mechanism-specific control patterns. Control pat-
terns that allow for effective image processing differ from
those needed for flexible communication, which in turn dif-
fer from those that enable reliable and fast navigation. To
fully exploit the robot’s different mechanisms, their control
must be transparently and explicitly represented as part of
the robot’s plans. The explicit representation of mechanism
control enables the robot to apply the same kinds of planning
and learning techniques to all mechanisms and their interac-
tion.

The defining characteristic of plan-based control is that
these issues are considered together: plan representation and
the different inference tasks are not studied in isolation but
in conjunction with the other inference tasks. The advantage

of this approach is that we can exploit synergies between the
different aspects of plan-based control.

Plan management capabilities simplify the plan execution
problem because programmers do not have to design plans
that deal with all contingencies. Rather plans can be auto-
matically adapted at execution time when the particular cir-
cumstances under which the plan has to work are known.
Plan execution mechanisms can also employ reasoning
mechanisms in order to get a broader coverage of problem-
solving situations. The REMOTE AGENT, for example, em-
ploys propositional reasoning to derive the most appropriate
actions to achieve the respective immediate goals (WN97;
NW97). On the other side, competent plan execution ca-
pabilities free the plan management mechanism from rea-
soning through all details. Reasoning techniques such as
diagnostic and teleological reasoning are employed in trans-
formational learning techniques in order to perform better
informed learning decisions and thereby speed up the learn-
ing process (BB00). Skill learning mechanisms have also
been applied to the problem of learning effective plan revi-
sion methods (Sus77). There is also a strong interaction be-
tween the learning and execution mechanisms in plan-based
control. Learning mechanisms are used to adapt execution
plans in order to increase their performance . Competent
execution mechanisms enable the learning mechanisms to
focus on strategical aspects of problem-solving tasks.

Structured Reactive Controllers:
a Computational Model of Plan-based Control
After having described the general components of computa-
tional models of plan-based control I want to give you now
a brief overview of our own approach to the development of
such integrated computational models. The robot controllers
that realize this computational model are called Structured
Reactive Controllers (SRCs) (Bee01). Structured Reactive
Controllers are self-adapting plans that specify concurrent
reactive behavior. They revise themselves during the execu-
tion of specified user commands in order to exploit opportu-
nities and avoid predictable problems. They are also capable
of experience-based learning.

Structured Reactive Controllers use a very expressive plan
language, called RPL (McD91), and a number of software
tools for predicting the effects of executing plans, for teleo-
logical and causal reasoning about plans, for revising plans
during their execution, and for automatically learning rou-
tine plans.

Given a set of jobs, an SRC concurrently executes the de-
fault routines for each individual job. These routine activi-
ties are general and flexible and work well in standard situ-
ations. They can cope well with partly unknown and chang-
ing environments, run concurrently, handle interrupts, and
control robots without assistance over extended periods. For
standard situations, the execution of these routine activities
causes the robot to exhibit an appropriate behaviour while
achieving its purpose. While it executes routine activities,
the SRC also tries to determine whether its routines might
interfere with each other and monitors robot operation for
non-standard situations. If one is found, it will try to antici-
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STRUCTURED REACTIVE CONTROLLER
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Figure 4: Components of a structured reactive controller.
The structured reactive plan specifies how the robot re-
sponds to changes of its fluents, registers that are asyn-
chronously set by the sensing processes. The interpretation
of the structured reactive plan results in the activation, pa-
rameterization, and deactivation of process modules that ex-
ecute and monitor the physical continuous control processes.

pate behaviour flaws by predicting how its routine activities
might work in these non-standard situations. If necessary, it
revises its routines to make them robust for this kind of sit-
uation. Finally, it integrates the proposed revisions into the
activities it is pursuing.

Transformational Planning of Concurrent Reactive
Plans. Consider the following plan adaptor, which illus-
trates the planning techniques employed by SRCs.

With plan adaptor Whenever the robot detects an open door
that was assumed to be closed

if this situation is an opportunity
then it changes its course of action

to make use of the opportunity

Concurrent reactive plan

The plan adaptor is triggered by a change of its belief
about an door being open or closed. Upon being triggered
the adaptor decides whether a change in the intended course
of activity is suitable and if so performs it. The process
of plan adaptation is realized through transformational plan-
ning (McD92b; Bee00).

Transformational planning is implemented as a search in
plan space. A node in the space is a proposed plan; the ini-
tial node is the default plan created using the plan library. A
step in the space requires three phases. First, a plan adaptor
projects a plan to generate sample execution scenarios for it.
Then, in the criticism phase, a plan adaptor examines these
execution scenarios to estimate how good the plan is and
to predict possible plan failures. It diagnoses the projected
plan failures by classifying them in a taxonomy of failure
models. The failure models serve as indices into a set of
transformation rules that are applied in the third phase, revi-
sion, to produce new versions of the plan that are, we hope,
improvements.

Prediction in Structured Reactive Controllers Tempo-
ral projection, the process of predicting what will happen
when a robot executes its plan, is essential for many robots

to successfully plan courses of action. To be able to project
their plans, robots must have causal models that represent
the effects of their actions. These causal models should
be sufficiently realistic to predict the behavior generated by
modern autonomous robot controllers accurately enough to
foresee a significant range of real execution problems. This
can be achieved if action models reflect the facts that physi-
cal robot actions cause continuous change; that controllers
are reactive systems; that the robot is executing multiple
physical and sensing actions; and that the robot is uncertain
about the effects of its actions and the state of the environ-
ment.

The problem of using such realistic action models is ob-
vious. Nontrivial concurrent plans for controlling robots re-
liably are very complex. There are usually several control
processes active. Many more are dormant, waiting for con-
ditions that trigger their execution. The branching factors
for possible future states — not to mention the distribution
of execution scenarios that they might generate — are im-
mense. The accurate computation of this probability distri-
bution is prohibitively expensive in terms of computational
resources.

Learning Symbolic Robot Plans. We have already
stressed the importance of representing the plans that the
robot has committed to execute explicitly as a means of
economically using the limited computational resources for
flexible task execution and effective action planning. How-
ever, this raises the question of how such plans can be ob-
tained. Many autonomous mobile robots consider naviga-
tion as a Markov decision problem. They model the nav-
igation behavior as a finite state automaton in which navi-
gation actions cause stochastic state transitions. The robot
is rewarded for reaching its destination quickly and reliably.
A solution for such problems is a mapping from states to
actions that maximises the accumulated reward. Such state-
action mappings are inappropriate for teleological and di-
agnostic reasoning, which are necessary to adapt quickly to
changing circumstances and quickly respond to exceptional
situations.

We have therefore developed XFRMLEARN (BB00), a
learning component that builds up explicit symbolic navi-
gation plans automatically. Given a navigation task, XFRM-
LEARN learns to structure continuous navigation behaviour
and represents the learned structure as compact and trans-
parent plans. The structured plans are obtained by starting
with monolithic default plans that are optimized for average
performance and adding subplans to improve the navigation
performance for the given task.

XFRMLEARN’s learning algorithm works as follows.
XFRMLEARN starts with a default plan that transforms a
navigation problem into an MDP problem and passes the
MDP problem to RHINO’s navigation system. After RHINO’s
path planner has determined the navigation policy the nav-
igation system activates the collision avoidance module for
the execution of the resulting policy. XFRMLEARN records
the resulting navigation behaviour and looks for stretches of
behaviour that could be possibly improved. XFRMLEARN
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Figure 6: Execution trace for a delivery tour. RHINO receives two commands 6(a). Upon receiving the two commands the SRC
puts plans for the commands into the plan, computes an appropriate schedule, and installs it. It also adds a control process
that monitors that the rooms it must enter are open. The order of the delivery steps are that RHINO starts with picking up the
book (Fig. 6(b)) and delivering it in A-113. After RHINO has left room A-111, it notices that room A-113 is closed (Fig. 6(c)).
Because RHINO cannot complete the delivery of the book the SRC revises the plan by transforming the completion of the
delivery into an opportunity. RHINO receives a third command which is integrated into the current schedule (Fig. 6(d)). As
it passes room A-113 on its way to A-119 it notices that the door is now open and takes the opportunity to complete the first
command (Fig. 6(d)). After that it completes the remaining steps as planned (Fig. 6(e-f).

then tries to explain the improvable behaviour stretches us-
ing causal knowledge and its knowledge about the environ-
ment. These explanations are then used to index promising
plan revision methods that introduce and modify subplans.
The revisions are subsequently tested in a series of experi-
ments to decide whether they are likely to improve the navi-
gation behaviour. Successful subplans are incorporated into
the symbolic plan. An learning session is shown in figure 5.

Using this algorithm can autonomously learn compact
and well-structured symbolic navigation plans by using MDP
navigation policies as default plans and repeatedly inserting
subplans into the plans that significantly improve the nav-
igation performance. The plans learned by XFRMLEARN
support action planning and opportunistic task execution by
providing plan-based controllers with subplans such as tra-
verse a particular narrow passage or an open area. More
specifically, navigation plans (1) can generate qualitative
events from continuous behaviour, such as entering a nar-
row passage; (2) support online adaptation of the navigation
behaviour (drive more carefully while traversing a particu-
lar narrow passage) (Bee99), and (3) allow for compact and
realistic symbolic predictions of continuous, sensor-driven
behaviour (BG00).

Long-term Demonstrations
This section describes several experiments (figure 7) that
evaluate the reliability and flexibility of the RHINO system
and the possible performance gains that it can achieve.

The flexibility and reliability of runtime plan manage-
ment and plan transformation has been extensively tested in
a museum tourguide application. The robot’s purpose was
to guide people through a museum, explaining the exhibits
to be seen along the robot’s route. MINERVA (figure 7(a))
operated in the “Smithsonian Museum” in Washington for
a period of thirteen days (TBB

�
99). It employed an SRC

as its high-level controller. During its period of operation,
it was in service for more than 94 hours, completed 620
tours, showed 2668 exhibits, and travelled over a distance
of more than 44 kilometers. The SRC directed MINERVA’s
course of action in a feedback loop that was carried out more
than three times a second. MINERVA used plan adaptors
for the installment of new commands, the deletion of com-
pleted plans, and for tour scheduling. MINERVA made about
3200 execution time plan transformations while performing
its tourguide job. MINERVA’s plan-based controller differs
from RHINO’s only with respect to its top-level plans in plan
library and some of the plan adaptors that are used.

In another experiment we have evaluated the capabilities
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Figure 5: The figure visualizes a summary of a learning ses-
sion: A behaviour trace of the default plan (a); behavior
stretches where the robot moves conspiciously slowly (b);
the added subplans in the learned navigation plan (c); and
a behaviour trace of the learned plan, which is on average
29% faster than the default plan (d).

(a) (b) (c)

Figure 7: The mobile robots MINERVA (a) and the RWI B21
robot RHINO (c) that are used in the experiments.

of plan-based controllers to perform predictive plan man-
agement. This experiment has shown that predictive plan
transformation can improve the performance by outperform-
ing controllers without predictive capabilities in situations
which require foresight while at the same time retaining their
performance in situations that require no foresight. Figure 6
pictures an execution trace for a sample problem-solving
scenario.

Conclusions
Our longterm research goal is to understand and build au-
tonomous robot controllers that can carry out daily jobs in
offices and factories with a reliability and efficiency compa-
rable to people. We believe that many behavior patterns,
such as exploiting opportunities, making appropriate as-
sumptions, and acting reliably while making assumptions,
that make everyday activity efficient and reliable require
plan-based control and the specification of concurrent, re-
active plans.

In this paper we have presented an overview of recent de-
velopments in the area of plan-based control of autonomous
robots. Computational principles including plan-based high-

level control, probabilistic reasoning, symbol anchoring,
plan transformation, and context and resource-adaptive rea-
soning are incorporated in a number of state-of-the-art sys-
tems.

We believe that a necessary step towards more powerful
plan-based robot controllers is the development of compre-
hensive and integrated computational models that address
issues plan representation, reasoning, execution, and learn-
ing at the same time. A key component of such a computa-
tion model is the design of the plan representation language
such that it allows for flexible and reliable behavior speci-
fications, computationally feasible inference, stability in the
case of runtime plan revisions, and automatic learning of
symbolic plans for robot control.

Comprehensive computational models will enable us to
tackle new application areas, such as the plan-based con-
trol of robot soccer teams, and longterm application chal-
lenges, for example, the robotic assistance of elderly people
and the plan-based control of robotic rescue teams after dis-
asters such as earthquakes.
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Abstract

In this work we present a conditional planning approach
based on new semantical notions which allow the gen-
eration of correct conditional plans in real and uncer-
tain domains. The planning algorithm which embodies
these original semantics is based on POP techniques and
it has a clear practical application: it can be seen as an
autonomous design process able to obtain conditional
plans which can be interpreted asclosed-loopcontrol
programs.

Introduction
It is well known that current work on planning under un-
certainty is mainly focused on the establishment of sound
planning models (Bonet & Geffner 2000; Cimatti & Roveri
1999; Geffner 1998; Rintanen 1999; Son & Baral 2001) and
fast planning algorithms (Weld, Anderson, & Smith 1998),
however it is also known that they lack of real applicability
(Wilkins 2001). Thus, a main conclusion of the last planning
conference was concerned with the necessity of developing
new approaches of planning under uncertainty with practical
application.

This call for practical planning approaches, in the con-
crete field of conditional planning, involves at least three
foundamental issues: (1) the development of planners which
deal with actions that do not always have certain outcomes,
and which assume that the state of the world will not al-
ways be completely known, (2) the development of plan-
ners which embody a model of actions expressive enough
for real applications, and (3) the development of semanti-
cal concepts in order to support a planning algorithm which
guarantees the quality of the results.

In this sense, this paper tackles the problem of practi-
cal planning in real and uncertain domains where several
agents exhibit a behavior which is affected by the existence
of sources of uncertainty, that is, logical or physical enti-
ties which supply information about the environment. Con-
cretely, we are interested in the field of software engineering
of sequential control programs for manufacturing systems,
one of the main topics in which planning community is in-
terested.
∗This work has been supported by the spanish government CI-

CYT under project TAP99-0535-C02-01.

A manufacturing system is composed of a set of devices
which may be seen as a set of agents acting in an uncertain
environment, whose behavior is conditioned by sensors, and
which must be globally coordinated in order to achieve a
common goal. That goal is a specification of a process on
products which has to be carried out by the agents, which
are coordinated by asequential control programthat guides
the operation of the system. Figure 1 shows an example
of a manufacturing system where we can find the following
agents:

A pump, P1, which transports water from the tankT1 to
the tank T2, and which requires that the valveV1 be
open. Additionally, there is a sensor,Slevel, used to in-
form about the level of water atT1. The sensor can be in
two possible states:on (T1 contains water) andoff (T1
is empty). The behavior ofP1 is restricted by the sensor
Slevel: whenSlevel is in the stateon, P1 turns on, and
whenSlevel is in the stateoff , it turns off.

A pump,P3, which transports chlorine from the tank TC to
T2, and which requires that the valveV3 be open.

Two pumps,P21 andP22, which transport soda from the
tank TS to T2. Both pumps require that the valveV2 be
open, but only one of them may be active. The sensor
Savble can be in two states (s1 or s2),and it is used to
decide what pump must be turned on.

The goal of this system is to obtain neutral pure water in
T2 (initially contained inT1). Additionally, the sensorSpH
(which can be in three possible states{n, a, b}) informs
whether the pH of the water contained inT2 is neutral (SpH
is in staten), acidic (SpH is in statea) or basic (SpH is in
stateb). Thus, the operation of the system must take into
account that if the pH of the water contained inT2 is acidic
then it will be necessary to add soda toT2, and if the pH is
basic then it will necessary to add chlorine.

In order to obtain a control program for this manufactur-
ing system, an expert follows a design process which re-
ceives as input the description of the system and a specifica-
tion of its operation. The result of this process is aclosed-
loop control program, that is, a sequence of actions to be
performed by the agents of the system, which take into ac-
count the information supplied by sensors, and which must
incorporate conditional structures (possibly nested) in order
to adequately describe the complex operation of the agents
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Figure 1: A manufacturing system for the neutralization of
pure water.

of the system.
In this sense, the design process of a reactive and robust

sequential control program is a problem that may be tack-
led within a planning with incomplete knowledge frame-
work, taking into account that the application of planning
techinques will require to obtain a complete solution by in-
corporating all the foreesable contingencies at running time.
However, we have to rule out some possible alternative ap-
proaches as, for example, interleaving planning an execution
(Koenig & Simmons 1998). The reason is that, in the context
of manufacturing systems, the use of an execution process
to improve a previously obtained incomplete plan might be
extremely harmful for the system operation. Therefore, the
best choose is a pure conditional planning approach.

In this context, previous work on planning applied to man-
ufacturing operation (Aylettet al. 1998; PLANET 2001;
Castillo, Fdez-Olivares, & González 2001a; 2001b) has
shown that classical partial order planning may be applied as
a successful technique for the autonomous design ofopen-
loop control sequences. However none of these approaches
assumes that the knowledge managed by a planner in a real
domain may be incomplete. This is a shortcoming that lim-
its the expressiveness of these approaches (that is, many real
problems cannot be represented), and reduces the quality of
their results (that is, the plans obtained cannot be conceived
as “real” control programs because they lack of conditional
structures).

Thus, the rest of this paper will be devoted to introduce
a conditional planning approach, based on POP techniques,
for real-world problem solving, with application to the au-
tonomous design of closed-loop sequential control programs
for manufacturing systems, and taking into account the fol-
lowing needs:

• The agents of a domain must be able to rapidly react to
detected changes produced in the environment (For ex-
ample, the pumpP1 must be turned off when the sensor
Slevel has been detected to be in the stateoff ).

• Agents must show a robust behavior, that is, they have
to reach the proposed goal no matter what contingencies
might be detected. (For example, the pH of the water must

be neutral, independently of the state which the sensor
SpH is in).

• Plans obtained must incorporate actions capable of ob-
taining information from the environment, and actions ca-
pable of making decisions in run-time. In addition, plans
must include (possibly nested) conditional structures in
order to be accepted by human experts.

The paper is organized as follows: first we will intro-
duce the knowledge representation (for domains, conditional
plans and problems) used in this approach, next we will de-
fine a semantics for conditional plans and, finally, we will
describe a conditional planning algorithm based in this se-
mantics able to obtain correct conditional plans.

Knowledge Representation
In this section we will firstly describe how to represent and
manage the incomplete knowledge originated by the exis-
tence of discrete sources of uncertainty in a domain that, in
our application example, corresponds to the layout of a man-
ufacturing system. Next we will introduce the knowledge
representation used to describe domains, actions, problems,
and plans.

Representing Incompleteness
In our approach we represent a source of uncertainty by
means of asensor. A sensorσ represents a discrete source
of uncertainty, and it is associated with a finite set ofpos-
sible stateswhich are represented as symbols (D(σ) =
{u1, . . . , un}). In real domains, sensors affect the behav-
ior of agents and, in the field of sequential control program-
ming, this influence is represented by means of discrete vari-
ables which can take different values at run-time. During the
design step of a control program, these variables are used
by experts to describe the reactive or conditional behavior
that, at running time, will be exhibited by the agents in a
manufacturing system. This kind of variables may be rep-
resented in a planning model as an special type of planning
variables calledrun-time variables, which have been used
as a way for dealing with incompleteness in previous ap-
proaches of planning under uncertainty (Etzioniet al. 1992;
Olawsky & Gini 1990; Olawsky, Krebsbach, & Gini 1995).

As other approaches do, we use run-time variables to rep-
resent that a source of uncertainty may affect the knowledge
of the planner, although in a slightly different way. Con-
cretely, a run-time variable!x is a variable which can be in-
stantiated with constant symbols (belonging to a finite and
discrete domainD(!x)), and which is associated with a sin-
gle sensorSensor(!x), in such a way that every possible value
of !x is associated with a single possible state ofσ.

The utility of a run-time variable is closely related with
its use in the knowledge representation based onliterals. In
the planning model we are introducing, a literall is repre-
sented as a tuple(Atom(l) . Rc(l)), whereAtom(l) is a predi-
cate (called the atom ofl) which may include run-time vari-
ables in its terms , andRc(l) is a set ofknowledge restric-
tions. A knowledge restriction is represented as a special
literal (KNOWN σ u), whereσ stands for a sensor andu
is one of its possible states. This extended syntax involves

60      



some issues about the interpretation of a literal that we have
to clarify:

• First, the truth-value of a literall is the truth-value of
Atom(l), which may betrue, false or unknown.

• Second, the value that a run-time variable!x may take (at
running time) is unknown at planning time, and it always
depends on a possible state ofSensor(!x). Therefore, for a
given literall, if Atom(l) contains a run-time variable!x,
then the truth-value of a complete instantiation ofAtom(l)
is restricted by the sensorSensor(!x), in such a way that it
depends on aknowledge productioncaused by the detec-
tion of a state ofSensor(!x).

• Third, taking into account the previous point, the set
of knowledge restrictions of a literal allows to rep-
resent, at planning time, what sources of uncertainty
(sensors) affect its truth-value, that is, knowledge re-
strictions are used to represent acontext where a lit-
eral is known to be true or false. For examplel =
(p . ((KNOWN σ u)(KNOWN σ′ u′))) is interpreted as
“ l is true when it has been detected that, simultaneously,
σ is in the possible stateu, andσ′ is in the possible state
u′”, or in other words, “l is true in a context whereσ takes
the stateu andσ′ takes the stateu′”. Additionally, for a
given literal l, Rc(l) may take the value T, meaning that
there is no sensor which restricts the truth-value ofl1 , or
the valueNIL , meaning that the truth-value ofl cannot be
determined, representing an inconsistency.

• Finally, we have to say that not every set of restrictions
is a valid one. Concretely, T is a valid set of knowledge
restrictions,NIL is not a valid set, and a set of knowledge
restrictions which contains two restrictions which refer to
the same sensor is not a valid set (for example, the set
((KNOWN σ u1)(KNOWN σ u2)) is not a valid one).
Finally, a set of knowledge restrictions is valid when none
of these rules applies.

The representation of knowledge restrictions is inspired on
the concepts ofconditional contextandcontext labelsused
in (Peot & Smith 1992) and (Pryor & Collins 1996), and the
validity of a set of knowledge restrictions is similar to the
notion ofcontexts compatibilityintroduced in (Peot & Smith
1992). However, the model of actions of these known con-
ditional planning approaches is basicaly the classical model
of STRIPS, extended with sensing (or observe) actions. So,
though these approaches manage uncertainty, their action
representation is not expressive enough to face with prob-
lems in manufacturing domains. What is more, these mod-
els lack of a clear semantics that justify their planning algo-
rithms.

Thus, the representation of knowledge restrictions will al-
low the introduction of new semantical concepts which will
be the basis of a new conditional planning algorithm based
on POP techniques, able to obtain ready-to-use sequential
control programs. These new concepts will be based on
an unification algorithm for literals with knowledge restric-

1For operational purposes, we assume that T is included in any
set of restrictions

tions, which extends the classical unification algorithm, and
which we describe next.

Definition 1 Two literals,le and l, unify when their atoms
unify and the set union of their knowledge restrictions is
valid. In this case, the resulting literallu = Unify(le, l)
is a literal defined as follows:

Atom(lu) is the result of the classical unification ofAtom(le)
andAtom(l), extended for run-time variables (a run-time
variable may unify with a constant, or with a normal vari-
able which contains a single constant in its codesignation
constraints).

Rc(lu) is a set of knowledge restrictions which includes
Rc(le), Rc(l), and a newly generated setru of knowledge
restrictions. Every knowledge restriction(KNOWN σ u)
of ru is generated as result of the unification of a run-time
variable !x, such thatSensor(!x) = σ, with a constant
k ∈ D(!x), such thatu is a state ofσ associated with the
valuek. 2

((Ph water !ph). T)

((Ph water neutral). 
((KNOWN Savble s1)))

((Ph water neutral). 
((KNOWN Savble s1)
(KNOWN Sph n)))

Domain of !ph

Domain of Sph

neutral acidic basic

n a b

!ph
 unify with 

neutral

Figure 2: Unification of literals with knowledge restrictions.

Figure 2 shows an example of unification and, as can be
seen, when a run-time variable is instantiated by a constant,
the unification may lead to add new knowledge restrictions
in the resulting literal. This means that, in order to deter-
mine the truth-value of the resulting literal, it is required to
produce more knowledge than the one required to determine
the truth-value of the unified literals.

Domain and Plans representation
In our model a domain is represented as a set ofagentsand
a set ofsensors. Every sensorσ is associated with a set of
sensing actions. A sensing action is associated with a sin-
gle stateu of a sensorσ, and it is represented with a name
(denoted asWhen(σ u)) and with a set of effects. The ef-
fects of a sensing actionWhen(σ u) represent facts of the
world which are changed when a sensorσ is in the stateu
(See Figure 3). So, sensing actions are used to have access
to these facts.

On the other hand, every agentg is represented by means
of its properties (name, normal variables and run-time vari-
ables) and its behavior. The behavior is modeled as a finite
automaton in which everycausal actiona which is executed
by g contains a setReq(a) of literals, calledrequirements,
which must be solved in order to achieve a correct execution
of the action, and a set of effects,Efs(a), which include the
change of state produced bya over the agentg. In order to
achieve an adequate expressiveness for real-world planning,
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Domain of Savble: {on, off}

When(Savble on)

(not ((Empty−tank T1) . T))

When(Savble off)

((Empty−tank T1) . T)

Domain of Sph: {n, a, b}
Case(Sph)

((Ph acidic) . 
((KNOWN Sph a)))

((Ph neutral) . 
((KNOWN Sph n)))

((Ph basic) . 
((KNOWN Sph b)))

Figure 3: Sensing and decide-actions.

the representation of causal actions embodies the following
features:

• Actions are considered as intervals, that is, every causal
action a of an agent g executes over an interval,
[a,End(a)], defined froma until the next change of state
of g, produced by another action,End(a), of g.

• There are four kind of requirements:previous(they must
be true before the action),simultaneous(they must be
true during the interval of an action),query(used to find
out facts before the action), and procedural (they must
be true after the action) (See (Castillo, Fdez-Olivares,
& González 2000; 2001a) for more details). Previous,
simultaneous, and procedural requirements can only be
solved by causal actions, but query requirements may be
solved by causal or sensing actions.

• Every actiona contains a set of knowledge restrictions,
Rc(a), which represent the context whicha can be exe-
cuted in (that is, the execution of an action may be af-
fected by some states of the sensors in the domain).

• The effects of a causal action may contain literals with
run-time variables. This means that, as a literal with run-
time variables cannot be known at planning time, every
action which contains run-time variables in its effects is
a non-deterministic action. Additionally, in this work we
assume, for simplicity purposes, that requirements do not
contain run-time variables, which only one literal with
run-time variables is allowed in the effects of a causal ac-
tion, and which this literal can only contain one run-time
variable.

The action model also includes another kind of actions
calleddecide-actions. A decide action is associated with a
single sensorσ, and it is represented with a name (denoted as
Case(σ)) and with a set ofpossible effectsEfs(Case(σ)) =
{PEfu1

, . . . ,PEfun} ({u1, . . . , un} are the possible states of
σ). Every possible effectPEfui is a set of literals with knowl-
edge restrictions, representing a causal transformation of the
world in case ofσ is in the possible stateui (See Figure
3). Decide-actions are used at running time to make de-
cisions about which course of actions must be followed,
and, at planning time, they are automatically generated to
represent the different outcomes of the execution of a non-
deterministic action. This process will be described later,
next we will describe how problems and plans are repre-
sented.

Definition 2 A problem is represented as a tupleP =
〈D, I,O〉 whereD is a domain,O is a set of (possibly or-
dered) literals which represent the high level goal, andI is
a set of literals which represent an incomplete initial state.
Every literal l in the initial state can be initially true, false
or unknown, in such a way that:

• l is initially true if l ∈ I and l does not contain run-time
variables.
• l is initially unknown if some of the following conditions

holds:
i) l or (not l) belongs to the effects of some sensing-

action of the domain.
ii) l or (not l) ∈ I and it contains run-time variables.
• l is initially false if some of the following conditions

holds:
i) (not l) ∈ I andl does not contain run-time variables.

ii) l 6∈ I andl is not initially unknown. 2

Definition 3 A conditional plan is represented
as a tuple Π = 〈Ac, Awhen, Acase, <〉 where
Ac(Π), Awhen(Π), Acase(Π) stand for a set of causal,
sensing and decide actions, respectively, and< stands for
a partial order relation between them. A conditional plan
contains two dummy causal actions:a0, the first action of a
conditional plan, which is a non-deterministic action whose
effects encode the incomplete initial state2, and a∞, the
last action of any conditional plan and whose requirements
encode the goal. 2

Semantics
This section is centered on the study of which conditions
have to be accomplished for a conditional plan to be correct.
Intuitively, a conditional plan it said to be correct if every
action in the plan is executable, the execution of the plan
allows to reach the goal of the problem, and there are no
conflicts between the actions of the plan.

Firstly, we have to say that sensing actions do not contain
requirements because their execution depends on a sensor
to be in a possible state, which is a non-foreseeable event.
However, when a sensing actionWhen(σ u) executes, its
effects are known to be true, and it is also known that the
sensorσ is in the stateu. Thus, sensing actions will be used
to satisfy knowledge needs, which will be represented in the
query requirements of causal actions.

On the other hand the execution of a decide-action
Case(σ) can be interpreted has the simultaneous execution
of all the sensing actions associated withσ, which means
that the uncertainty about the current state ofσ is eliminated
after a decide-action. The utility of decide-actions will be
detailed later.

Thus, in this approach the executability conditions of
sensing and decide actions are not a subject to be studied,
so, next section will be centered on the study of the exe-
cutability conditions of a causal action in a conditional plan,
and how can we interpret the execution of deterministic and

2It is allowed for the effects of the special actiona0 to contain
more than one literal with run-time variables
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non-deterministic actions. Afterwards, we will introduce the
semantical concepts which will allow to accomplish these
conditions by means of literal satisfaction, and we will de-
scribe the causal structure of a conditional plan. This will
finally lead to a definition of correct conditional plan.

Executability conditions
Definition 4 We will say that a causal actiona, such that
Rc(a) = r, is executable when the following conditions
hold:

i) Their requirements are true.
ii) ∀l ∈ Req(a),Rc(l) = r ∨ Rc(l) = T. 2

This definition establishes that every requirement of an ex-
ecutable action may either be true in the same context in
which the action can be executed, or be true in all possible
contexts (that is, when its set of knowledge restrictions is
equal to T). Additionally, we have to define what we con-
sider to be a correct execution of an action.

Definition 5 We will say that the execution of an exe-
cutable and deterministic action is correct when∀le ∈
Efs(a),Rc(le) = Rc(a). 2

That is, if a deterministic action executes in a contextRc(a),
then its effects are true in the same context.

However, this definition does not apply for non-
deterministic actions. The effects of this kind of actions
contain run-time variables, meaning that some literals of the
effects of a non-deterministic action will be true in differ-
ent contexts. Therefore, the truth-value of these literals can
only be determined at running time but, at planning time,
we can make use of decide-actions in order to represent
the possible transformations produced by the execution of
a non-deterministic action. This will be done by associating
decide-actions to non-deterministic actions, in such a way
that the effects of a decide-action will be used to represent
the different outcomes of a non-deterministic action.

In this sense, for every literal in the effects of a non-
deterministic actiona, containing a run-time variable!x
such thatSensor(!x) = σ, will be associated a decide-action
Case(σ) to a (See Figure 4). This leads to define a pro-
cess which allows to automatically generate decide-actions
within a conditional plan.

Definition 6 Let a be a non-deterministic action, such that
Efs(a) contains a literall with a run-time variable !x. When
a is included in a conditional plan, a decide-action is gen-
erated in that plan according to the following function:

GenDec(a, !x)
Let l be the literal ofEfs(a) which contains !x
Letσ = Sensor(!x)
FOR EACH ki ∈ D(!x)

Letui be the associated state ofσ with ki
Letpi represent the atom ofl where !x is unified withki
Let PEfui(Case(σ)) = {(pi . Rc(l) ∪ ((KNOWN σ ui)))}

Let Efs(Case(σ)) =
⋃
ui

PEfui(Case(σ))
RETUN Case(σ)

Domain of Sph: {n, a, b}

Case(Sph)

((Ph acidic) . 
((KNOWN Sph a)))

((Ph neutral) . 
((KNOWN Sph n)))

((Ph basic) . 
((KNOWN Sph b)))

((Ph !x) . T)

a

((l1 . T) ... (ln . T)

a

((l1 . T) ... (ln . T)

Figure 4: A decide action associated to a causal action.

Additionally, the possible effects ofGenDec(a, !x) become
effects ofa. 2

The generation of decide-actions will support the represen-
tation, in a single conditional plan, of different sequences of
actions executed in different contexts, which can be seen as
conditional branches. However, the existence of a decide-
action in a conditional plan is not sufficient to create dif-
ferent conditional branches. The creation of conditional
branches will be discussed in the next section, where we will
introduce how to accomplish the executability conditions of
causal actions (deterministic or not) when different execu-
tion contexts are represented in a conditional plan.

Different modes of satisfaction
In classical POP, a literall in the requirements of an actiona,
included in a plan, may become true if there is another pre-
vious actionb which satisfiesl, that is, if this action contains
a literal le in its effects which unifies withl. The process
followed by our approach to determine the truth-value of the
requirements of an action is also based on literal satisfac-
tion. However, the new features of the unification algorithm
described above lead to distinguish between different modes
of satisfaction (See Figure 5), taking into account whether
the unification generates new knowledge restrictions or not.

a

((le . T)

Rc(Unify(le,l))=T

(l . T)

Classical

b

a

(

Rc(Unify(le,l))=Rc(l)

(l . (kr1 kr2))

Circumscribed

b

a

(

Rc(Unify(le,l))⊃Rc(l)

(l . (kr1))

Possible

b

(le . (kr1)) (le . (kr1 kr2))

Figure 5: Different modes of satisfaction.
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Definition 7 Let b be a causal action with a literall in its
requirements, and leta be an action (of any kind) which
contains a literalle in its effects which unifies withl, such
that a < b (if the requirement is procedural we consider
b < a). The unification ofle andl may lead to the following
cases:

Rc(Unify(le, l)) = T: this is the case of classical satisfac-

tion (noted asa
Sat−→l).

Rc(Unify(le, l)) 6= T and Rc(Unify(le, l)) = Rc(l): this
case will be referred to as circumscribed satisfaction

(noted asa
CSat−→l).

Rc(Unify(le, l) ⊃ Rc(l): this case will be referred to as
possible satisfaction supplying a set of knowledge restric-
tions defined asra = Rc(Unify(le, l) − Rc(l). (noted as

a
PSat−→[l, ra]). 2

In the following, we will describe how these modes of
satisfaction affect to the accomplishment of the executability
conditions of a causal action.

Whena
CSat−→l holds, for some actiona and some literall

of the requirements of an actionb, we have to take into ac-
count two possible cases:Rc(a) = Rc(l) or Rc(a) ∈ Rc(l).
The first case is consistent with Definitions 4 and 5, but the
second one violates the definition of correct execution for
the actiona , becauseb requiresa to be executable in the
contextRc(l), anda is known to be executable in a differ-
ent context. So, in order to guarantee the accomplishment
of Definition 5, it will be necessary topropagate backwards
(backto the actiona, its requirements and effects) a set of
knowledge restrictions, following a process defined as fol-
lows:

Definition 8 Let a and b be two causal actions such that
a

CSat−→l holds, for some requirementl of b. The backward
propagation of knowledge restrictions fromb to a is defined
by the following rule:

BckProp(a, l)
IF Rc(a) ⊂ Rc(l)
THEN FOR EACH l ∈ Req(a) ∪ Efs(a)

ASSIGNRc(l) = Rc(l) ∪ Rc(b)− Rc(a)
ASSIGNRc(a) = Rc(a) ∪ (Rc(b)− Rc(a))

RETURN a

2

With respect to the case of a possible satisfaction, it is im-

portant to note that whena
PSat−→[l, ra] holds, for some action

a and for some literall of the requirements of an actionb, the
Definition 4 is violated (because a requirement ofbwould be
true in a context different fromRc(b)). In this case, in order
to guarantee the executability conditions ofb, there are two
alternatives: to assume thatl can either be true in the context
Rc(l) ∪ ra, or be necessarily true in the contextRc(l).

In the first case, the executability conditions ofb can be
accomplished by means of a process whichpropagate for-
wards(toward the actionb, its requirements and effects) the
set of restrictionsra. However, this propagation cannot be

applied in any case. Concretely, if the literal satisfied is con-
tained in the main goal, orb is a non-deterministic action
whose effects contain a literallj , such thatRc(lj) ∪ ra is
not valid, then forward propagation does not apply. This is
defined in the following rule.

Definition 9 Let a and b be two causal actions such that
a

PSat−→[l, ra] holds, for some requirementl of b. The forward
propagation of the knowledge restrictions setra, froma to-
wardsb, is defined by the following rule:

FwProp(a, l, b, ra)
IF l is a goal literal or
b is a non-deterministic action such that
∃lk ∈ Efs(b),Rc(lk) ∪ ra is not valid

THEN RETURNFAIL
ELSE FOR EACHl ∈ Req(b) ∪ Efs(b)

ASSIGNRc(l) = Rc(l) ∪ ra
ASSIGNRc(b) = Rc(b) ∪ ra

RETURN a

2

It is necessary to remark that, indeed, forward propagation
can be recursively applied through the causal structure of a
conditional plan. This recursive process will be described in
the next section.

In the case ofa
PSat−→[l, ra] holds, for a literall = (p . r),

and forward propagation cannot be applied, it is interpreted
that l must be necessarily true in the contextr. This leads
to define a new mode of literal satisfaction which will be
referred to asnecessary satisfaction. This concept will be
defined just after we have described how to represent that
a literal l must be necessarily true in a contextr when

a
PSat−→[l, ra] holds (See Figure 6), by means of the concept

of conditional expansion.

Definition 10 Let a and b be two causal actions such that
a

PSat−→[l, ra] holds, for some literall of the requirements ofb.
The conditional expansion ofl with respect to the knowledge
restrictions setra, is a set of literals defined by de following
function:

C-exp(l, ra)
IF ra = {∅} THEN RETURN{l}
IF ra = ((KNOWN σ u)))
THEN LetC = {∅}

FOR EACHui ∈ D(σ)
IF Rc(l) ∪ ((KNOWN σ ui)) is valid
THEN LetC = C∪{(Atom(l) . Rc(l)∪

((KNOWN σ ui)))}
RETURNC

ELSE Let r = (KNOWN σ u)) (extracted fromra)
LetC = {∅}
FOR EACHui ∈ E(σ)

IF Rc(l) ∪ ((KNOWN σ ui)) is valid
THEN LetC = C ∪ C-exp((Atom(l) . Rc(l)∪
((KNOWN σ ui))), ra − r)

RETURNC

2
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aCase(Sph)

((PH neutral) .
 ((KNOWN SpH n)))

((PH  basic) . 
((KNOWN SpH b)))

((PH  acidic) . 
((KNOWN SpH a))

end

((PH  neutral) . T)

((PH  neutral) .
 ((KNOWN SpH n)))

((PH  neutral) . 
((KNOWN SpH b)))

((PH  neutral) . 
((KNOWN SpH a)))

aCase(Sph)

((PH neutral) .
 ((KNOWN SpH n)))

((PH  basic) . 
((KNOWN SpH b)))

((PH  acidic) . 
((KNOWN SpH a))

end

((PH  neutral) . T)

a Psat ((PH neutral) . T) w ith ra=((KNO WN SpH n))

Figure 6: Conditional expansion of a literal with respect to
ra.

That is, the conditional expansion of a literall, with respect
to ra is a set of literals that allow to represent thatl must
be true in the contextRc(l) ∪ ra, and in any other possible
contextRc(l) ∪ ri, whereri stands for a valid combination
of the possible states of the sensors included inra (See Fig-
ure 6). The conditional expansion of a literal is the basis
of the concept of necessary satisfaction which is defined as
follows:

Definition 11 Let a and b be two causal actions such that

a
PSat−→[l, ra] holds for some literal in the requirements ofb.

We will say whichl is necessarily satisfied in a conditional

plan Π (noted asΠ NSat−→ [l, a]) when∀lc ∈ C-exp(l, ra),

∃ac ∈ Ac(Π), such thatac
CSat−→lc holds. 2

That is, a literal is necessarily satisfied in a conditional plan
when the literals of its conditional expansion are satisfied in
a circumscribed mode. In addition, it is worth noting that
this mode of satisfaction will allow to generate, in a condi-
tional plan, by means of the regression of the literals of a
conditional expansion, sequences of actions which will sat-
isfy (in a circumscribed mode) every literal ofC-exp(l, a),
for some literall and some actiona which satisfiesl in a
possible mode. The actions of these sequences will be ex-
ecuted in different contexts and, so, we can conclude that
the conditional expansion of a literall will allow to create
conditional branches within a conditional plan.

Finally, we can redefine the conditions under a causal ac-
tion is considered to be executable, in terms of the modes of
satisfaction previously introduced.

Definition 12 A causal action is executable if its previous,
simultaneous, and procedural requirements are satisfied in
a circumscribed or necessary mode, and its query require-
ments are satisfied in a circumscribed mode.

Different kinds of causal links

In the previous section we have shown that the requirements
of a causal action may be satisfied in different modes by
different kinds of actions. This means that, in addition to
causal links, the causal structure of a conditional plan em-
bodies different kinds of causal dependencies. These kinds
are the following ones:

• Causal link, noted as[a l→b, c], which represents that a
requirementl of an actionb has been satisfied in a cir-
cumscribed or classical mode by a causal actiona, and
which has to be protected during the actions interval[a, c]
(if l is a previous or query requirementc = b, and if l is
simultaneousc = End(b)).

• Detection link, noted asD[a l→b], which represents that
a query requirementl of b has been satisfied in a circum-
scribed or classical mode by a sensing actiona, and which
has to be protected during the actions interval[a, b].

• Possible link, noted asP[a l→ln, b, c]. which represents
that literalln which belongs to the conditional expansion
of a previous, simultaneous, or procedural requirementln
of an actionb, has been satisfied in a circumscribed mode,
and which has to be protected during the actions interval
[a, c].

These kinds of causal dependencies are mainly used to
detect threats between actions in a conditional plan. The
threats management is similar to the one followed in classi-
cal POP, although it is necessary to note that it is extended to
incorporate the notion of actions interval and the representa-
tion of literals here presented. In order to define the concept
of threat, it is necessary to know that an actiona′ (of any
kind) negates the literall when there is a literall′ ∈ Efs(a)
such thatAtom(l′) negatesAtom(l) andRc(l′)∪Rc(l) is valid.

Thus, we can define the following types of threats:

• A causal actiona′ threatens a causal link[a l→b, c] (or

a possible linkP[a l→ln, b, c]) whena′ negatesl and the
interval [a, c] is unordered with respect to the interval
[a′,End(a′)].

• A sensing actiona′ threatens a detection linkD[a l→b]
whena′ negatesl and the interval[a, b] is unordered with
respect toa′.

Detection links, and the threats management for these
links, allow to introduce order constraints between sensing
actions, meaning that it is possible to describe a correct re-
active behaviour for the agents of a domain.
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On the other hand, causal and possible links allow to
support a recursive forward propagation of knowledge re-
strictions, based on the forward propagation rule above de-
fined (Definition 9). This recursive process starts when

a
PSat−→[l, ra] holds for some actiona and some requirement
l of another actionb, andra are propagated towardsb.

In this case, the causal dependencies (causal or possible
links) which are produced byb must be revised, because
the context ofb has changed, and it is possible that the ex-
ecutabilty conditions of every action supported byb would
be violated. Therefore, in order to guarantee the correct ex-
ecution of every actionab supported byb, it will be neces-
sary to test whether these conditions have to be updated or
not, that is, whetherra must be propagated towardsab. This
lead to a “test-and-propagate” recursive process, through the
causal structure of a conditional plan, which ends when the
supported action isa∞ or ra cannot be propagated forward.
This process is described in the following definition.

Definition 13 Let a and b be two causal actions such that

a
PSat−→[l, ra] holds, for some literall in the requirements of
b. Letcl a causal or possible link which represents a causal
dependence betweena andb. The recursive propagation of
ra, fromvc and through the causal structure of a conditional
plan, is defined by the following function:

R-FwProp(vc, ra)
Leta, b andl be theproducer action, consumer action and

the literal ofvc, respectively
IF vc is not a possible link
THEN IF b = a∞ THEN RETURN{vc}

ELSE IF FwProp(a, l, b, ra) does not apply
THEN IF ra ∪ Rc(b) is not valid

THEN RETURNFAIL
ELSE RETURN{vc}

ELSE LetV C = {vc} be a set of links
FOR EACH link vcb such thatb is its producer

stop-prop =FwProp(vcb, ra)
IF stop-prop = FAILRETURN FAIL
ELSEV C = V C∪ stop-prop

RETURNV C
ELSE RETURN{vc}2

The functionR-FwProp(vc, ra) returns a set of causal
or possible links which contains those causal dependencies
where forward propagation cannot be applied. Thus, every
link returned can be seen as the representation of a possible
satisfaction where it is not possible to propagate forwards.
If during the recursive propagation a not valid set of knowl-
edge restrictions is found, the function will return a general
fail, which means that the forward propagation through the
causal structure will not lead to obtain a correct plan. This
function will be very useful in the conditional planning algo-
rithm wich will be introduced in the next section. However,
previously we have to establish the conditions under a con-
ditional plan is considered to be correct.

Definition 14 A conditional planΠ, constructed to solve
a planning problemP = 〈D, I,O〉 is correct when every
causal action inΠ is executable, every literal inO is satis-
fied in a circumscribed or necessary mode by any executable

SolveSubGoal(l, a,Π)
Let b be the action such thatl ∈ Req(b).
Let c be the actionEnd(b), if l is a simultaneous requirement, or

the actionb, if l is a previous requirement
IF a is a new action
THEN Inserta in Π

IF a is a non-deterministic action
THEN InsertGenDec(a, !x) in Π

CASE a
CSat−→ l

IF l is a query requirement anda is a sensing-action

THEN InsertD[a
l→b]

ELSEIF l belongs to the conditional expansion of some literalln

THEN InsertP[a
l→ln, b, c] in Π andBckProp(a, l)

ELSE Insert[a
l→b, c] in Π andBckProp(a, l)

CASE a
PSat−→ [l, ra]

IF l belongs to the conditional expansion of some literalln

THEN InsertP[a
l→ln, b, c] in Π

stop-prop ={P[a
l→ln, b, c]}

ELSE Insert[a
l→b, c] in Π

stop-prop =R-FwProp([a
l→b, c], ra)

IF stop-prop = FAILRETURN FAIL
FOR EACHvc in stop-prop

Insert the refinement task “Conditional Branchingvc, ra”

Figure 7: Algorithm for solving an unsolved goal flaw.

action ofΠ, and there are no threats between the actions in-
tervals ofΠ. 2

In the next section we will describe an algorithm able to ob-
tain correct conditional plans according to this definition.

Planning algortithm
The previously defined notions have been incorporated into
the partial order algorithm described in (Castillo, Fdez-
Olivares, & González 2001a; 2000) resulting in a new con-
ditional planning algorithm (called ADVICE ), capable of
constructing correct conditional plans, in the terms defined
above, which can be interpreted asclosed-loopcontrol pro-
grams. Thus, ADVICE is based on a planning algorithm
which generates a conditional plan by the successive appli-
cation of refinement operations on a partially constructed
conditional plan. These operations are carried out when, in
the partially constructed conditional plan, it appears any of
the following flaws:

• Threats. ADVICE solves the different types of threats
defined above by demotion or promotion of actions inter-
vals (See (Castillo, Fdez-Olivares, & González 2001a) for
more details).

• Unsolved subgoals. Subgoals are solved following the al-
gorithm shown in Figure 7. A literal which represents
an unsolved subgoal may be satisfied by a non instatiated
causal action or by an action included in the conditional
plan in construction (if the literal represents a query re-
quirement, the action may be a sensing action). In the first
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MakeBranch(vc, ra,Π)

IF vc is a causal link[a
l→b, c]

THEN Insert the literals ofC-exp(l, ra) as new subgoals inΠ

IF vc is a possible linkP[a
l→ln, b, c]

THEN Non deterministally chosse a literall′ from the set{l, ln}
Insert the literals ofC-exp(l′, ra) as new subgoals inΠ

Figure 8: Algorithm for conditional branch creation.

case, ADVICE inserts the action, associating a decide-
action in case of the action is non-deterministic. If the
literal is satisfied in a circumscribed mode, a backward
propagation of knowledge constraints is performed. Then,
if the literal belongs to the conditional exansion of an-
other requirement, a possible link is inserted, otherwise, a
causal link is inserted (if the literal is a query requirement
satisfied by a sensing action, a detection link is inserted).
On the other hand, if the literal is satisfied in a possible
mode (we assume that query requirements cannot be sat-
isfied in a possible mode), causal and possible links are
inserted as in the previous case , and a recursive forward
propagation process is performed (we assume that knowl-
edge restrictions cannot be propagated towards the literals
of a conditional expansion). If this process returns a fail,
it is interpreted that the subgoal cannot be solved by the
action being used, otherwise, every causal or possible link
returned by this process will be considered as a new flaw
of type “Conditional-Branching”.

• Conditional branching. This new type of flaw raises when
the forward propagation process cannot be applied on a
causal or possible link. We have introduced above that
every link returned by this process represents a possible
satisfaction where it is not possible to propagate forwards.
Therefore, according to Definitions 10 and 11, this flaw
can be solved by means of a conditional expansion (See
Figure 8). Thus, the introduction of the literal of the a
conditional expansion as unsolved subgoals, will allow
to guarantee that a literal can be satisfied in a necessary
mode by the creation of different conditional branches. In
addition, as can be seen in Figure 8, it is not possible to

determine, in a possible linkP[a l→ln, b, c], which literal
must be conditionally expanded (l or ln). In this case, the
flaw can be solved by means of two alternatives.

Figure 9 shows the conditional plan generated by AD-
VICE which solves the manufacturing problem described in
the introduction of this paper. The plan represents correctly
the required behaviour:

• The pumpP1 and the valveV1 react to the information
supplied by the sensorSlevel, in such a way that they turn
off whenSlevel is in the stateoff .

• On the other hand, the actions of the agentsV2, V3, P21,
P22, andP3, are conditionally structured in such a way
that these agents show a robust behavior which allows to
obtain a neutral pH. In addition, the plan contains nested
conditional branches (which may be discover by means of

the recursive propagation process defined above) to repre-
sent the alternative operation of the agentsP21 andP22.

As can be seen in this example, ADVICE satisfies the
needs formerly established in the introduction of this work.

START

Case(SpH)

On(P1)

Open(V1)

Off(P1)

Shut(V1)

On(P3)
((KNOWN SpH a))

Open(V3)
((KNOWN SpH a))

Off(P3)
((KNOWN SpH a))

Shut(V3)
((KNOWN SpH a))

On(P21)
((KNOWN SpH b)

(KNOWN Savbe 1))

Open(V2)
((KNOWN SpH b))

Off(P21)
((KNOWN SpH b)

(KNOWN Savbe 1))

Shut(V2)
((KNOWN SpH b))

END

When
(Slevel on)

When
(Slevel off)

Case(Savble)

On(P22)
((KNOWN SpH b)

(KNOWN Savbe 2))

Off(P22)
((KNOWN SpH b)

(KNOWN Savbe 2))

Figure 9: A conditional plan for the problem formerly intro-
duced.

Conclusions
In this work we have presented a conditional planning ap-
proach based on an expressive model of actions, and on
new semantical notions which allow to generate correct con-
ditional plans, in real and uncertain domains. The plan-
ning algorithm which embodies these original semantics can
be seen as an autonomous design process able to obtain
conditional plans, which can be interpreted as ready-to-use
closed-loopcontrol programs.

Taking into account the planning process and the plans
obtained, ADVICE can be seen as a step forward in the field
of planning applied to software engineering, overwhelming
the main shortcomings (concerned with incomplete knowl-
edge management and plan quality) of current planning ap-
proaches to manufacturing systems operation. It must also
be said that ADVICE has been extensively used for the au-
tomatic synthesis of closed-loop control programs. This ex-
perimentation is being carried out in close collaboration with
experts on industrial domains within a research project, and
it will appear in other paper in preparation.

On the other hand, appart from the semantical concepts
presented, one of the main advantages of this approach is
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that it embodies a more expressive model of actions than the
one used in other conditional planning approaches, allowing
to obtain conditional plans with nested conditional struc-
tures. That is, as opposite to other POP approaches which
assume incomplete knowledge (Pryor & Collins 1996; Et-
zioni et al. 1992), the representation of a plan obtained
by ADVICE is a DAG and not a tree (Weld, Anderson, &
Smith 1998), a characteristic that needs to be incorporated
into any plan intended to be useful and understandable for
human experts.

Our current research is currently focused on the inte-
gration of this conditional planning approach with the hy-
brid planning model (which mixes hierarchical planning and
POP, but which assumes complete knowledge) described in
(Castillo, Fdez-Olivares, & González 2001b)). This will
lead to develop a planning system able to obtain hierarchical
and conditional plans which could be interpreted as hierar-
chical and conditional control programs. We think that such
as system will be extremely helpful to the experts on indus-
trial automation.
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Abstract

General-purpose planning can solve problems in a variety of
domains but can be quite inefficient. Domain-specific plan-
ners are more efficient but are difficult to create. In this paper,
we introduce template-based planning, a novel paradigm for
automatically generating domain-specific programs, ortem-
plates. We present the DISTILL algorithm for learning tem-
plates automatically from example plans and explain how
templates are used to solve planning problems. DISTILL con-
verts a plan into a template and then merges it with previ-
ously learned templates. Our results show that the templates
automatically learned by DISTILL compactly represent its
domain-specific planning experience. Furthermore, the tem-
plates situationally generalize the given example plans, thus
allowing them to efficiently solve problems that have not pre-
viously been encountered.

Introduction
Planning is a powerful tool for action selection, since it of-
fers a guarantee that a proposed plan achieves an agent’s
goals. If efficient, agents could re-plan to deal with unex-
pected situations. However, general-purpose planning is too
slow to use in most real-time systems and does not scale
to large problems. In order for planning to be feasible in
these situations, some knowledge about the domain being
solved must be used in the planning process, either by us-
ing a domain-specific planner or by using domain-specific
knowledge to narrow the search.

Many researchers have focused on learning domain-
specific control knowledge for planning automatically, usu-
ally in the forms of control rules, macro operators, and plan
case libraries. There have also been several efforts focus-
ing on writing domain-specific planners to quickly solve
planning problems in particular domains without resorting
to generative planning. These programs are currently hand-
written, but this process is tedious and often quite difficult.

In this paper, we introduce the DISTILL algorithm, which
automatically extracts these domain-specific planning pro-
grams (which we calltemplates) from example plans, and
show how to use them to solve planning problems. We call
these domain-specific planning programstemplates. Table 1
shows a simple example template that solves all problems in
the gripper domain that involve moving balls from one room
to another.

while (in goal state(at(?1:ball ?2:room)) and
in current state(at(?1:ball ?3:room)) and
not same(?2:room ?3:room) and
in current state(at-robby(?5:room))) do

if (not same(?3:room ?5:room)) then
move(?4 ?5 ?3)

pick(?1 ?4 ?3)
move(?4 ?3 ?2)
drop(?1 ?4 ?2)

Table 1: A simple template that solves all gripper-domain
problems involving moving balls from one room to another.

In some domains, finding optimal solutions is NP-
complete. Therefore, templates learned automatically from
a finite number of example plans cannot be guaranteed to
find optimal plans. Our goal is to extend thesolvability hori-
zon for planning by reducing planning times and allowing
much larger problem instances to be solved. We believe that
post-processing plans can help improve plan quality.

Our work on the DISTILL algorithm for learning tem-
plates focuses on converting new example plans into tem-
plates in if-statement form and merging them, where pos-
sible. Our results show that merging templates produces a
dramatic reduction in space usage compared to case-based
or analogical plan libraries. We also show that by construct-
ing and combining the if statements appropriately, we can
achieve automaticsituational generalization, which allows
templates to solve problems that have not been encountered
before without resorting to generative planning or requiring
adaptation.

We first formalize the concept of templates. Next, we
present our novel DISTILL algorithm for learning templates
from example plans and present our results. We then discuss
how to use templates to solve planning problems. Finally,
we explore future work and present our conclusions.

Related Work
Control rules (Minton 1988a; Katukam & Kambhampati
1994; Etzioni 1993) act as a search heuristic during the plan-
ning process by “recommending” at certain points which
branch of the planning tree the planner should explore first.
They do not reduce the complexity of the planning task,
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since they cannoteliminatebranches of the search tree. They
also capture only very local information (preference choices
at specific branches of the planning search tree), ignoring
common sequences of actions or repeated structures in ex-
ample plans. It is difficult for people to write good control
rules, in part because one must know the problem-solving
architecture of the planner in order to provide useful ad-
vice about how it should make choices (Minton 1988b), and
computer-learned control rules are often ineffective (Minton
1988b). Also, using control rules introduces a new problem
for planners: when to create and save a new rule. Unre-
stricted learning creates autility problem, in which learn-
ing more information can actually be counterproductive:
it can take longer to search through a library of rules to
find the ones that would help to solve a planning problem
than to find the solution to the problem by planning from
scratch (Minton 1988b).

Macro operators(Fikes, Hart, & Nilsson 1972; Korf
1985) combine frequently-occurring sequences of opera-
tions into combined operators. A macro can then be applied
by the planner in one step, thus eliminating the search re-
quired to find the entire sequence again. Each new macro
operator adds a new branch to the planning tree at every
search node. Although they can decrease the search depth,
the added breadth can make planning searches slower, so, as
with control rules, it is difficult to determine when to add a
new macro operator. Some research has studied the problem
of how to learn only the most useful macros (Minton 1985),
but the efficacy of macros has, in general, been limited to
hierarchically decomposable domains.

Another approach to learning planning knowledge,case-
based reasoning, attempts to avoid generative planning en-
tirely for many problems (Hammond 1996; Kambhampati
& Hendler 1992; Leake 1996). Entire plans are stored and
indexed ascasesfor later retrieval. When a new problem is
presented, the case-based reasoner searches through its case
library for similar problems. If an exact match is found,
the previous plan may be returned with no changes. Other-
wise, the reasoner must either try to modify a previous case
to solve the new problem or to plan from scratch. Utility
is also a problem for case-based planners; many handle li-
braries of tens of thousands of cases (Veloso 1994a), but, as
with control rules, as the libraries get larger, the search times
for relevant cases can exceed the time required to plan from
scratch for a new case.

A variant of case-based reasoning that deserves mention
is analogical reasoning, which also stores case libraries
and attempts to modify previous cases to solve new prob-
lems (Veloso 1994a; 1994b). However, in addition to stor-
ing the problem and the plan, analogical reasoners also store
the problem-solving rationale behind each plan step. This
makes it easier to modify previous cases to solve new prob-
lems. However, deciding when to abandon modification and
plan from scratch is still a problem, as are retrieving cases
from the library and determining whether to save new cases.

Some work has addressed learning programs for planning,
but this has been limited to learningiterative (Shell & Car-
bonell 1989) andrecursive(Schmid 2001) macros: macro
operators that contain repeated sequences of steps.

Defining Templates
A template is a domain-specific planning program that,
given a planning problem (initial and goal states) as input,
either returns a plan that solves the problem or returns fail-
ure, if it cannot do so. Templates are composed of the fol-
lowing programming constructs and planning-specific oper-
ators:

• while loops;
• if , then , elsestatements;
• logical structures (and , or , not );
• in goal state , in current state , in initial state opera-

tors;
• sameoperator;
• plan predicates; and
• plan operators.

In order for templates to capture repeated sequences in
while loops and to determine that the same sequence of op-
erators in two different plans has the same conditions, they
must update a current state as they execute by simulating the
effects of the operators they add to the plan. Without this
capability, we would be unable to use such statements as:
while (condition holds)do (body). Therefore, in order to
use a template, it must be possible to simulate the execution
of the plan. However, since template learning requires full
models of the planning operators, this is not an additional
problem.

Table 1 shows a template that solves all gripper-
domain (Long 2000) problems involving moving balls be-
tween rooms. The template is composed of one while loop:
while there is an ball that is not at its goal location, move to
the ball (if necessary), pick up the ball, move to goal location
of the object, and drop the ball.

Learning Templates: theDISTILL Algorithm
The DISTILL algorithm, shown in Table 2, learns templates
from sequences of example plans, incrementally adapting
the template with each new plan. One benefit of online
learning is that it allows a learner with access to a planner
to acquire templates on the fly in the course of its regular
activity. And because templates are learned from example
plans, they reflect thestyleof those plans, thus making them
suitable not only for planning, but also for agent modeling.

DISTILL can handle domains with conditional effects, but
we assume that it has access to a complete model of the op-
erators and to a minimal annotated partial ordering of the ob-
served total order plan. Previous work has shown that oper-
ator models are learnable through examples and experimen-
tation (Carbonell & Gil 1990; Wang 1994) and has shown
how to find minimal annotated partial orderings of totally-
ordered plans given a model of the operators (Winner &
Veloso 2002).

The DISTILL algorithm converts observed plans into tem-
plates (see “Converting Plans into Templates”) and merges
them by finding templates with overlapping solutions and
combining them (see “Merging Templates”). In essence, this
builds a highly compressed case library. However, another
key benefit comes from merging templates with overlapping

70      



Input : Minimal annotated consistent partial orderP,
current templateTi.

Output : New templateTi+1, updated withP
procedure DISTILL (P, Ti):
A← Find VariableAssignment(P, Ti.variables, ∅)
until matchor can’t matchdo

if A = ∅ then
can’t match

else
N ← Make New If Statement(Assign(P,A))
match← Is A Match(N , Ti)

if not can’t matchand not matchthen
A← Find VariableAssignment(P, Ti.variables,A)

if can’t matchthen
A← Find VariableAssignment(P, Ti.variables, ∅)
N ← Make New If Statement(Assign(P,A))

Ti+1← Add To Template(N , Ti)

procedureMake New If Statement(PA):
N ← empty if statement
for all termstm in initial state ofPA do

if exists a stepsn in plan body ofPA such that
sn needstm or goal state ofPA needstm then

Add To Conditions(N , in current state(tm))
for all termstm in goal state ofPA do

if exists a stepsn in plan body ofPA such that
tm relies onsn then

Add To Conditions(N , in goal state(tm))
for all stepssn in plan body ofPA do

Add To Body(N , sn)
return N

procedure Is A Match(N , Ti):
for all if-statementsIn in Ti do

if N matches ofIn then
return true

procedureAdd To Template(N , Ti):
for all if-statementsIn in Ti do

if N matchesIn then
In← Combine(In,N )
return

if N is unmatchedthen
Add To End(N , Ti)

Table 2: The DISTILL algorithm: updating a template with
a new observed plan.

solutions: this allows the template to findsituational gener-
alizations(Harris 1995) for individual sections of the plan,
thus allowing it to reuse those sections when the same sit-
uation is encountered again, even in a completely different
planning problem.

Generalizing Situations
We make several assumptions about what makes one plan-
ning situationdifferent than another, and about how the ob-
served planner will solve problems. We assume that two
objects of the same type will be treated the same by the plan-
ner. Thus, two situations are equivalent if they contain the

same number and types of objects in the same relationships.
We assume that the planner will respond to equivalent situa-
tions with the same plan. This allows the DISTILL algorithm
to identify common situations that occur in the solutions of
several planning problems, and to extract their solutions for
independent use in other problems.

Converting Plans into Templates
The first step of incorporating an example plan into the
template is converting it into a parameterized if statement.
First, the entire plan is parameterized. DISTILL chooses the
first parameterization that allows part of the solution plan to
match that of a previously-saved template. If no such pa-
rameterization exists, it randomly assigns variable names to
the objects in the problem.1

Next, the parameterized plan is converted into a template,
as formalized in the procedure MakeNew If Statement in
Table 2. The conditions on the new if statement are the
initial- and goal-state terms that arerelevantto the plan. Rel-
evant initial-state terms are those which are needed for the
plan to run correctly and achieve the goals (Veloso 1994a).
Relevant goal-state terms are those which the plan accom-
plishes. We use a minimal annotated partial ordering (Win-
ner & Veloso 2002) of the observed plan to compute which
initial- and goal-state terms are relevant. The steps of the
example plan compose the body of the new if statement.
We store the minimal annotated partial ordering information
for use in merging the template into the previously-acquired
knowledge base.

Figure 1 shows an example minimal annotated partially
ordered plan with conditional effects. Table 3 shows the
template DISTILL creates to represent that plan. Note that
the conditions on the generated if statement do not include
all terms in the initial and goal states of the plan. For exam-
ple, the template does not require thate(z) be in the initial
and goal states of the example plan. This is because the plan
steps do not generatee(z), nor do they need it to achieve the
goals. Similarly,b(x) and the conditional effects that could
generate the termc(x) or prevent its generation are also ig-
nored, since it is not relevant to achieving the goals.

if (in current state(f(?0:type1)) and
in current state(g(?1:type2)) and
in goal state(a(?0:type1)) and
in goal state(d(?1:type2))) then

op1
op2

Table 3: The template DISTILL would create to represent the
plan shown in Figure 1.

Merging Templates
The merging process is formalized in the procedure
Add To Template in Table 2. The templates learned by

1Two discrete objects in a plan are never allowed to map onto
the same variable. As discussed in (Fikes, Hart, & Nilsson 1972),
this can lead to invalid plans.
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pre:
{}

effects:
g(y:type2) −> d(y:type2)
f(x:type1) −> NOT b(x:type1)

op2

pre:
{}

effects:
f(x:type1) −> a(x:type1)
b(x:type1) −> c(x:type1)

op1

b(x:type1)
f(x:type1)
g(y:type2)
e(z:type3)

INITIAL GOAL

a(x:type1)
d(y:type2)
e(z:type3)

a(x:type1)

d(y:type2)

e(z:type3)

f(x:type1)

g(y:type2)

Figure 1: An example plan. The preconditions (pre) are
listed, as are the effects, which are represented as conditional
effectsa → b, i.e., if a then addb. A non-conditional effect
that adds a literalb is then represented as{} → b. Delete ef-
fects are represented as negated terms (e.g.,{a} → NOTb.

the DISTILL algorithm are sequences of non-nested if state-
ments. To merge a new template into its knowledge base,
DISTILL searches through each of the if statements already
in the template to find one whose body (the solution plan for
that problem) matches that of the new problem. We consider
two plans to match if:

• one is a sub-plan of the other, or

• they overlap: the steps that end one begin the other.

If such a match is found, the two if statements are combined.
If no match is found, the new if statement is simply added to
the end of the template.

We will now describe how to combine two if statement
templates,if1= if x then abc andif2= if y then b, when the
body of if2 is a sub-plan of that ofif1. This process is illus-
trated in Figure 2.2. For any set of conditionsC and any step
s applicable in the situationC, we defineCs to be the set of
conditions that hold after steps is executed in the situation
C. We also define a new function,Relevant(C, s), which,
for any set of conditionsC and any plan steps, returns the
conditions inC that are relevant to the steps.

As shown in Figure 2, mergingif1 and if2 will result
in three new if statements. We will label themif3, if4,
and if5. The body ofif3 is set toa and its conditions are
Relevant(x, a). The body ofif4 is b and its conditions are
Relevant(xa, b) or Relevant(y, b). 3 Finally, the body of
if5 is c and its conditions areRelevant(xab, c). Whichever
of if1 or if2 is already a member of the template is removed
and replaced by the three new if statements.

Illustrative Results
Table 4 shows a template learned by the DISTILL algorithm
that solves all problems in a blocks-world domain with two
blocks. There are 555 such problems4, but the template

2Combining two if statements with overlapping bodies is simi-
lar. It is illustrated in Figure 3

3Note that, thoughRelevant(x, a) ⊆ x,Relevant(y, b) = y.
4Though the initial state must be fully-specified in a problem,

the goal state need only be partially specified. There are only three

a
b
c

b

if (x) then

if (y) then

b

a

c

if (Relevant(x, a)) then

ab

aif (Relevant(x   , b) or y) then

if (Relevant(x     )) then

Figure 2: Combining two if statements when the body of
one is a sub-plan of the body of the other.

a
if (Relevant(x, a)) then

if (Relevant(x  , b) or

if (Relevant(y  , c) then

Relevant(y, b) then
b

c

a

b

a
b

b
c

if (x) then

if (y) then

Figure 3: Combining two if statements when their bodies
are overlapping.

needs to store only two plan steps, and DISTILL is able to
learn it from only 6 example plans.

Table 5 shows a template learned by the DISTILL algo-
rithm to solve all gripper-domain problems with one ball,
two rooms, and one robot with one gripper arm. Although
there are 1932 such problems,5 the DISTILL algorithm is
able to learn the template from only five example plans. It
successfully generalizes situations within individual plans
for use in other plans. Also note that only five plan steps
(the length of the longest plan) are stored in the template.

Our results show that templates achieve a significant re-
duction in space usage compared to case-based or analogical
plan libraries. In addition, templates are also able to situa-
tionally generalize known problems to solve problems that
have not been seen, but are composed of previously-seen sit-
uations.

possible fully specified states in the blocksworld domain with two
blocks, but there are 185 valid partially specified states.

5As previously mentioned, each problem consists of one fully-
specified initial state (in this case, there are 6 valid fully-specified
initial states), and one partially-specified goal state (in this case,
there are 322).
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if (in current state(clear(?1:block)) and
in current state(on(?1:block ?2:block)) and
(in goal state(on(?2:block ?1:block)) or

in goal state(on-table(?1:block)) or
in goal state(clear(?2:block)) or
in goal state(¬on(?1:block ?2:block)) or
in goal state(¬clear(?1:block)) or
in goal state(¬on-table(?2:block))

)) then
move-from-block-to-table(?1 ?2)

if (in current state(clear(?1:block)) and
in current state(clear(?2:block)) and
in current state(on-table(?2:block)) and
(in goal state(on(?2:block ?1:block)) or

in goal state(¬clear(?1:block)) or
in goal state(¬on-table(?2:block))

)) then
move-from-table-to-block(?2 ?1)

Table 4: A template learned by the DISTILL algorithm that
solves all two-block blocks-world problems.

Planning with Templates
Our algorithm for generating plans from templates is shown
in Table 6. As previously mentioned, while executing the
template, we must keep track of a current state and of the
current solution plan. The current state is initialized to the
initial state, and the solution plan is initialized to the empty
plan. Executing the template consists of applying each of
the statements to the current state. Each statement in the
template is either an plan step, an if statement, or a while
loop. If the current statement is a plan step, make sure it is
applicable, then append it to the solution plan and apply it
to the current state. If the current statement is an if state-
ment, check to see whether it applies to the current state. If
it does, apply each of the statements in its body; if not, go
on to the next statement. If the current statement is a while
loop, check to see whether it applies to the current state. If it
does, apply each of the statements in its body until the con-
ditions of the loop no longer apply. Then go on to the next
statement.

Sometimes there may be many ways to apply an if state-
ment or a while loop to the current state. For example,
if we have a statement like, “if (in current state (not-
eaten(?a:apple))) then eat(?a)”, and there are several un-
eaten apples in the current state, it is unclear which apple
should be eaten. However, one of our primary assumptions
is that all objects that match the conditions may be treated
the same, so, in this case, it doesn’t matter which apple is
eaten.

Detecting and Handling Failures
There are three ways a template may fail to generate the cor-
rect solution plan. It may have run through the whole tem-
plate and found no solution steps at all, though the initial
state is not the same as the goal state. Or, it may have found
some plan steps to execute, but, by the end of the template,

if (in current state(at(?3:ball ?2:room)) and
in current state(at-robby(?1:room)) and
(in goal state(at(?3:ball ?1:room)) or

in goal state(¬at(?3:ball ?2:room)) or
in goal state(holding(?3:ball))

)) then
Move(?1 ?2)

if (in current state(at(?3:ball ?2:room)) and
in current state(at-robby(?2:room)) and
(in goal state(at(?3:ball ?1:room)) or

in goal state(¬at(?3:ball ?2:room)) or
in goal state(holding(?3:ball))

)) then
Pick(?3 ?2)

if (in current state(holding(?3:ball)) and
in current state(at-robby(?2:room)) and
(in goal state(at(?3:ball ?1:room)) or

(in goal state(¬at(?3:ball ?2:room)) and
in goal state(¬holding(?3:ball)))

)) then
Move(?2 ?1)

if (in current state(holding(?3:ball)) and
in current state(at-robby(?1:room)) and
(in goal state(at(?3:ball ?1:room)) or

in goal state(¬holding(?3:ball))
)) then

Drop(?3 ?1)
if (in current state(at-robby(?1:room)) and

in goal state(at-robby(?2:room))
) then

Move(?1 ?2)

Table 5: A template learned by the DISTILL algorithm that
solves all gripper-domain problems involving one ball two
rooms, and one robot with one gripper.

did not reach the goal state. Finally, it may have found some
plan steps to execute, but found that they were not applicable
to the current state. A failure is detected when we attempt
to execute steps that are not applicable in the current state or
when the template finishes executing and its final state does
not match the goal state. The way we currently handle fail-
ures is by handing the problem off to a generative planner,
and then to add that new solution to the template.

Future Work
We are actively pursuing several research directions in
template-based planning: enriching the process of convert-
ing an example plan into a template, refining the process of
merging templates, and better handling failures by allowing
the partial solutions generated by the template to be used to
help guide the general-purpose planner’s search.

The DISTILL algorithm’s process of converting an exam-
ple plan into a template can be extended to identify and ex-
tract loops in the example plan. To do this, it must be able
to define the running conditions and stopping conditions for
the loop and to determine when two loops can be merged.
Merging two loops is more difficult than merging if state-
ments; for example, two loops cannot be merged unless they
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Input : TemplateT , initial stateI, current stateC
(initialized toI), and goal stateG.

Output : PlanP that solves the given problem.

procedureApply Template(T , I, C, G):
P ← ∅
for each statementSn in T do

P ← P + Apply Statement(Sn, I, C, G)
if G is satisfied byC then

return P
else

FAIL

procedureApply Statement(S, I, C, G):
P ← ∅
if S is an if statementthen

if Applies Now(S, C, G) then
for each statementSi in the body ofS do

P ← P + Apply Statement(Si, C, G)
if S is a while statementthen

while Applies Now(S, I, C, G) do
for each statementSi in the body ofS do

P ← P + Apply Statement(Si, C, G)
if S is a plan stepthen

if not Applicable(S, C) then
FAIL

C ← Apply Step(S, C)
P ← S

return P

Table 6: Template-based plan generation.

have the same stopping conditions, even if they contain the
same steps.

The process of merging templates can be refined by ex-
tending the matching capabilities of the DISTILL algorithm.
Currently, DISTILL finds only the first match between a new
template and previously constructed templates. We could
also search for the longest match available. This would
involve searching over different variable bindings for the
new plan, since different bindings could result in different
matches. Also, we currently allow a new template to match
only one previously constructed template. We may find that
merging a new template with as many other templates as
possible results in better situational generalization.

Conclusions
In this paper, we contribute a formalism for automatically-
generated domain-specific planning programs (templates)
and the novel DISTILL algorithm, which automatically
learns templates from example plans. The DISTILL algo-
rithm first converts an observed plan into a template and
then combines it with previously-generated templates. Our
results show that templates learned by the DISTILL algo-
rithm require much less space than do case libraries. Tem-
plates learned by DISTILL also support situational general-
ization, extracting commonly-solved situations and their so-
lutions from stored templates so they can be reused in dif-
ferent problems.
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Abstract

We present a general approach to planning with a restricted
class of universally quantified constraints. These constraints
stem from expressive action descriptions, coupled with large
or infinite universes and incomplete information. The ap-
proach essentially consists of checking that the quantified
constraint is satisfied for all members of the universe. We
present a general algorithm for proving that quantified con-
straints are satisfied when the domains of all of the variables
are finite. We then describe a class of quantified constraints
for which we can efficiently prove satisfiability even when
the domains are infinite. These form the basis of constraint
reasoning systems that can be used by a variety of planners.

1 Introduction
Softbots (software robots) are intelligent software agents
that sense and act in an environment, such as a com-
puter operating system. Since software environments are
so rich, there is almost no limit to the kinds of tasks that
softbots can perform, including on-line comparison shop-
ping, managing email, scheduling meetings, and process-
ing data. Planner-based softbots (Etzioni & Weld 1994;
Golden 1997) accept goals from users and invoke a planner
to find a sequence of actions (e.g., commands or program
invocations) that will achieve the goal.

We are working on softbots for data processing, includ-
ing image processing, managing file archives, and running
scientific models. Due to the richness of softbot problem
domains in general, and data processing domains in particu-
lar, the planner must handle a rich action representation. In
particular, it must support:

• Universal quantification: Many commands and pro-
grams operate on sets of things, where membership in the
set can be defined in terms of necessary and sufficient con-
ditions. For example,

– The Unixls (or DOSdir) command lists all files in a
given directory.

– The “tar x” (or unzip) command extracts all files in
a given archive.

– The grep command returns all lines of text in a file
matching a given regular expression.

– Most image processing commands operate on all pixels
in an image or in a given region of an image.

• Incomplete information: It is common for softbots to
have only incomplete information about their environ-
ment. For example, a softbot is unlikely to know about
all the files on the local file system, much less all the files
available over the Internet.

• Large or infinite universes: The size of the universe is
generally very large or infinite. For example, there are
hundreds of thousands of files accessible on a typical file
system and billions of web pages publicly available over
the Internet. The number ofpossiblefiles, file path names,
etc., is effectively infinite. Given the presence of incom-
plete information and the ability to create new files, it is
necessary to reason about these infinite sets.

• Constraints: As noted in (Chienet al. 1997; Lansky &
Philpot 1993), data processing domains typically involve
a rich set of constraints. By constraints, we mean any
relations whose truth values can be computed.

The intersection of these features poses some interesting
challenges. For example, the intersection of universal quan-
tification and incomplete information means that standard
approaches to dealing with universal quantification in plan-
ning (Penberthy & Weld 1992) don’t work, and other ap-
proaches are needed (Golden 1998; Etzioni, Golden, & Weld
1997; Babaian & Schmolze 2000). This paper discusses the
effect of universal quantification and large or infinite uni-
verses on constraint reasoning and proposes a way to accom-
modate universally quantified constraints into a constraint-
based planner.

1.1 Universally quantified constraints

Universally quantified constraints can be exceedingly useful
when representing image processing domains. For example,
to represent an image-processing command that performs a
horizontal flip of the pixels in a rectangular region of an im-
age between (MINX , MINY ) and (MAXX , MAXY ), we might
write something like:

∀x,y when(MINX≤ x≤MAXX && MINY≤ y≤MAXY )
output.value(x,y) := input.value(MAXX +MINX -x,y)

whereoutput.value(x,y) is the pixel value of the imageout-
put at coordinatesx,y, and similarly for input.value. The
keywordwhen indicates a conditional effect. We might also
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want to specify spatial transforms of an image, such as scal-
ing or projections, or changes to color values. All of these
are convenient to represent using numeric constraints, quan-
tified over the pixels in the image or in the specified region.

In describing commands that act on text files, it is useful
to quantify over lines or characters of text. For example,
thegrep command outputs all lines of text contained in the
input that match a given regular expression:

∀line when (input.containsLine(line)
&& input.matches(regexp))

output.containsLine(line)

Similarly, many commands operate on sets of files, which
can often be expressed in terms of a regular expression sat-
isfied by their path names. For example, the files recur-
sively contained in directory “/foo/bar” all have a path name
matching “/foo/bar/.+”, where “.+” means “any string at
least one character long.”

In these examples, we see that it is necessary to reason
about constraints on variables with either infinite or very
large domains.

1.2 Road map
In the remainder of the paper, we discuss how universally
quantified constraints arise in the planning process and how
they are solved. In Section 2 we describe how universally
quantified constraints arise as subgoals in the planning pro-
cess. In Section 3 we present a general approach to solv-
ing universally quantified constraints in a constraint network
and an algorithm for implementing this approach, and we
prove that the algorithm is both sound and complete. The
general approach is not always possible to instantiate when
there are infinite domains. In Section 4 we describe how
to efficiently handle constraints with infinite domains un-
der certain restrictions. In Section 5, we discuss how these
techniques apply to an Earth Science domain that we are
working on, and in Section 6 we present a detailed example
covering both planning and constraint reasoning. In Section
7 we describe related work, and in Section 8 we conclude
and describe future work.

2 Planning with universal quantification
The traditional approach to planning with universal quantifi-
cation, used byUCPOP(Penberthy & Weld 1992) and other
planners works as follows:

1. Universally quantified goals are replaced with the equiva-
lent universally ground conjunctive goal, which is called
theuniversal base.

2. Universally quantified effects arepeeledas needed; that
is, given an effect

∀x when(P(x)) Q(x)

and a goal, Q(a), a new ground effect is “peeled off”
the forall effect to satisfy the goal:

when(P(a)) Q(a)

The result is the subgoal P(a).

Replacing goals with their universal base depends on the
Closed World Assumption (all objects must be known) and
on the number of objects in the universe being relatively
small. In softbot domains, neither assumption is likely to
be valid. For example, not all files accessible to the softbot
will be known, and the number of available files can eas-
ily be thousands or millions. To address the problem that
not all files are known, the softbot can first achieve a sub-
goal of knowing all the relevant files and then proceed as
above (Etzioni, Golden, & Weld 1997), but that still leaves
the problem that the number of files may be large. For ex-
ample, suppose the softbot has the goal of making all of the
files in the user’s home directory group readable. This goal
could be achieved by identifying all the files (recursively)
contained in the home directory “~user” and then ensuring
that each one is group readable, but it would take some time
just to identify all the files. It is much simpler and faster to
handle them all at once with a single Unix command, which
recursively makes all files in the directory group readable:

chmod -R g+r ~user

Such an approach is supported in thePUCCINI planner
(Golden 1998) by directly linking from universally quanti-
fied goals to universally quantified effects. The approach
used byPUCCINI presupposes that the goals and effects are
all expressed in terms of predicates, likegroup-readable, for
which entailment can be determined using simple unifica-
tion. When conditions include constraints as well as pred-
icates, determining entailment requires additional mecha-
nisms, as we discuss in Section 2.2.

2.1 Restrictions on universally quantified
expressions

Given the requirement to support universally quantified
goals directly with universally quantified effects, it is im-
portant to specify exactly what kinds of expressions the lan-
guage will allow, since the unrestricted case would require
first-order theorem proving, which is undecidable. In a goal,
the use of the keywordwhen indicates that the antecedent
and consequent refer to different times. For example, the
goalwhen(Φ(~x)) Ψ(~x) means that for all~x that satisfyΦ(~x)
when the goal is given(i.e., in the initial state), we want
Ψ(~x) to be truewhen the goal is achieved(i.e., in the final
state). Thus, we can specify goals like “paint all the blue
chairs green” without contradiction:

∀c: chair when (c.color = blue) c.color = green

The planner has no control of what is true in the initial state,
so it will never try to achieve the goal by falsifying the
antecedent. To borrow a term from contingency planning,
the antecedent specifies thecontextin which the consequent
should be achieved.

Effects All universally quantified effects are conditional
effects, in which the antecedent specifies restrictions on the
universe(s) of the quantified variable(s) and the consequent
specifies what will become true for members of the specified
universes. These effects are of the form

∀~x,~y (when(Φ(~x,~y,~w)) Ψ(~x,~w)).
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whereΦ and Ψ are conjunctive expressions and variables
in ~w areaction parameters, variables in action schemas that
need to be instantiated in order to obtain concrete actions.
Limiting Φ to a conjunction is not a real limitation, since an
expression of the form

when (Φ1∨Φ2) Ψ

can be rewritten as the conjunction of “when(Φ1) Ψ” and
“when(Φ2) Ψ.”

Effects cannot contain existential quantifiers,1 or any-
thing equivalent to existentials, such as universal quantifiers
nested within an antecedent or negation. Allowing existen-
tials or disjunctive consequents in effects would make them
non-deterministic. Given the lack of nesting and existentials,
all universals can be treated as free variables. All quantified
variables appearing inΨ must also appear inΦ. This is just
a sanity check, since the domain of any quantified variable
that does not appear inΦ is completely unrestricted.Φ may
contain additional quantified variables,~y, that don’t appear
in Ψ.

Goals and preconditions The syntax of universally quan-
tified goals and action preconditions is the same as that of
effects, except that existential quantifiers nested within the
universal quantifiers are allowed inΨ:

∀~x,~y,∃~z (when(Φ(~x,~y,~w)) Ψ(~x,~z,~w)).

All universal quantifiers precede all existential quantifiers;
this is simply the negation of Skolem Normal Form. Goals
can also explicitly refer to time. For example, we can ask
for data on last Tuesday’s rainfall. Whereas effects are not
really restricted compared to the commonly supported sub-
set of ADL (Pednault 1989), the limitations on universally
quantified goals are more restrictive. This particular set of
restrictions was chosen to support the class of goals required
for the softbot domains that interest us, while simplifying the
inference procedures.

2.2 Goal regression with quantified variables
The subgoaling, or goal regression, procedure we use is sim-
ilar to that used byPUCCINI. We use the peeling technique
outlined above, with the addition that quantified variables in
the effect can be replaced by quantified variables in the goal.
Suppose we have a goalwhen(Φg)Ψg that we want to satisfy
using an effectwhen(Φe)Ψe. If the right-hand side (RHS)
of a goalΨg contains multiple conjuncts, they are solved in-
dependently, so subgoals are all of the formwhen(Φg)ψg,
whereψg is a single literal. We rely on a unification func-
tion MGU(ψe,ψg), which returns the most general unifier
between the effect literalψe and the goal literalψg. If the
literals don’t unify, MGU returns⊥. Otherwise, it returns a
set of pairs{〈ve,vg〉}, whose interpretation is thatψe unifies
with ψg if all the constraintsve = vg are satisfied.

The Goal Regression Algorithm To determine the con-
ditions required for {when(Φe)Ψe} to satisfy the goal

1Effectscan introduce the creation of new objects, through the
new keyword, which is similar in some respects to an existential
quantifier, but that is outside the scope this paper.

{ when(Φg)ψg}, ψg is matched against each of the literals
ψe∈Ψe, using the following procedure.

1. regress ({when(Φe)ψe}, {when(Φg)ψg})
2. β =MGU(ψe,ψg)
3. C = {}
4. Φn := copy(Φe)
5. if β =⊥ then return failure
6. for each 〈ve,vg〉 ∈ β
7. if ve is quantified ∀
8. then replace ve in Φn with vg.
9. else if vg is quantified ∀
10. then return failure .
11. else C := C ∧ (ve = vg).
12. end for
13. for each ve 6∈ β
14. replace ∀ve in Φn with ∃v′e
15. end for
15. return {when(Φg)Φn}∧C

The reason that unmatched universally quantified variables
can be replaced with existentials (line 14) is as follows:
since the effect occurs for allv that satisfyΦ, andv isn’t
mentioned in the goal, it is only necessary to findsomevalue
of v that satisfiesΦ. Any new∃ variables are written inside
the scope of all∀ variables from the goal.2

Examples of Goal Regression We will now present some
examples of goal regression. Suppose that we have an action
to give a Mothers’ Day card to all new mothers:

∀p1, p2:person when(p1 =parent(p2) &&
sex(p1) = F && age(p2) < 1)

has-card(p1)

and our goal is to give a card to Mary (i.e., has-card(Mary)).
Applying this action to satisfy the goal will result in the sub-
goal

∃p′2:person (Mary = parent(p′2) &&
sex(Mary) = F && age(p′2) < 1)

That is, the action will achieve the goal if Mary is female
and has a child less than one year old.

Now suppose our goal is to give a card to all mothers of
newborn boys:

∀m,s:person when(m=parent(s)
&& sex(m) = F
&& sex(s) = M && age(s) = 0)

has-card(m)

If we use the action to give a card to all new mothers, the
subgoal then becomes

∀m,s:person when(m=parent(s)
&& sex(m) = F
&& sex(s) = M && age(s) = 0)

{m=parent(s); sex(m) = F; age(s) < 1}

2For completeness, it is also necessary to determine whether
two or more effects combine to achieve a universally quantified
goal. A technique called goal partitioning (Golden 1997), provides
this ability, but at a high computational cost. We are investigating
a way to lower this cost, but that is outside the scope of this paper.
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Note that the left hand side of this expression is just the
left-hand side of the original goal, and the right hand side
is the “peeled” left hand side (LHS) of the effect. All sub-
goals from conditional effects are generated the same way,
so the same LHS expression is carried back through succes-
sive goal regressions.

The right-hand side (RHS) literalsm =parent(s) and
sex(m) = F are clearly entailed by the LHS, which we can
determine by unification, using a slight variation on the re-
gression procedure above. When the LHS entails a literal on
the RHS, we say that the goal literal istrivially satisfied, and
remove it without further subgoaling.

The remaining goal condition, a constraint, is not so
straightforward. Although age(s) = 0 clearly entails age(s)
< 1, the two do not unify. As we discuss below, the pur-
pose of reasoning about universally quantified constraints is
to answer the entailment question for constraints.

The Form of Subgoals Subgoals are just goals, and obey
the same restrictions. However, since subgoals are generated
through a specific process, outlined above, it is worth show-
ing that the process maintains the restriction on the form of
subgoals.

• Since the subgoaling process always copies the LHS of
the goal to the LHS of the subgoal, all restrictions obeyed
by the former are obeyed by the latter. In particular, the
LHS is conjunctive and it must not contain existentials.

• The RHS of the subgoal comes from the (peeled) LHS of
the effect. Since the latter is conjunctive, so is the former.

• Quantified variables appearing in the RHS but not in the
LHS are existential. To see why, consider that every quan-
tified variable that appears in the RHS either originated in
the goal or is a copy of a variable from the effect.

1. If the variable appeared in the goal, then it cannot have
been in the LHS of goal, since otherwise it would be in
the LHS of the subgoal, contradicting our assumption.
Since it was not in the LHS of the goal, it must be an
existential.

2. If the variable came from the effect, then it must be an
existential, since, as indicated in line 14 of the regres-
sion algorithm, all universals in the effect that aren’t
replaced by variables from the goal are replaced by ex-
istentials.

2.3 From planning to constraints
In the remainder of the paper, we discuss how to tell if the
LHS of a universally quantified subgoal entails the RHS
when both sides contain constraints. We will not concern
ourselves further with the details of the planning algorithm.
We can convert the whole planning problem into a constraint
problem, but it would also be possible to use a causal-link
planner likePUCCINI (Golden 1998), and perform constraint
reasoning to answer questions about whether certain sub-
goals are trivially satisfied (i.e., the LHS entails the RHS).
In either case, we can separate the problem of solving con-
straints to check subgoal satisfaction from the rest of the
planning problem.

We assume that the planner produces candidate plans that
are complete except for the instantiation of some action pa-
rameters and are correct subject to a list of subgoals being
“trivially” satisfied (i.e., no more actions need to be inserted
into the plan). The planner sends the constraint reasoner this
list of subgoals, which are of the form

∀~x,~y,∃~z (Φ(~x,~y,~w)⇒ Ψ(~x,~z,~w))

along with some additional constraints on the parameters.
The job of the constraint network is to either return an as-
signment to all of the unspecified parameters (~w) such that
all of the subgoals are trivially satisfied, or return failure
in case there is no such assignment. If the constraint net-
work returns failure then the candidate plan is invalid, so the
planner should continue searching. Otherwise, the candi-
date plan, instantiated with the values for~w returned by the
constraint network, is a valid plan.

3 Solving Quantified Constraints
In order to determine whether the subgoals are trivially sat-
isfied, it is necessary to reason about the solutions to the
CSPs induced byΦ andΨ. Before proceeding, we review
some standard CSP notation. LetX be a set of variables.
Denote the domain ofx∈ X asd(x). Let D be the set of do-
mains. Letk = (x1 . . .xi . . .xn;R) be a constraint;xi ∈ X and
R⊆ d(x1)× . . .×d(xn) is a relation definingthe permitted
assignments to the variables. LetK be the set of constraints.
ThenC(X) = (X,D,K) is a CSP. Asolution to the CSP is
an assignment of values to the variables such that all con-
straints are satisfied. LetS(C) be the set of solutions toC.
Let L be a relation on a set of variablesU , and letπV(L)
be the projection of the relationL onto the setV ⊆U . A
CSP isk-consistentif any consistent assignment to k-1 vari-
ables can be extended to an assignment to k variables (k=2
is arc consistency.) A CSP isstrongly k-consistentif it is
j-consistent for all j≤k.

Having reviewed these definitions, we now formally de-
fine quantified constraints:

Definition 1 Let Φ,Ψ be CSPs. We then refer to a subgoal
∀~x,~y∃~z(Φ(~x,~y,~w)⇒ Ψ(~x,~z,~w)) as a quantified constraint,
and refer to the constraints comprisingΦ,Ψ as primitive
constraints. A quantified constraint issatisfiedfor ~w =~θ iff
π{~x}S(Φ(~x,~y,~θ))⊆ π{~x}S(Ψ(~x,~z,~θ)).

The general approach to solving quantified implications is
straightforward. Given an expression of the form “all things
that satisfyΦ also satisfyΨ,” we identify the set of things
that satisfyΦ and check whether they also satisfyΨ. We can
think of this as an empirical proof technique: we’re doing
nothing more than checking the validity of the expression
for all members of the universe.

Given a quantified constraint

∀~x,~y∃~z(Φ(~x,~y,~w)⇒Ψ(~x,~z,~w)),

the variables in~w must be assigned values by a search pro-
cedure. As mentioned in Section 2, these variables repre-
sent the parameters of actions; the search over these values
is a search over candidate plans. During this search, we can
propagate the domains of the variables in~x,~ybased onΦ, but
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do not assign these variables. We do not propagate based on
the constraints inΨ, because these constraints do not hold
if the domains of the variables inΦ are empty. Once all of
these variables are assigned, we are left with the constraint

∀~x,~y∃~z(Φ(~x,~y)⇒Ψ(~x,~z)),

where~x represents one or more universally quantified vari-
ables common toΦ andΨ. Again, as described above, the
desired semantics of this implication is that everything sat-
isfying Φ also satisfiesΨ. Thus, we must identify the set
of tuples corresponding to the assignments to~x that satisfy
Φ(~x,~y), and check that each tuple also satisfiesΨ(~x,~z). To
do this, we solve bothΦ(~x,~y) and Ψ(~x,~z) for ~x. We then
check to see ifπ{~x}S(Φ(~x,~y)) ⊆ π{~x}S(Ψ(~x,~z)). Because
the quantified constraint takes the form of an implication,
if the set of solutions toΦ is empty, then the implication
is satisfied vacuously, and there are no constraints on the
values of the variables in~x . If there are solutions toΦ
butπ{~x}S(Φ(~x,~y)) 6⊆ π{~x}S(Ψ(~x,~z)), then the quantified con-
straint is not satisfied, and some other assignment to the vari-
ables in~w must be generated. Otherwise, the constraint is
satisfied, and the domains of~x are defined by the the restric-
tions imposed byΦ.

If the set of tuples satisfyingΦ is finite, then enumerat-
ing them and checking that each one of them satisfiesΨ is
relatively straightforward, though possibly time consuming.
But what if the set is infinite? In the general case, there is
nothing that can be done. However, as we will see, there are
some useful classes of problems where it is possible to iden-
tify the infinite set of tuples satisfyingΦ(~x,~y) and check that
they all satisfyΨ(~x,~z) using efficient constraint propagation
techniques.

It should be noted that the steps presented above can be
done in a variety of ways. There is no need to assign all
variables in~w before beginning the process of identifying
the domain of~x. It is also possible to fix the domains of~x
after solvingΦ before solvingΨ and only check to see if any
elements of these domains are eliminated during the solving
of Ψ. These refinements are left as future work.

We present an algorithm for proving that quantified con-
straints are satisfied. The only assumptions are that there is
a way of enumerating the variables in~w, and that there is
some way of representing the values satisfyingΦ(~x,~y) and
Ψ(~x,~y). In the following sections, we discuss specific tech-
niques for performing these operations.

1. isSatisfied(γ)
2. choose assignments for all variables ~w.
3. for (each(∀~x,~y,∃~z.Φ(~x,~y)⇒Ψ(~x,~z)) ∈ γ)
4. if (S(Φ(~x,~y)) 6= /0)
5. for (each ~α ∈ π{~x}S(Φ(~x,~y)))
6. if (~α 6∈ π{~x}S(Ψ(~x,~y)))
7. return failure .
8. end for
9. end for
10. return success .

We now prove that the algorithm is both sound and com-
plete:

Theorem 1 The algorithm for checking the satisfiability
of quantified constraints is sound: it will not return suc-
cess if, for any quantified constraint,∀~x,~y,∃~z.Φ(x,~y,~w)⇒
Ψ(~x,~z,~w), there is some assignment~α to ~x such that
∃~y,∀~z.Φ(~α,~y,~w)∧¬Ψ(~α,~z,~w).

Proof: Suppose otherwise. Then there is some some~α
such that∃~y,∀~z.Φ(~α,~y,~w)∧¬Ψ(~α,~z,~w). The algorithm will
only return success if eachwi ∈ ~w is singleton, andline 7 is
not reached. This happens if

1. There are no quantified constraints (line 3). This contra-
dicts the assumption that there is such a constraint.

2. S(Φ(~x,~y,~w)) = /0 (line 4). This is equivalent to sayingΦ
is false for all~x, contradicting our assumption that there
was some~α for which Φ was true.

3. S(Φ(~x,~y,~w)) 6= /0 and there is no~α such that~α ∈
π{~x}S(Φ(~x,~y,~w)) and~α 6∈ π{~x}S(Ψ(~x,~y,~w)) (lines 5,6).
That is, there is no~α such that ∃~y.Φ(~α,~y,~w) and
∀~z.(¬Ψ(~α,~z,~w)), contradicting the assumption that
∃~y,∀~z.Φ(~α,~y,~w)∧¬Ψ(~α,~z,~w).

Theorem 2 The algorithm for checking the satisfiability of
quantified constraints is complete: If, for all quantified con-
straints,∀~x,~y,∃~z.Φ(x,~y,~w)⇒Ψ(~x,~z,~w), then the algorithm
returns success.

Proof: Suppose the algorithm returns failure, but for
all quantified constraints,∀~x,~y,∃~z.Φ(x,~y,~w) ⇒ Ψ(~x,~z,~w).
The algorithm will return failure if there is some quan-
tified constraint for whichS(Φ(~x,~y,~w)) 6= /0 and ~α ∈
π{~x}S(Φ(~x,~y,~w)) but ~α 6∈ π{~x}S(Ψ(~x,~z,~w)) (line 6). But
then π{~x}S(Φ(~x,~y,~w)) 6⊆ π{~x}S(Ψ(~x,~z,~w)), which in turn
violates the assumption that for all quantified constraints,
∀~x,~y,∃~z.Φ(x,~y,~w)⇒Ψ(~x,~z,~w).

Complexity Let nΦ be the number of variables inΦ and
let dΦ be the size of the largest domain of any variable in
Φ. DenotenΨ anddΨ similarly. The complexity of the algo-
rithm is O((dΦ)nΦ +(dΨ)nΨ), because checking the satisfia-
bility of the constraints potentially requires enumerating the
solution space for both CSPsΦ,Ψ.

4 Handling infinite universes
The general approach discussed in Section 3 works for rel-
atively small, finite domains. To handle large or infinite do-
mains efficiently, we need to employ special-case constraint
propagation techniques. We describe one such technique in
detail in this section.The technique depends on being able
to represent infinite domains concisely. In Sections 4.1 and
4.2, we discuss concise representations of infinite domains
for numbers and strings, and describe classes of constraints
for which these concise representations can store the valid
domains exactly. In Section 4.3, we describe further restric-
tions on the form of the quantified constraints that allow us
to check the satisfiability of these quantified constraints effi-
ciently, even if the variable domains are infinite.
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Figure 1: Reasoning about numeric functions and relations

4.1 Numeric domains
Large or infinite sets of numbers can be represented con-
cisely using intervals. Additionally, we can determine
whether one interval contains another efficiently. If we as-
sume that all infinite numeric domains are represented as
single intervals, the question of whether the domain of a
numeric variable can represent exactly the possible values
allowed by a constraint reduces to the question of whether
the values for that variable allowed by the constraint can be
represented as an interval. Assuming that the domains of
the other variables in the constraint are also represented as
intervals, the question then becomes whether the projection
of an interval on one variable is an interval on another. We
will consider both continuous (real) and discrete (integer)
domains.

Continuous If the domain ofx is continuous, then for ev-
ery continuous functiony = f (x), if the domain ofx is an in-
terval, the domain ofy will also be an interval. The converse
is not necessarily true. However, the converse is true iff
is either non-decreasing or non-increasing. Iff (x) increases
and decreases inx, then there will be somey interval that
corresponds to multiplex intervals (Figure 1a). However, if
they interval obeys certain restrictions, then the domain of
x will still be an interval. In particular,

• neither of the horizontal lines representing the bounds of
the y interval may crossf more than twice. Crossing
twice corresponds to passing through one peak or trough
in f .

• if one of the lines passes through a peak, the other line
must be above the peak (Figure 1b), and if one line passes
through a trough, then the other line must be below the
trough.

We can apply the same sort of reasoning to relations (Figure
1c); however a special class of relations is worth noting. If
any relation defines a convex region (Figure 1d), such that

the relation is true for all points inside the region and false
for all points outside it, then the projection of any interval
on y will be an interval onx (or vice versa). Examples of
convex regions are:x< 10,y> 2x+1, x2 +y2≤ r2.

Continuous to discrete A function from a continuous
(real) variable to a discrete (integer) variable is by defini-
tion not a continuous function. However, it may be regarded
as a continuous function whose range is projected onto the
integer number line. If such a description is valid, then the
projection of any continuous interval onx will be a discrete
interval ony. Going the other direction, intervals ony will
map to intervals onx under the same circumstances as in
the fully continuous case: non-decreasing functions, non-
increasing functions, and relations defining convex regions.

Discrete A function whose domain is discrete will not, in
general, project an interval onto another interval. For ex-
ample, consider the simple case ofy = 2x, wherex andy
are integers. The domain ofy is the set of even numbers,
which cannot be represented as an interval. However, when
we consider relations defining convex regions, we again find
that the projection of an interval is an interval. So although
y = 2x does not give an interval,y≤ 2x does.

Other domain representations The decision to represent
a numeric domain using a single interval has had a profound
impact on the class of constraints that we can “solve” for
particular variables. Another representation, such as a fi-
nite set of intervals, would allow additional constraints to
be handled, though at the cost of additional complexity in
constraint execution.

4.2 String domains
Just as infinite sets of numbers can be represented by inter-
vals, infinite sets of strings can be represented by regular
expressions. Regular expressions are a much more flexible
representation than intervals, in that the set of regular ex-
pressions is closed under intersection, union and negation,
whereas the set of intervals is only closed under intersec-
tion. Regular expressions (regexps) are equivalent to finite
automata (FAs) in expressive power, and in fact we repre-
sent regexps as FAs, since the latter are easier to compute
with. For example, deciding whether two FAs accept the
same language can be done efficiently.

Concatenation The concatenation of two strings,x andy,
yields another string,z. This constraint is represented as
z= x+ y. If the domains ofx andy are regexps, the domain
of z will simply be the regexp resulting from concatenating
the regexps forx andy.

Less obviously, if the domains ofx andz are regexps, the
domain ofy is a regexp. To construct an FA fory given FAs
for x andz, we in effect traverse the FAs forz andx in par-
allel, exploring the cross-product of the nodes from the two
FAs, starting with the pair of initial states and adding a tran-

sition{sn, tm}
lab→{sp, tq} from every node{sn, tm} and every

labellab such that the transitionssn
lab→ sp andtm

lab→ tq appear
in the original FAs (see Figure 2). This is simply the opera-
tion that is performed when intersecting two FAs. Whenever
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Figure 2: Given FAs for RE1 and RE3, find an FA for RE2
such that RE3 is concatenation of RE1 and RE2. First, tra-
verse FAs for RE3 and RE1 in parallel, constructing cross-
product FA (upper right). Then, identify states that are ac-
cept states for RE1 and mark the corresponding states in the
FA for RE3 (shaded circles). Construct a new NFA (bottom)
for RE2 by copying FA for RE3 and making marked nodes
start nodes.

we reach a node{s, t}, such that nodes is an accept state in
the FA forx, we mark nodet. After the traversal is complete,
the marked nodes in the FA forz represent all of the states
that can be reached by reading a string accepted byx.

A new nondeterministic FA (NFA) fory is constructed by
copying the FA forz, making the start node a non-start node
and making all the marked nodes new start nodes. The com-
plexity of the whole operation is dominated by generating
the cross-product FA (O(mn), wheremandn are the number
of nodes in the FAs forx andz, respectively). A similar pro-
cedure can be used to construct an NFA forx, given FAs for
y andz.

Note that, in Figure 2, the FA for RE3 does not yet reflect
the concatenation constraint. That is, RE3 accepts strings,
such as bbaba, for which RE1 is not a prefix. When the con-
straint is enforced for all three variables, RE3 = aba | baba.
It doesn’t matter what order the variables are considered.

Containment The relation contains(a, b) means that
string b is a substring ofa. If the domain ofb is a regexp
r, then the domain ofa is simply the regexp “.*r.*”, where
“.” means “accept any character,” so “.*” means “accept any
string of zero or more characters.” Less obviously, if the do-
main ofa is a regexp, then so is the domain ofb. Given an
FA for a, we can construct an NFA forb by eliminating any
dead-end nodes froma (that is, nodes from which it is im-
possible to reach an accept node), and then making all nodes
in a both start and accept nodes.

4.3 Tractable Reasoning
In the previous sections we established that we can enforce
consistency on a variety of constraints, even when the do-
mains are infinite. We now show how to use these results
to demonstrate that a quantified constraint is satisfied. In
order to do this, we need some additional definitions. Let
C(X) be a CSP. Consider the hypergraphGC, where the ver-

tices of GC are the variables ofC and the hyperedges are
the constraints. Assume we have imposed a total ordero on
the variablesX. Freuder (Freuder 1982) defines thewidth
of a variablex ∈ X induced by orderingo as the number
of variables earlier in the ordering that are in the scope of
a constraint onx. The width of an orderingo is the maxi-
mum width of any variable induced by the orderingo, and
the width of a CSP is the minimum width over all orderings.

We restate the following theorem from (Freuder 1982)
without proof:

Theorem 3 Let C be a CSP. If C is strongly k-consistent and
the width of C is< k, then there is a variable order that will
result in a backtrack-free search for a solution to C.

We can now prove the following:

Corollary 1 Let C be a CSP and assumeC is strongly k-
consistent and the width of C is w< k. Let x be the first
variable in a search order inducing a width of w< k. Then
d(x) = πx(S(C)).

Proof: We will show that each element ofd(x) can be
extended to a solution toC. For eachα ∈ d(x), make the
assignmentx = α. Consider the assignment of any variable
y. Now, since the width ofC is w< k, we know that when
we use a variable ordering that induces a widthw< k, fewer
thank variables sharing constraints withy are assigned be-
fore assigningy. Further, since we also know thatC is
strongly k-consistent, any consistent assignment of fewer
thank variables can always be extended by one assignment.
Thus, we can continue assigning variables without failure
until all variables are assigned, regardless of the initial as-
signment tox.

Theorem 4 Let ∀~x,~y,∃~z.Φ(x,~y,~w)⇒ Ψ(x,~z,~w) be a quan-
tified constraint such that:

1. Φ and Ψ share one universally quantified variable x
whose domain is infinite, and x and any other infinite do-
main variables are only involved in constraints for which
strong k-consistency can be enforced.

2. Φ andΨ are strongly k-consistent.
3. There exists an ordering o1 such thatΦ has width w< k

induced by o1 and x is the first variable in the order.
4. There exists an ordering o2 such thatΨ has width w< k

induced by o2 and x is the first variable in the order.

Then the quantified constraint is satisfied if and only if
dΦ(x)⊆ dΨ(x).

Proof: Since x is the only universally quantified vari-
able shared betweenΦ andΨ, we only need to check that
π{x}S(Φ(x,~y,~w)) ⊆ π{x}S(Ψ(x,~z,~w)). Since we have as-
sumedΦ andΨ are k-consistent, and that each has an or-
dering that induces width less thank, the previous theorem
allows us to conclude that all values of the first variable in
the ordering are part of the solution space. But we have also
assumed that, for both orderings, that variable isx. Thus,
π{x}S(Φ(x,~y,~w)) = dΦ(x) and π{x}S(Ψ(x,~z,~w)) = dΨ(x),
and we are done.

We are now confronted with the problem of establishing
strong k-consistency. For CSPs with variables with infinite
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domains, arc-consistency can be enforced on tree-structured
(width 1) CSPs in polynomial time, but no stronger result
is known. In the case of finite domains, Freuder (Freuder
1990) has shown that, for certain families of CSPs called
k-trees, strong k-consistency can be established in polyno-
mial time in the number of variables. Our current imple-
mentation maintains strong k-consistency for primitive k-ary
constraints over infinite numeric or string domains but only
maintains arc consistency globally. Thus, we limit our atten-
tion to tree-structured CSPs.

Universally quantified constraints with infinite domains
can be solved in time polynomial in the number of vari-
ables, but it is also necessary to consider the cost of com-
puting the domain for each variable. In the case of numeric
constraints, this cost is generally trivial, consisting of a few
arithmetic operations. In the case of string domains, the cost
depends on the size of the regular expressions representing
the domains. Given two domains represented by FAs of size
m andn, intersection of the two domains is O(mn), union
is O(m+ n), negation is O(m), and enforcement of the con-
straints discussed in Section 4.2 is at worst O(mn). However,
some of these operations produce NFAs as outputs, and oth-
ers require deterministic FAs (DFAs) as inputs. Converting
from an NFA to a DFA can result in an exponential increase
in the size of the FA.

5 Applicability
We have implemented this approach in a constraint-based
planner and are applying it to an Earth Science data process-
ing domain that involves a mixture of image processing, text
processing and other operations. Preliminary results indicate
that the assumptions we make in this paper are valid for this
domain. There are two main assumptions that potentially
limit the applicability of our approach.

1. Constraints can be fully captured by the domain represen-
tation. This is really only a limitation for numeric con-
straints, since every string constraint in the domain can be
captured fully using regexps. Most numeric constraints
that appear in universally quantified expressions repre-
sent either convex regions of images or functions from
real-valued measurements to integral pixel values. These
constraints all obey this restriction.

2. The width of the constraint network defined by quanti-
fied constraints must less than the level of consistency
enforced, and the left and right hand sides must share at
most one quantified variable. This is a more serious lim-
itation. Since the nature of the quantified constraints is
dictated by quantified goals, it is possible to formulate
goals that violate this restriction. Since the set of goals
is open, we can’t draw any conclusions about which goals
are common without extensive user tests. On the other
hand, in most goals we have looked at, quantified con-
straints result in tree-structured CSPs that trivially obey
our assumptions.

6 An Image Processing Example
In this section, we illustrate the entire planning process, in-
cluding generating subgoals through regression, determin-

ing entailment through unification and computing entail-
ment for universally quantified constraints with infinite do-
mains.

Suppose we have a grayscale image corresponding to the
elevation over some region:

plot.xSize = XMAX;
plot.ySize = YMAX;
∀x,y: unsigned,el: real.

when(x < XMAX && y < YMAX &&
el=elevation(xProj(x),yProj(y)))

plot.value(x, y) = hProj(el)

where words in ALL CAPS are constants,xProj andyProj
are linear functions mapping thex, y coordinates of the im-
age to the corresponding longitude, latitude that they rep-
resent,hProj is a linear function mapping elevation to pixel
values in the image, with lower (blacker) values correspond
to lower elevations, andelevation(x, y) is the elevation at lon-
gitudex, latitudey. The notationplot.xSize denotes the hor-
izontal size of the imageplot, andplot.value(x, y) means
the pixel value at the coordinatesx,y in the imageplot.

Say we would like to produce a color image showing the
same elevations, but highlighting particular ranges of eleva-
tion using different colors. For example, pixels correspond-
ing to points below sea level should be blue and points above
the snow line should be shades of gray.

One way to accomplish this would be by creating bitmaps
or monochrome images corresponding to the the pixels of
interest (i.e., pixels above or below a particular value), and
using these bitmaps to select the pixels on which particular
operations, like coloring the pixels blue, will be performed.
Suppose we have athreshold command, which takes an
image,in, as input and has an argument specifying a thresh-
old value, and outputs an image,out, the same size as the
input, with a value of 255 for every pixel in the input whose
value is above the threshold and a value of zero for every
pixel below the threshold:

∀x,y: unsigned,v: pixelValue
when ( x < in.xSize && y < in.ySize &&

v = in.value(x, y) )
when(v≤thresh) out.value(x,y) := 0;
when (v>thresh) out.value(x,y) := 255;

wherethreshis an action parameter of type pixelValue (i.e.,
a variable from~w) denoting the threshold value, and a pix-
elValue is an integer in the range[0,255]. The use of nested
when statements is merely a shorthand, where “when (Φ1)
{ when (Φ2) Ψ}” is equivalent to “when (Φ1∧Φ2) Ψ}.”
Here, we focus on a single subgoal that arises during plan-
ning: to generate a threshold map,sea, based on elevation at
sea level:

∀x′,y′:unsigned,elev: real.
when(x′<XMAX && y′<YMAX &&

elev=elevation(xProj(x′),yProj(y′)))
when (elev > 0) sea.value(x,y) = 255;
when (elev ≤ 0) sea.value(x,y) = 0;

Regressing this subgoal through thethreshold action, we
get:
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∀x′,y′:unsigned,elev: real,∃v′:unsigned
when(x′<XMAX && y′<YMAX &&

elev=elevation(xProj(x′),yProj(y′)))
x′ < in.xSize;
y′ < in.ySize;
v′ = in.value(x, y);
when (elev > 0) v′>thresh;
when (elev ≤ 0) v′≤thresh;

We try to satisfy this goal using the initial state; specifically,
letting the imagein be plot.

∀x′,y′:unsigned,elev: real∃v′: unsigned∃el′:real
when(x′<XMAX && y′<YMAX &&

elev=elevation(xProj(x′),yProj(y′)))
x′ < XMAX;
y′ < YMAX;
v′ = hProj(el′);
el′ =elevation(xProj(x’),yProj(y′)));
in =plot;
when (elev > 0) v′>thresh;
when (elev ≤ 0) v′≤thresh;

The subgoalel′ =elevation(xProj(x′),yProj(y′))) is trivially
satisfied by unification ifel′ =elev. The subgoalsx′ <
XMAX and y′ < YMAX are also trivially satisfied. This
can be determined easily by quantified constraint reasoning:
The domain ofx′ established by the LHS is [0,XMAX-1],
and the same domain is established by the RHS. Removing
the satisfied terms, we get:

∀x′,y′:unsigned,elev: real∃v′: unsigned∃el′:real
when(x′<XMAX && y′<YMAX &&

elev=elevation(xProj(x′),yProj(y′)))
v′ = hProj(el′);
el′=elev ;
when (elev > 0) v′>thresh;
when (elev ≤ 0) v′≤thresh;

which, simplified to it essence, gives us the following two
quantified constraints.

∀e1: real. (e1 > 0)⇒(hProj(e1)>thresh)
∀e2: real. (e2≤ 0)⇒(hProj(e2)≤thresh)

Recall thathProj is an increasing linear function. Assume
hProj(e)=0.05e+42. Note that although the domain ofhProj
is unbounded, the range is[0,255], so all values ofe below
-840 map to 0, and all values above 4260 map to 255. Since
we map real values onto integers, we will always round up.

These constraints share the parameterthresh, which needs
to be assigned a value. As discussed above, there are a num-
ber of possible variable ordering strategies we could employ,
the default being to choose a value forthreshand then see
if the quantified constraints are satisfied. Say we pick the
value 43. Let’s tackle the constraint one1 first. Enforc-
ing the LHS constraint sets the domain ofe1 to the interval
(0,∞). On the RHS, propagating the value ofthreshsets the
domain ofhProj(e1) to [44,255]. The domain ofe1 then be-
comes(20,∞). Since the domain ofe1 is not the same as it
was according to the LHS, the constraint is violated, so 43
is not a valid assignment tothresh.

Now say we pick 42. Once again, the domain ofe1 is
(0,∞) . This time, propagatingthreshin the RHS makes the

domain ofhProj(e1) [43,255], resulting in a domain fore1
of (0,∞), which is consistent with the LHS, so we proceed
to the other forall constraint. Enforcing the LHS sets the do-
main ofe2 to the interval(−∞,0]. Propagating the value of
threshin the RHS sets the domain ofhProj(e2) to [0,42], re-
sulting in a domain of(−∞,0] for e2. Both forall constraints
are consistent.

An alternative to branching on values ofthreshwould be
to leave it unassigned and see if we can narrow down the
choices through propagation. Working on the constraint on
e1 first, we enforce the LHS constraint, setting the domain of
e1 to the interval(0,∞). Propagating the value ofe1, the do-
main ofhProj(e1) is then[43,255] and the domain ofthresh
is [42,255]. Since enforcing the RHS constraints did not
shrink the domain ofe1, the first implication is valid so far.
Enforcing the LHS of the second constraint sets the domain
of e2 to the interval(−∞,0]. Enforcing the RHS sets the
domain ofhProj(e2) to [0,42] and restricts the domain of
threshto the singleton 42. The domain ofe2 did not shrink,
and the reduction of the domain ofthreshdid not shrink the
domain ofe1, so both implications hold, and the only valid
parameter choice is 42, which ishProj(0), the pixel value
corresponding to sea level.

7 Previous Work
Other planners, including (Golden, Etzioni, & Weld 1994;
Golden 1998; Babaian & Schmolze 2000) also support uni-
versal quantification. The universally quantified statements
in PSIPLAN (Babaian & Schmolze 2000) can include in-
equality constraints, which are used to exclude individuals
from the universe of discourse. However, no prior planning
systems support the ability to determine the validity of uni-
versally quantified constraints that we discuss here.

The Amphion system (Stickelet al. 1994) was designed
to construct programs consisting of calls to elements of a
software library. Amphion is supported by a first-order theo-
rem prover. The task of assembling a sequence of image pro-
cessing commands is similar to the task Amphion was de-
signed to solve. However, the underlying representation we
present here is a subset of first-order logic, enabling the use
of less powerful reasoning systems. The planning problem
we address is considerably easier than general program syn-
thesis in that action descriptions are not expressive enough
to describe arbitrary program elements, and the plans them-
selves do not contain loops or conditionals.

Ginsberg and Parkes (Ginsberg & Parkes 2000) point
out that the satisfiability encoding of many STRIPS plan-
ning problems requires creating multiple grounded instances
for axioms of the form∀xyz.(a(x,y) ∧ b(y,z) ⇒ c(x,z),
then performing search over the truth values for all of the
grounded instances. They propose a formulation in which
a(x,y)),b(y,z) andc(x,z) are constraints on variablesx,y,z
and use this formulation to either search for units or find
good variables to flip in local search. This is a different re-
striction on first-order logic from that we use, and further-
more, the domains ofx,y,z are implicitly assumed to be fi-
nite.

L’Homme (L’Homme 1993) and Marriott and Stuckey
(Marriott & Stuckey 1998) both describe methods of pre-
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serving an interval representation of variables involved in
arithmetic constraints while eliminating infeasible values.
However, they explicitly assume that the interval representa-
tion is an unsound approximation to the domain of feasible
values. Benhamou and Goualard (Benhamou & Goualard
2000) describe a method of sound but incomplete approxi-
mate propagation of infinite domains. Since we require both
soundness and completeness in cases where that set may be
infinite, we have made stronger restrictions on the types of
reasoning performed.

8 Conclusions and Future Work
We have described a planning methodology for softbots
that supports universal quantification, incomplete informa-
tion, and constraints on variables with very large or infinite
domains. We restrict the form of both goals and effects,
while preserving the ability to express conditional effects
and reason about incomplete information. Our approach
uses a combination of unification and constraint reasoning
to demonstrate entailment. We described an algorithm for
proving or disproving entailment for constraints over finite
domains, and identified a subclass of constraints for which
the same algorithm can prove or disprove entailment for
variables with infinite domains. This class of constraints has
proven useful in the domains of planning for image process-
ing and managing file archives.

When describing the algorithm to validate quantified con-
straints, we assumed that all parameters of the actions were
assigned before validation occurs. As described in Section
6, there are times when it is worth deferring the decision
about parameters to actions, because propagation will limit
the possibilities. Exploiting these possibilities is the subject
of future work.

We can potentially weaken the conditions on quantified
constraints required to reason about variables with infinite
domains.The condition thatΦ andΨ share only one vari-
able can be relaxed when there is a procedure for check-
ing the validity of the constraint without checking infinitely
many values. One case is when all of the constraints de-
scribe linear equations or inequalities. In addition, it may
be possible to generalize theconditions under which consis-
tency enforcement allows us to conclude that all the values
of a variable participate in solutions to a CSP. Finally, we
can try to find more constraints on which we can enforce
consistency when domains are infinite.
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 Abstract 
Planning is a field of interest in many scientific disciplines. 
The ambition of this theoretical paper is to offer a 
conceptual structure underlying the various planning 
approaches. Although we value diversity, we believe that a 
general perspective on planning should contain the 
following distinctions. Planning implies modeling a plan 
and making a plan. Furthermore, planning can be done for 
yourself or for others. Finally, the planning entity can be a 
natural, artificial, or organizational agent (actor). In this 
paper we explain these distinctions in greater detail. The 
basic inspiration is our belief that planning in the real world 
deserves the use of various research fields in planning and 
vice versa.  

1. Introduction 
In the past decades, planning has been subject of research 
in several scientific areas. These scientific areas cover a 
multitude of planning approaches that at first sight do not 
have much in common: psycho-physiological analysis, 
organizational science, linguistics, cognitive science, 
operations research, and spatial science, to name just a 
view. Still, no matter the research field, planning always 
concerns anticipating on the future and determining 
courses of action, so at some level, there must also be 
similarities between the various approaches that deal with 
planning. In this paper, we will show that planning is 
always essentially similar, and that apparent different 
approaches are not as different as they seem to be. 
 First, in section 2, we discuss what planning is. Section 
3 describes how planning can be modeled generically. 
Section 4 describes a number of characteristics of 
planning. These characteristics can be used as a first 
starting point to compare planning approaches. This is 
taken up in section 5 where we provide a short overview of 
some planning approaches that are predominant in 
literature. Section 6 summarizes our perspective that 
planning approaches are more similar than that they are 
different. 

2. Definition of planning 
Where will we go and how do we get there? This question 
is an inherent part of the functioning of humans and 
organizations. The ability to anticipate and plan is usually 
seen as a required and perhaps even essential feature of 
intelligent systems. It is the fundament of goal directed 
behavior; systems that pursue goals need to take the future 
into account. 

Intelligent systems use predictive models to behave 
anticipatory rather than reactively. An anticipatory system 
is “a system containing a predictive model of itself and/or 
its environment, which allows it to change a state at an 
instant in accordance with the model’s predictions 
pertaining to a later instant” (Rosen, 1985). Our definition 
of planning will be built around this definition of 
anticipatory systems, by distinguishing four elements. 
 First, it is important to acknowledge that some entity 
must make the plan. Note that all kinds of entities can 
make plans, for example, humans, robots, computer 
programs, animals, organizations, etc. Second, someone or 
something must execute the plan, i.e., the intended future 
must somehow be attained. Again, this can be done by all 
kinds of entities, and the planning entities need not 
necessarily be involved in plan execution themselves. 
Third, the planning entity needs some kind of model of the 
future, since the future is essentially non-existent. This 
model should include states, possible actions of the 
executing entities and the effect of actions on the state they 
reside in, constraints, and goals. Planning and anticipation 
presume that such a predictive model is available, 
otherwise the chance that a plan can be executed as 
intended becomes a shot in the dark. The fourth element of 
planning is the plan itself. The plan signifies the belief that 
the planning entity has in the model of the future: the 
implicit or explicit actions in the plan will lead to the 
desired or intended future state. It can never be a full 
specification of the future itself because it can never be 
specified more precisely than the model of the future 
allows. It can, of course, be specified with less detail than 
the model of the future. Two kinds of plans are possible. 
First, the plan can specify the intended future state. The 
executing entity itself must determine how to get there. 
Second, the plan can specify the actions that the executing 
entity must perform. Although the desired future state is 
then not specified in the plan as such, it will, ceteris 
paribus, be reached by performing all specified actions. 

3. Planning complexity and hierarchies 
The four factors of planning entity, executing entity, model 
of the future, and plan are not only complex in their mutual 
relations, they are each also complex in themselves. Simon 
(1985) notes that complex systems are usually somehow 
ordered hierarchically in order to manage complexity. He 
uses the term hierarchy in the sense that a system is 
“composed of interrelated subsystems, each of the latter 
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being in turn hierarchic in structure until we reach some 
lowest level of elementary subsystems” (op. cit., p. 196). 
Note that this not necessarily means hierarchic in the sense 
of an authority relation; it means an ordering of parts in 
wholes, and these wholes are in turn parts of other wholes. 
We argue that planning is no exception; set aside trivial 
planning problems, planning always takes place 
hierarchically for two reasons: uncertainty and complexity 
(Starr, 1979). We argue that much of the differences 
between planning approaches can be contributed to the 
way in which these approaches partition the planning 
problem in independently solvable sub-problems. We will 
discuss this by describing both the structure of planning 
decisions and the structure of the decision domain, after 
which the definition of planning roughly described in 
Section 2 will be elaborated with the generic hierarchical 
view. 
Making the plan: decision of the planning entity. A 
planning decision is a decision that determines the future. 
Although this sounds straightforward, there is a catch. This 
feature is common to all decisions, and common sense tells 
us that not all decisions are planning decisions. For now, 
we will overcome this confusion by defining a planning 
decision as a decision that is part of a collection of 
planning decisions. This is of course not a satisfactory 
definition due to its recursive nature. Therefore, we will 
get back to this issue shortly, but for now it will help us to 
understand and model planning decisions. 
 Due to the hierarchical nature of planning decisions, 
there are two kinds of such decisions. The first kind of 
decision is: setting constraints. A constraint is a rule that 
restricts the possible plan alternatives. Constraints can be 
determined beforehand as inherent part of the model of the 
future, but they can also be set during the process of plan 
creation. In fact, this latter type of constraint is what 
defines hierarchical relations between decisions; a decision 
at the higher hierarchical level constrains the search space 
for decisions at the lower level. In this way, the plan can 
be made stepwise. The second kind of decision is: plan 
determination. These are decisions that are not specified in 
greater detail by the planning entity. Note that the plan can 
need more detail during the execution of the plan. There 
are two reasons to separate constraint posing from making 
assignments. First, an assignment will not bring more 
detail in the planning. Therefore, if a planning problem is 
disposed of all intermediate levels, the assignments remain. 
Second, a constraint is a decision that should be able to 
handle feedback (in the planning process), if the 
constriction is too severe and if at a lower level a solution 
can not be found. Assignments should also be able to 
handle feedback, but only for events that arise during the 
execution of the plan and not during the process of plan 
creation. 

In  Figure 1 three decisions with their relations and 
characteristics are shown: 
 

• There are two kinds of decisions in a hierarchy: imposing 
constraints (decision A in Figure 1), and making 
assignments (could be decision B and/or decision C in 
Figure 1, although these decisions could also pose 
constraints for further sub-decisions). 

• A hierarchical planning decision is defined as a decision 
that constraints another decision (arrow 1). Therefore, the 
hierarchical relation between two decisions is based on 
the fact that a decision’s solution space is restricted by 
the other decision. 

• It might be difficult or impossible to make a decision 
within the imposed restrictions. Then, somehow this must 
be fed back to the decision that imposed the constraint 
(arrow 2). 

• Decisions that share constraints must somehow be co-
ordinated because their combined decisions determine 
whether the constraint is violated or not (arrows 3 and 4). 

 

Decision

Decision Decision
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Figure 1. Basic hierarchic decision model  
 
The significance of Figure 1 is that decision B and decision 
C can be decomposed in hierarchical structures themselves, 
and that decision A can be a sub-decision in a higher 
hierarchical structure. A collection of decisions with their 
hierarchical relations constitutes the way that a planning 
problem is tackled. The model in Figure 1 provides a 
structure that can be applied for all planning decisions on 
all planning levels. This view on planning implies that 
decisions are always structurally the same regardless of the 
decision level (Van Wezel, 2001). 
Modeling the plan: states of the planning entity. With the 
notion of what a planning decision is, we can now describe 
(at least partly) what the decisions are about by describing 
the decision domain. First, planning is a synthetic (design) 
rather than an analytic (diagnosis) or modification (repair) 
task (Clancy, 1985). Second, planning involves decisions 
about the future and not the execution of these decisions. 
Third, an important feature of planning is that it is about 
choosing one alternative out of a huge number of 
alternatives that are structurally similar. Determining why 
a motor does not work is not planning (it is a diagnosis 
task), building a house is not planning (it is a synthetic 
task: however, it does not concern decisions making), but 
routing trains, making a production schedule, making a 
staff schedule, and determining the trajectory of an 
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automatic vehicle are planning tasks (these are synthetic 
tasks and concern choosing one out of a number of similar 
alternatives of future states without executing them). 
 With this demarcation we can further define planning, 
by explaining what is meant by ‘structurally similar 
alternatives’. The vague connotation of the word ‘similar’ 
already indicates that it is not inherently clear whether a 
problem is a planning problem or not, but that in itself is 
not important. We propose to model a planning problem as 
follows. A planning problem consists of groups of entities, 
whereby the entities from different groups must be 
assigned to each other. The assignments are subject to 
constraints, and alternatives can be compared on the level 
of goal realization. For example, production scheduling is 
a problem where orders must be assigned to machines, in a 
shift schedule people are assigned to shifts, and in task 
planning tasks are assigned to time slots and resources. 
Different plan alternatives have the same structure (e.g., 
orders are assigned to machines), but a different content 
(e.g., in plan alternative A, “order 1” is assigned to 
“machine 1”, and in plan alternative B, “order 1” is 
assigned to “machine 2”). This definition also precludes 
some areas that are commonly regarded as planning, for 
example strategic planning and retirement planning. 
Although the boundaries are debatable, such problems do 
not exhibit the third feature of planning, that is to say that 
alternatives are structurally similar. 

Two types of sub-plans can be distinguished in a 
planning hierarchy: aggregation and decomposition. In 
aggregation, the dimensions that exist in the planning 
problem stay the same, but individual entities of a 
dimension are grouped. Aggregation can be used to 
establish boundaries or constraints for individual 
assignments of entities that fall within an aggregated 
group. In this way, several stages of aggregation can be 
sequentially followed whereby each stage creates 
boundaries for the next stage. 
 In the second type of sub-plan, decomposition, a subset 
of the entities that must be planned is considered as a 
separate planning problem. Decomposition can deal with 
all entities of a subset of the dimensions, all dimensions 
with a subset of the entities, or a combination of subsets of 
dimensions and entities. 
The planning definition reconsidered. We now have 
described what planning is: 
 

1. Planning means that a planning entity determines a future 
course of actions for an executing entity. These actions 
should lead to the desired future situation. This is based on 
the model of the future of the planning entity. The future 
course of actions or the desired future state is expressed by 
the plan.  

2. Planning is a complex activity and often involves reasoning 
with incomplete information. Plans are usually made 
hierarchically. 

3. A plan contains the assignments of entities of different 
categories. 

4. The assignments are subject to constraints. 

5. Alternatives can be compared on the level of goal 
realization. 

6. During the process of plan creation, sub-plans can be created 
at other hierarchical levels than the final plan exposes. 

7. Constraints and goals are visible at each hierarchical level. 
8. Decisions either provide constraints for other decisions, or 

assign entities. 
9. Partitioning takes place by disaggregation or by 

decomposition. 
 
Figure 2 summarizes the elements of planning. 
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Figure 2: Elements of planning 
 
In section 4 and section 5, we first introduce a number of 
generic characteristics that can be derived from this model, 
and then discuss some planning approaches concisely. The 
short introduction of the approaches serves to demonstrate 
our point of view that planning can be described from a 
generic perspective. The diversity in the planning 
approaches will become clear by stating questions that are 
based on the model in Figure 2, for example: 
 

1. What is the planning entity? Is it a natural entity (human) or 
artificial entity? How does it make decisions? How is the 
planning decomposed; what are the partitioning criteria? In 
what order are the decisions made? 

2. What is the executing entity? Is it an organization or an 
individual? Is it perhaps the planning entity itself? Do 
multiple executing entities have to coordinate or are they 
independent? 

3. What kind of model of the future does the planning entity 
have? How flexible is the model with respect to adjustment? 

 
The answers to such questions will bring forward not only 
the differences between, but also the similarities of (at first 
sight differing) planning approaches. 

4. Generic planning characteristics 
In this section, we describe a number of processing 
characteristics of the planning entity and of its relation to 
the environment. The characteristics that will be discussed 
are: a) closed versus open world assumption; b) the 
information processing mechanism of the planning entity 
and its architectural components, e.g., memory and 
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attention; c) representation; d) communication, meaning 
and interpretation; e) characteristics of coordination; and f) 
aspects of the execution of the plan. 
"Closed world" versus “open world”: As we already 
indicated the planning task itself can be called a synthetic 
or configuration task. In the previous section, we described 
a way to model plans and planning decisions. Each 
assignment problem consists of choosing from alternatives 
that are structurally the same. In classical terms this means 
“searching through a problem space”, or, more 
specifically, finding a sequence of operators that modifies 
the current state into the goal state. From a decision 
perspective realizing a suitable plan or solving a planning 
problem requires three nearly decomposable phases. In 
state space descriptions the first phase is the design of a 
(complex) initial state, of goal state(s), and of admissible 
operations to change states. The second phase is, given the 
admissible operations, to search for an (optimal) solution. 
The search process may be done by exhaustive 
computation or by adequate evaluation functions. In many 
cases search does not give an optimal solution. The most 
one may get is a satisfying solution and even that is often 
not possible. Then, the third phase starts in which one goes 
back to the initial state and the admissible operations. 
Another route is chosen in the hope that a solution is 
found. Formulated in other words, the phases of (1) initial 
state, (2) search, no solution and (3a) start again with the 
initial state, follow the so-called "closed world" 
assumption. This is the necessary sequence if algorithms 
are applied. However, there is another way of dealing with 
the third phase which is more usual if humans have to 
make a plan. If, given the constraints and goal functions, 
the second phase does not give an optimal or satisfactory 
outcome, the planner already is so much involved in the 
planning process, that because he has a glimpse of the 
solution given the constraints, he takes his ”idea” of a 
solution for compelling. He therefore changes the initial 
state(s) and the admissible operations, that is the 
constraints, in such a way that they fit the preconceived 
solution. This order of phases can be named the "open 
world" approach. It consists of (1) initial state, (2) search, 
including not finding a “real” solution and (3b) adjustment 
of the initial state according to the “fixed or preconceived” 
solution reality. In other words, the model of the future in 
Figure 2 is not fixed because rules are adjusted. This 
sequence of activities is what human planners whether in 
industry, in transportation planning, or in staff scheduling 
frequently and with great success do, but formalizing such 
knowledge for use in a computer program or robot is 
difficult. In AI the issue described above is also known as 
the reformulation problem. 
Information processing mechanism and architectural 
components: During problem solving, the planning entity 
must process information. An information processing 
mechanism operationalizes the way information is 
selected, combined, created, and deleted. The mechanism 
itself needs a physical or physiological carrier. Examples 
are the brain as our neurological tissue, the layered 

connection system of a chip in a computer, a human 
individual in an organization, or a group of interconnected 
individuals in an organization. This is of course relevant 
when we realize that the contents of the model of the 
future can be restricted by the physical, physiological, or 
functional properties of the carrier. The most relevant 
distinction is the one in internal and external mechanism. 
With internal we mean that there is no direct access to the 
system from outside. Internally controlled, but not directly 
visible processes (not cognitively penetrable as Phylyshyn 
(1984) called it) take place in the system. The cognitive 
system and the chip are internal and consist of various 
architectural components, but they differ in the sense that 
the latter is designed which means that its operations are 
verifiable. External are information processing 
mechanisms such as groups of individuals or 
organizations. With respect to planning, this distinction is 
of course relevant if one realizes that if the plan needs to 
be communicated, a translation is necessary between the 
physical carrier and the receiver, which must be taken into 
account during planning. This is the case when a planning 
entity makes a plan that is executed by others.  
(Internal) representations: Mostly, plan execution takes 
place in the environment of an entity. An entity that makes 
a plan for itself can of course misinterpret its position in 
the environment. Furthermore, an entity that makes a plan 
for others can additionally have this problem with respect 
to the entities that must execute the plan. In other words, 
the model of the future might not be accurate enough to 
accurately predict the result of actions on states. 
Representations are also immediately relevant for 
anticipation. A description of a future state in whatever 
symbol system or sign system is the core of any discussion 
on anticipation. 
 In cognitive science the conceptual framework to deal 
with representations can be found in the approaches of 
classical symbol systems, connectionism, and situated 
action. (Posner, 1989; Newell, 1990, Smolensky, 1988; 
Jorna, 1990). The basic idea in classical symbol systems 
theory is that humans as information processing systems 
have and use knowledge consisting of representations and 
that thinking, reasoning, and problem solving consist of 
manipulations of these representations at a functional level 
of description. Representations consist of sets of symbol 
structures on which operations are defined. Examples of 
representations are words, pictures, semantic nets, 
propositions or temporal strings. A representational system 
learns by means of chunking mechanisms and symbol 
transformations (Newell, 1990). A system is said to be 
autonomous or self-organized, if it can have a 
representation of its own position in the environment. This 
means that the system has self-representation. 
Connectionism and situated action are attacks on missing 
elements within the classical symbol system approach. 
Connectionism criticizes the neglect of the neurological 
substrate within the symbols approach and defends the 
relevance of sub-symbolic processing or parallel 
distributed processing. Situated action criticizes the neglect 
of the environment within the symbol approach and 
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emphasizes the role of actions, situatedness and “being in 
the world”. 
Communication, meaning, and interpretation: 
Communication means the exchange of information 
between different components. Depending on whether we 
are talking about internal or external information 
processing entities, communication means possibilities for 
and restrictions on the kinds of symbols or signs (the 
codes) that are used for the exchange. If we relate this to 
the aforementioned discussion about representations, the 
various kinds of signs have different consequences. 
Unambiguous communication requires sign notations 
(Goodman, 1968; Jorna, 1990), but we know that all 
communication between humans is not in terms of 
notations. If computers require sign notations and humans 
work with sign systems, then if the two have to 
communicate, the one has to adjust to the other. Until 
recently, most adjustments consist of humans using 
notations. Now, interfaces are designed that allow 
computers to work with (in terms of semantic 
requirements) less powerful, but more flexible sign 
systems. This means that computers can now better deal 
with ambiguity. For mental activities no explicitness 
(channels, codes etc.) is necessary; for planning as an 
external task it is essential. 
Coordination: Coordination concerns attuning, assigning, 
or aligning various entities that are not self-evident unities. 
Information processing in a cognitive system is a kind of 
coordination mechanism (with no direct access). It is 
internal (or mental). The coordinating processor is 
cognition itself. No explicit code is necessary. If the code 
is made explicit and obeys the requirements of a notation 
we can design an artificial intelligent agent that in its 
ultimate simplicity could be a chip. In case of a set of 
entities that not by themselves are a coherent unity (for 
example individuals in an organization), various 
coordination mechanisms can be found, such as a 
hierarchy, a meta-plan, mutual adjustment, a market 
structure, and many others (Gazendam, 1993). The 
important difference with the single agent is that these 
coordination mechanisms are external and of course with 
direct access. 
Planning, execution, and control: Making a plan, 
executing it, and monitoring the outcomes in reality are 
valued differently in planning your own actions and in 
planning actions of others (i.e., organizational processes). 
Planning in organizations usually is decoupled from the 
execution of the plan. There are two main reasons why the 
planner is someone else than the one who executes the 
plan. First, planning is a difficult job that requires expertise 
and experience. This is the organizational concept of task 
division. Second, a planner must be able to weigh the 
interests of many parties. Therefore, he must have 
knowledge about things that go beyond the limits of the 
individual tasks that are planned. The consequence of this 
decoupling is almost always inflexibility with respect to 
adaptation. For simple tasks as doing errands the possible 
division in terms of sub-tasks may be interesting, but can 
in reality be intertwined with flexible adaptation after 

unforeseen events. If the controlling entity is itself a unity, 
discussions about transfer, communication, sign systems to 
do the communication, and representations are almost 
trivial. This does not make the planning task itself simpler; 
it only prevents the occurrence of ambiguity, 
interpretation, and meaning variance between making the 
plan and executing the plan. 
 In the following section, we discuss a number of 
planning approaches. Our starting point is that planning is 
always in essence about the same thing: anticipating the 
future and determining courses of action. Still, the various 
planning approaches use different languages, ontologies, 
and descriptions of real world objects. The above 
discussed characteristics allow us to determine the 
similarities and dissimilarities of the various planning 
disciplines and perspectives. 

5. Planning entities and planning approaches 
In our definition of planning as decisions related to 
anticipating the future we discussed several characteristics 
of planning in general, and we made a distinction in 
decisions and states of the planning entity. Planning 
approaches in literature basically describe how a planning 
entity searches for solutions of planning problems, i.e., 
makes decisions about states. For example, a mathematical 
algorithm that calculates the optimal plan, a human that 
makes a shopping list, or a robot that mows my lawn. A 
first distinction in planning approaches is the kind of 
planning entity. It can either be natural or artificial. A 
second distinction is the executing entity. It can be the 
planning entity itself or it can be executed by one or more 
other entities. In this section we will discuss four forms: 
planning for yourself in a) a natural agent and b) an 
artificial agent, and planning for others in organizations by 
c) a natural agent, and d) an artificial agent (i.e., computer 
software). 
Planning in the cognitive and behavioral sciences: Many 
studies in cognitive sciences deal with planning. Miller et 
al. (1960) define planning as a “hierarchical process in the 
organism that can control the order in which a sequence of 
operations is to be performed”. Das et al. (1996) relate 
planning to the control of human information processing. 
They state that the plan is essential to connect knowledge, 
evaluation, and action. Newell & Simon (1972) go one 
step further, by describing a planning heuristic that is used 
by their General Problem Solver (GPS), which is used “to 
construct a proposed solution in general terms before 
working out the details. This procedure acts as an antidote 
to the limitation of means-ends analysis in seeing only one 
step ahead.” (op. cit., p. 428). Basically, this heuristic uses 
abstract reasoning to overcome the complexity of the real 
world. 
 Early models of planning presume that planning is 
always a hierarchical process that proceeds according to 
successive refinement. Sacerdoti (1975) implemented such 
an approach in his computer program NOAH. Hayes-Roth 
& Hayes-Roth (1979) found empirical evidence that 
humans do not always follow such a hierarchy, but that 
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humans tend to plan opportunistically. Humans do not 
work solely linear but appear to switch in levels of 
abstraction and move both forward and backward in time 
in successive reasoning steps. Some behavior that can be 
explained by their model is multi-directional processing in 
addition to top-down processing, incremental planning, 
and heterarchical (i.e., network) plan structures. 
  Riesbeck & Schank (1989) argue that planning is based 
on scripts. Instead of thinking up a new plan for each 
problem, humans try to find a plan that is used for a 
previously solved comparable planning problem. Then, the 
basic planning activity is adaptation rather than 
construction. In this paradigm, planning is about memory, 
indexing, and learning (Hammond, 1989; Veloso, 1996). 
These issues are very much interrelated. Plans should be 
stored in such a way that it becomes easy to find an 
existing plan on the basis of a comparison of the new goal 
with already handled goals.  
 The discussion until now describes a number of 
planning issues from a cognitive perspective. Although 
they are sometimes approached as contradictory they are, 
in fact, not. More likely, the different approaches are 
complementary in the sense that they apply to different 
stages or phases of the planning process. Together, they 
compose a comprehensive (but not complete) model of 
human planning. 
 Analyses of human problem solving and planning have 
been used as input for simulations of human problem 
solving, and after that as a way to direct the behavior of 
artificial agents such as robots. The results of such 
simulations and applications are sometimes used in 
cognitive sciences to further analyze and explain behavior 
models. This is partly the cause that the demarcation 
between models of human reasoning and models of 
reasoning by artificial agents is not very clear. 
Simulations and Robots: The planning entities that are 
dealt with within Artificial Intelligence (AI) are very much 
related to the entities that occur in the human sciences. 
This is not surprising, since the aim in AI is to mimic 
natural intelligence (Meystel, 1987). As a result, the 
cognitive architecture that is commonly used to describe 
human reasoning, is more or less simulated in AI. Artificial 
agents that plan their own behavior need (just as humans 
that plan their own task) to be able to deal with uncertainty 
and incomplete information. For such agents, planning is a 
means to reach the goal, just as it is with human problem 
solving. Due to the close resemblance of humans and 
artificial agents, planning of artificial agents is very much 
related to the problem solving approaches. Techniques 
from AI are used to let such agents function more or less 
independently in their environment, and react to 
unforeseen events (Sacerdoti, 1975; Curry & Tate, 1991; 
Beetz, 2000). Much of the planning research in AI stems 
from the wish to let autonomous actors or agents (such as 
robots) perform tasks without prescribing how the task 
should be carried out (Fikes & Nillson, 1971). Important in 
this respect is the work of Brooks (1999). He showed that 
the implicit sub-division of an intelligent system into 

perception, cognition, and action (motor) components does 
not hold. The intelligent systems he developed only had 
perception and action parts. “It posits both that the 
perception and action sub-systems do all the work and that 
it is only an external observer that has anything to do with 
cognition, by way of attributing cognitive abilities to a 
system that works well in the world, but has no explicit 
place where cognition is done.” (Brooks, 1999, p. X). 
Recently this approach also emerged in cognitive science, 
especially from a physiological and neurological 
perspective. The ‘cognition box’ is opened in such a way 
that this box consisted of further sub-divided perception 
and action parts. 
The planning task in organizations: In the same way as 
with the cognitive and behavioral sciences, the 
organizational sciences deal with planning at multiple time 
scales differently (Anthony, 1965). A common ground for 
planning problems in organizations is that they basically 
concern the coordination of supply and demand, whereby 
(a) the supply consists of scarce capacity and (b) the way 
in which this capacity is put to use can make a difference 
with respect to the goals in the organization (Smith, 1992; 
Verbraeck, 1991). Examples are producing at low costs at 
a production facility, having enough phone operators at a 
call center, or taking care that all employees work the same 
amount of night shifts. The way in which the coordination 
takes place (in other words, the planning process or the 
planning task) determines to a large extent the plan that 
eventually is executed. Not much literature or theory exists 
about the relations between the planning domain, the 
planning task, the organization of the planning, and the 
performance of plan execution (Jorna et al., 1996; Van 
Wezel, 2001). Most analyses are limited to task models, 
for example, McKay et al. (1995), Mietus (1994), and 
Sundin (1994). Lack of a theory to explain the relation 
between planning complexity, planning organization, task 
performance, and planning support makes it difficult to 
pinpoint the cause of the planners’ dissatisfaction, to 
attribute the causes of poor organizational performance to 
the planning, or to analyze and design planning practices. 
 In order to make generic statements about the planning 
task, it is important to know what the task performance 
depends upon. It should be noticed that by performance we 
mean execution without a qualitative connotation. 
According to Hayes-Roth & Hayes-Roth (1979), the 
determinants of the planning task are problem 
characteristics, individual differences, and expertise. That 
the task performance depends upon individual differences 
and expertise is no surprise. This applies to all tasks. But 
the fact that the task performance also depends on problem 
characteristics leads to the statement that it is possible to 
describe a planning problem, at least partly, independent 
from the planner. 
Plan generation for organization planning: It is widely 
accepted now that computer programs will not be able (in 
the foreseeable future) to replace human planners that plan 
organizational processes. Still, much research focuses on 
plan generation techniques, as it is seen as an important 
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part of computerized planning support. There are two 
mainstream approaches in plan generation techniques. 
 The first is about making a quantitative model that can 
search efficiently for good solutions. At first glance, the 
same kind of reasoning is used as in cognitive science: a 
problem space is set up and the aim is to find a state that 
satisfies all constraints and scores on goal functions. The 
states are (just like in the cognitive problem solving 
approaches) transformed by operators. The difference is 
that states and operators comprise something else than the 
ones in cognitive science, namely values on variables and 
mathematical operations (Sanderson, 1989; Baker, 1974). 
Most techniques are somehow limited in the kinds of 
characteristics they can handle. A linear programming 
model can not deal with nonlinear constraints, and 
temporal reasoning is difficult to implement in many 
mathematical techniques. Therefore, the domain analysis 
must somehow be translated into the quantitative model, 
and the solution must be translated back to the application 
domain (Prietula et al. 1994; Fox, 1983).  
 Second, approaches can focus on imitating the human 
problem solving processes in so called rule bases or expert 
systems, also called the transfer view (Schreiber et al., 
1993), because the knowledge is extracted from a human 
and transferred into a computer program. For this 
approach, the problem solving behavior of the human 
scheduler must be analyzed. In terms of the human 
problem solver (Newell & Simon, 1972), this means that 
the problem space and operators must be traced and 
implemented. In the resulting plan generators, the available 
computational capacity is not used since the computer is 
used as a symbolic processor. It is, however, 
understandable for the human planner why a generated 
plan looks as it looks, because he would have made it more 
or less in the same way. 
 Table 1 contains the scientific planning fields that were 
discussed in this section and how they relate to general 
planning characteristics described in Section 4. 

6. Conclusions 
Planning approaches and planning perspectives are very 
different. That is an obvious conclusion if one studies 
planning literature. We want to challenge this conclusion 
by starting at the basic notion of planning. Planning is 
anticipating the future, implying that one has a model or 
representation of a future and a set of actions to get to a 
goal state in (the model of) the future. Within this 
circumscription three bifurcation points are relevant. The 
first relates to the distinction in modeling the plan (states 
of the planning entity) and making the plan (decisions of 
the planning entity). The second relates to planning for 
yourself or planning for others. The third point of 
bifurcation refers to the kind of entity that is making the 
plan: natural agent and artificial agent. This makes the 
confusion and the seemingly incommensurable positions 
more transparent. 

We have three reasons for presenting the above binding 
perspective. In the first place there exists a growing 
distance between the academic world dealing with 
planning and real world planning issues. Misunderstanding 
is a bad teacher for successful mutual fertilization. In the 
second place the need for adequate planning analysis and 
planning support is growing. The simple reason is that 
more and more organizations are becoming closer 
connected to other organizations and firms require a better 
kind of planning (and scheduling) at all levels. In the third 
place we see that good ideas in one planning approach are 
not used in other planning approaches, simply because for 
example organization science (dealing with planning in 
organizations) has nothing to do with operations research 
(dealing with algorithms to solve planning problems). We 
do not believe in this kind of rigid separation. In this paper 
we wanted to present a conceptual framework in order to 
bridge the gaps and the seemingly incommensurabilities. 

Scientific 
field 

Cognitive & 
behavioural sciences 

Organization 
planning Robotics Plan generation 

Kind of planning entity Natural Natural Artificial Artificial 

Kind of executing entity Same as planning entity Group of humans / 
organizational processes Same as planning entity Group of humans / organizational 

processes 

Close vs. open world Fixing the reality to the solution that is found; 
reformulate the starting-point Searching for a solution that fits the (modelled) reality 

Information 
processing 
mechanism 

Neurological: memory 
structures, attention 

processors 

Translation of internal 
internally coded information 

is necessary 

Information processing needs 
not to reckon with the outside 

world 

Translation of internally coded 
information is necessary. Is 

designed explicitly 

Architectural 
components 

Memory, perception, 
motor, and central 

processors 

Individuals  
and  

artefacts 
Electronic: memory structures, 

attention processors 
Program components: 
procedures, variables 

 
Representations Self-representation Representation of others Self-representation Representation of others 

Communication, meaning, 
and interpretation  Mostly communication with 

sign systems or sign sets  Communication with sign notations

Coordination Only with respect to 
anticipated actions 

Coordination of actions of 
others 

Only with respect to 
anticipated actions Coordination of actions of others 

Planning, execution, and -
control Intertwined Separated Intertwined Separated 

 
Table 1 Characteristics of kinds of actors related to what they are planning 
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This is not to say that research in the planning approaches 
should stop, on the contrary. However, it might be the case 
that unknown fellow travelers exist in parallel research 
domains. A common conceptual framework is the basis for 
understanding. 
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Abstract

In this paper we address the problem of planning
with complex actions. We are motivated by the
problem of automated Web service composition,
in which planning must be performed using pre-
defined complex actions or services as the build-
ing blocks of a plan. Planning with complex ac-
tions is also compelling in primitive action plan-
ning domains because it enables the exploitation
of reusable subplans, potentially improving the
efficiency of planning. This paper provides a
formal, semantically-justified account of how to
plan with complex actions using operator-based
planning techniques. A key contribution of this
work is the definition, characterization, and com-
putation of preconditions and conditional effects
for complex actions. While we use the situation
calculus and Golog to formalize the task and our
solution, the results in this paper are directly ap-
plicable to most action theories and planning sys-
tems. In particular, we have developed a PDDL-
equivalent compiler that computes the precon-
ditions and effects of complex actions, thus en-
abling wide-spread use of these results. Finally
we provide an approach to planning that enables
us to exploit deductive plan synthesis or alterna-
tively ADL planners to plan with complex ac-
tions. Our approach to complex-action planning
is sound and complete relative to the correspond-
ing primitive action domain.

1 Introduction

Given a description of an initial state, a goal state, and a
set of actions, the planning task is to generate a sequence
of actions that, when performed starting in the initial state,
will terminate in a goal state. Typically, actions are prim-
itive and are described in terms of their precondition, and

(conditional) effects. Our interest is in planning with com-
plex actions as the building blocks for a plan. Complex ac-
tions are actions composed of primitive actions using typ-
ical programming language constructs. E.g.,complex ac-
tions move(obj,orig,dest) and goToAirpt(loc) are defined as:

move(obj,orig,dest)
�� 1 pickup(obj,orig);putdown(obj,dest)

goToAirpt(loc)
�� if loc=Univ then shuttle(Univ,PA);

train(PA,MB);shuttle(MB,SFO) else taxi(loc,SFO)

Our primary motivation for investigating complex action
planning is to automate Web service composition (e.g.,
[13]). Web services are self-contained Web-accessible
computer programs, such as the airline ticket service at
www.ual.com, or the weather service at www.weather.com.
These services can be conceived as complex actions.
Consider ual.com’s buyAirTicket(

�� ) service. This service
can be described as the complex action locateFlight(

�� );
if Available(

�� )
�

OKPrice(
�� ) then buyAirTicket(

�� );...2. The
task of automated Web service composition is to au-
tomatically sequence together Web services such as
buyAirTicket(

�� ) or getWeather(
�� ) into a composition that

achieves some user-defined objectives. The task of auto-
mated Web service composition is, by necessity, a problem
of planning with complex actions. But how do we repre-
sent these complex actions (Web services) and how do we
plan with them?

What makes planning with complex actions difficult is that
the traditional characterization of actions as operators with
preconditions and effects does not apply, making operator-
based planning techniques such as Blackbox, FF, Graph-
Plan, BDDPlan, etc., inapplicable, at least at face value.
In this paper we provide a formal, semantically-justified
account of how to characterize, represent and precompile
the preconditions and effects of complex actions, such as
buyAirTicket(

�� ), under a frame assumption [16]. This en-
ables us to treat complex actions such as buyAirTicket(

�� )
as planning operators and to apply standard planning tech-

1Denotes “defined as.”
2Example is simplified for illustration purposes.

94      



Originally appeared in Proc. 9th Int. Workshop on Non-Monotonic Reasoning (NMR2002). April, 2002 2

niques to planning with complex actions. Planning results
in a plan in terms of complex actions from which a plan in
terms of primitive actions is easily expanded, if desired3.

A secondary motivation for this work is to improve the ef-
ficiency of planning by representing useful (conditional)
plan segments as complex actions. As we show, our ap-
proach to planning with complex actions can dramatically
improve the efficiency of plan generation by reducing the
search space size and the length of a plan.

The idea of planning with some form of abstraction or ag-
gregation is not new, and there has been a variety of work
in this area including ABStrips (e.g., [17]), planning with
macro-operators (e.g., [11] and [6]), and most notably HTN
planning (e.g., [5]). Our work is fundamentally different
from these approaches, and in particular from HTN plan-
ning, both in terms of i) the representation of complex ac-
tions (aka HTN non-primitive tasks), and ii) the method of
planning. In this paper we precompile complex actions into
planning operators described in terms of preconditions and
effects that embody all possible evolutions of the complex
action. In contrast, HTN planners do not use a declara-
tive representation of the preconditions and effects of tasks.
Rather, methods are associated with tasks, and tasks are
pre-arranged into a network of compositions, without the
full programming constructs we use to describe complex
actions [18]. Further, HTN planners operate by search-
ing for plans that accomplish task networks using task de-
composition and conflict resolution. In contrast, having
precompiled our complex actions, we can apply standard
operator-based planning techniques to generate a plan, fol-
lowed by plan expansion.

Our work is somewhat similar in methodology to [2],
which proposes to encode planning constraints by compil-
ing the constraints together with the original planning prob-
lem into a new unconstrained problem. The resultant plan-
ning problem can be solved using classical planning meth-
ods, and the resultant plan decompiled to provide a solution
in the original problem domain. The general methodology
of compilation and subsequent expansion is similar to what
we propose. Nevertheless, the general problem is different.
We are compiling complex actions into new plan operators.
These complex actions represent Web services that we wish
to reason with as black-box components. The constraints
used in [2] are constraints upon the domain, and thus cap-
ture different types of planning information than our more
procedural complex actions. Further the formal treatment
and results are different.

We also contrast our work to the use of Golog (e.g., [12])
in planning. In this paper we use Golog as the formal lan-
guage to describe complex actions, however the role these

3For many Web service applications, expansion is not relevant.

actions play in planning is very different. Golog complex
actions are traditionally used to specify non-deterministic
programs. In combination with deductive plan synthesis
[7], a Golog program expands to a situation calculus for-
mula which constrains the search space for a plan. This
is similar to the role of domain-specific knowledge, as ex-
emplified by systems such TALPlanner [4], BDDPlan [10]
and ASP [18]. In all these systems, complex actions con-
strain the search space, but are not used as operators in plan
construction.

The research presented in this paper is of both theoretical
and practical significance. From a theoretical standpoint,
we provide a semantically-justified means of characteriz-
ing the preconditions, effects and successor situations of
complex actions under a frame assumption, that embodies
all possible trajectories of a complex action. This enables
us to not only use operator-based planning methods to plan
with complex actions, but also to prove formal properties
of our approach. In particular, we prove that our approach
to planning is sound and complete relative to correspond-
ing primitive action domains. From a practical perspective,
analysis shows a significant increase in the efficiency of
planning with complex actions, relative to primitive action
planning. We illustrate potential speedup with some ex-
periments on the briefcase domain, using the FF planner
([9]). Finally, this paper provides a principled approach to
automating Web service composition, that has far-reaching
application to automated component-based software com-
position

2 Background: Situation Calculus & Golog

We use the situation calculus and Golog to formalize the
task and our solution. The expressive power and formal
semantics of the situation calculus provide the theoretical
foundations for our work, and for the later translation to
PDDL.

Briefly, the situation calculus is a logical language for spec-
ifying and reasoning about dynamical systems [16]. In the
situation calculus, the state of the world is expressed in
terms of functions and relations (fluents) relativized to a
particular situation � , e.g.,

�������� �
	 . A situation � is a his-
tory of the primitive actions, e.g., � , performed from an ini-
tial, distinguished situation 
�� . The function ������������� maps
a situation and an action into a new situation. A situation
calculus theory � comprises the following sets of axioms:
� domain independent foundational axioms, � .

� successor state axioms, � �!� , one for every fluent
�

.
� action precondition axioms, � "$# , one for every action %
in the domain,which define &'�����
���(�)��� .
� axioms describing the initial situation, � ��* .
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� unique names axioms for actions, ������" .
Successor state axioms, originally proposed [15] to address
the frame problem, are created by compiling effect axioms
into axioms of this form4:

� � �� �)�������������)�����
	 � �� � ��� ���
where �
	 � �� �)������� ����
	 � �� � �(� � ��� � � � �� ����� ��� ���	 � �� �)�������)� .
(See [16, pg.28-35] for details.)

Example: In the interest of simplicity, we illustrate con-
cepts in this paper in terms of an action theory with three
actions ����������� � � �$�����! ���#"%$ � � � & �'& �(� � � � , and three fluents) �+* �'��$-,(� � � , ./& �+�102$ � � � &

) �3 � � � . (1)-(3) comprise �54(6 , and
(4)-(6) comprise �87�7 5.

&'��� �
�9�����:�;��� � � �$�)���<� � ) �+* �'��$=,(� � ����� (1)

&'��� �
���'& �/� � � �$�)���<� ) �+* �'��$-,(� � ����� (2)

&'�
���
�9���! ���+"%$ � � �$�)���<� ) �+* �'��$-,(� � ����� (3)) ��* �'�>$-,(� � � �������������)�?� � � �!�>�:�;��� � � �=�) �+* �'��$-,(� � ����� � �A@� ���1 ���#"B$ � � � � �C@� �'& �(� � � � (4)

./& �+�;03$ � � � �������������)�?� � � �'& �(� � � �=�D./& �+�102$ � � �)� � (5)) �3 � � � �������������)�?� ) �3 � � � � � (6)

Golog (e.g., [12, 16, 3]) is a high-level logic programming
language for the specification and execution of complex ac-
tions in dynamical domains. It builds on top of the situa-
tion calculus by providing extralogical constructs for as-
sembling primitive situation calculus actions, into complex
actions E . [3] shows how these complex actions can be con-
sidered to be first-class objects in the language. F ���GE �������#H �
is an abbreviation that macro-expands into a situation cal-
culus formula, as defined inductively below. The formula
says that it is possible to reach � H from � by executing a
sequence of actions specified by E [16].

Prim. action: F � ����������� H � �� &'�
���
����� ��� � � H � �������=I �:J �����
Test: F ����K�L��$����� H � �� KMI �:J � � � � H
Seq.: F � �GE�N2OPE3Q ������� H � ��SR � H H � F � �GE�N�������� H H � � F � �GE3Q ��� H H ��� H �
Nondet. act.: F � �GE�NBT#E3Q ������� H � �� F � �GE�N ������� H ����F � �GE3Q �$����� H �
Nondet. arg.: F ���)�GU � �VE � � �$�)����� H � ���R � � F � �GE � � �$������� H �
The construct, if K then E�N else E3Q endIf is defined as
I K�L�OWE�NPJXTYI � K�L�OZE3Q/J . The Golog language also includes
nondeterministic iteration, E�[ , which executes E zero or
more times. The while-loop construct,while K do E end-
While is defined in terms of nondeterministic iteration as
I K�L�\]E3J [ O � K]L . For now, we exclude nondeterministic iter-
ation, and while-loops, whose macro-expansions are sec-
ond order, and which may be non-terminating. Instead,
we define a bounded notion of while, while ^ ��K �_E , which
is guaranteed to terminate, and is commonly used in Web
services. while ^ ��K��`E executes like the original while-loop
except that it loops at most a times, even if K still holds af-
ter the a�b>c iteration. Formally, while ^ ��K ��E corresponds to
a conditional branchings as follow:

while N ��K��=E �� if K then E endIf 6 (7)

while ^ ��K ��E �� if K then I E;O while ^ � N ��K �VE3J endIf (8)
4For space, we will only consider relational fluents here.
5Notation: formulae are universally quantified with maximum

scope unless noted. Action arguments suppressed.

A deterministic version of the choice construct ( U H ) is de-
fined in a longer paper. These constructs are used to specify
complex actions such as buyAirTicket(

�� ) or goToAirpt(loc).
Traditional usage of Golog is to apply deductive plan syn-
thesis to find a sequence of actions

�� � I � N � � � � �)�;d�J that
realizes a Golog program, E relative to domain theory,
� . I.e., �eT � F � �GE ��
 � �)����� ��!�$
 � �)� . F � �GE ��
 � �)��� � �����
 � �)� de-
notes that the Golog program E , starting execution in 
 �
will legally terminate in situation ��� � ��!�$
�� � , where ��� � ��(� 
 � �
is an abbreviation for ������� d �)������� d � N � � � � �)��� ���=N ��
 � �)�)� .

3 Problem: Planning with Complex Actions

Given a set of primitive actions, f together with an associ-
ated set of complex actions, gih , our objective is to use an
operator-based planner to compose complex and primitive
actions to achieve some goal. To do this, we must charac-
terize the preconditions, effects, and the situation resulting
from performing a complex action.

3.1 Preconditions, Effects, Resulting Situations

For analysis, our actions f are axiomatized in a situation
calculus action theory � , and our complex actions g h are
described in Golog. For now, we restrict our focus to ter-
minating complex actions described in Section 2.

Resulting Situation: We wish to characterize the situation
resulting from performing the complex action E . Observe
that many complex actions are nondeterministic. They may
have several different executions, each terminating in a dif-
ferent situation. As such, we can’t define a function anal-
ogous to ��� ���(� � � . Instead, we introduce the abbreviation
���#j 4 �GE � ��� to denote a situation resulting from performing
complex action E in � . ���+j 4 �GE ����� ranges over the set of exe-
cutable situations and corresponds to a so-called ghost sit-
uation [16, pg.52-53], when E is not physically realizable.
The interpretation of ��� j 4 �GE � ��� is constrained by the fol-
lowing axiom, which is added to � producing theory � j 4 .
For all complex actions E and situations � :
F ���GE �$�
� ���+j 4 �GE �����)�i�

� � R � H H � F � �GE �$����� H H � �k� 0 � 02�:�! �;.:*l0������ j 4��GE � ���)�)� (9)

where 0 � 02�/�! ��.�*�0 � ��� denotes a situation, all of whose ac-
tions in the situation action history are &'����� -ible [16]. I.e.,
0 � 02�:�! ��.�*l0�� ��� �� ��m���� � [ � � ����������� [ �Dn 7 �po &'�����
���(�)� [ � It
follows that:

�qj 4 T � m � � 0 � 02�:�! �;.:*l0�� ��� � F � �GE �$��� ���#j 4 �GE �����)��o
0 � 02�/�! ��.�*�0 ����� j 4 �GE � ���)� (10)

6if -then -endIf is the obvious variant of if -then -else -endIf.
7The order relation on situations in the situation tree [16].
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Preconditions: &'��� � j 4 �GE � ��� denotes the preconditions of
complex action E . Intuitively, the preconditions of a com-
plex action are the preconditions of all the actions that make
up the execution of E . E.g., for � N O � Q ,
&'�
����j 4 ��� N O)� Q �$����� &'�����
��� N ����� � &'�
���
��� Q �)��� ��� N �����)� �

This is captured tidily in the inductive definition of F � . We
define the precondition of complex action E , &'����� j 4��GE � ���
as:

&'����� j 4 �GE ��������� [� � ��� (11)

where � [� � � �A� R � H � F � �GE �$��� � H � . These are intermediate
action precondition axioms.

Proposition 1 (Properties of &'�
���2j 4 �GE � ��� )
These axioms follow from � j 4�� ������� .

&'�
��� j 4 �GE �����?� F � �GE �����)��� j 4��GE �����)�
0 � 02�/�! ��.�*�0 � ��� � &'�
��� j 4 �GE �����?� 0 � 02�:�1 ��.�*l0������ j 4 �GE � � �)�

Effects: Intuitively the effects of a complex action are
the effects of each action in the execution of E , modulo
the effects of subsequent actions. We assume that fluents
whose truth value is not changed by an action, persist.� � �� � ��� j 4 �GE �)���)� denotes that fluent

�
is true in the situa-

tion resulting from performing complex action E in � . We
capture the effects of complex actions as successor state ax-
ioms. Since all but trivial complex actions involve multiple
intermediate situations, strictly speaking, we cannot define
successor state axioms for complex actions. Rather, we de-
fine the notion of a pseudo-successor state axiom. Here we
define intermediate pseudo-successor state axioms, making
them “Markovian” in the section to follow via regression.

&'�
��� j 4 �GE � � ��o I � � �� � ��� j 4��GE �����)���S� [	 � �� �PE ����� J � where,

� [	 � �� �PE ����� � R � H � F � �GE �$����� H � � � � �� ��� H � � � H � ���#j 4 �GE ����� � (12)

We need the � H � ��� j 4 �GE � ��� since some complex actions
are nondeterministic. This enables us to identify the partic-
ular sequence of actions in the instantiation of the complex
action that leads to the truth/falsity of the fluent

�
.

3.2 Pseudo-Markovian Complex Actions

In order to plan with complex actions as operators, we must
make our characterization pseudo-markovian. That is, we
wish to characterize the preconditions strictly in terms of
the situation in which the complex action execution is ini-
tiated, and the effects, strictly in terms of the initiating
and terminating situations of the complex action. To do
so we appeal to regression rewriting [19], regressing over
the successor state axioms for the primitive actions in our
domain theory � . Unfortunately, the formulae over which
we need to regress are not, by definition, regressable us-
ing � [16, pg.62], since we are not regressing to 
 � , and
since the macro-expansion of F � �GE ������� H � does not yield a
nested representation of situations. Since regression is a

syntactic rewriting, this is problematic. We define a suit-
able (small) variant of Reiter’s regression operator, �
	 , that
first rewrites the macro-expansion of F � so that situations
are expressed as nested �
� ’s, and that enables regression to
an arbitrary situation � , rather than to 
 � . We define the
preconditions and effects of E in terms of a set of action
precondition axioms, �5j 4�4/6 , of the form of (13) and a set
of pseudo-successor state axioms, � j 437�7 , of the form of
(15).

Preconditions:
Action Precondition Axioms, �5j 4�4/6 , one for every E�� g :

&'�����2j 4 �GE ��������� � � ��� (13)

where � � � ��� � ��	�I � [� � ��� J from (11), i.e.
��	�I R � H � F ���GE ������� H � J .
Example (continued): Consider the complex action
����������� � � �/O if

) �3 � � � then �'& �(� � � � else ���! ���+"%$ � � � endIf,
which we denote as E�N for parsimony. Its action precondi-
tion axiom is defined as follows.

&'��� ��j 4 �GE N � � ���
� 	 I R � H ��� H H � &'�����
�9����������� � � �$�)� � � � H H � �����9�����:�;��� � � �$� ��� �

�)� ) �3 � � �)� H H � � &'���������'& �(� � � �$� � H H � � � H � ��� ���'& �(� � � �$�)� H H �)�
� � � ) �# � � ��� H H � � &'��� �
�9���1 ���#"B$ � � �$�)� � �

� H � �����9���1 ���#"B$ � � �$�)� H H �)�)� J (14)

Following our regression, &'�
���2j 4 �GE N ������� � ) ��* �'��$-,(� � ����� .
Successor State Axioms: Observe that while a situation
calculus axiomatization has one successor state axiom for
every fluent, we currently define one pseudo-successor
state axiom for every fluent-complex action pair.

Pseudo-Successor State Axioms, � j 427;7 , one for every
fluent-complex action pair:

&'������j 4 �GE � ����o I � � �� � ���+j 4 �GE �����)� ���
	 � �� �PE � ��� J (15)

where � 	 � �� �PE ����� ����	�I � [	 � �� �PE � � � J , ��	#I � [	 � �� �ZE � ��� J �
��	�I R � H � F ���GE ������� H � � � � �� � � H � � ��� j 4 �GE � ��� � � H J
Example (continued): The pseudo-successor state axiom
for fluent .:& �+�102$ � � �)���+j 4 �GE N �����)� is:

&'��� ��j 4 �GE N � � ��o I ./& �+�;03$ � � � ���+j 4 �GE N � � �)���
� 	 I R � H ��� H H � &'�����
�9����������� � � �$�)� � � � H H � �����9�����:�;��� � � �$� ��� �

�)� ) �3 � � �)� H H � � &'���������'& �(� � � �$� � H H � � � H � ��� ���'& �(� � � �$�)� H H �)�
� � � ) �# � � ��� H H � � &'��� �
�9���1 ���#"B$ � � �$�)� � �

� H � �����9���1 ���#"B$ � � �$�)� H H �)�)� �

.:& ���;02$ � � ��� H � � ���#j 4 �GE N ����� � � H J (16)

Applying our ��� regression operator, (16) becomes:

&'�
��� j 4 �GE�N ������o �!.:& ���;02$ � � � ��� j 4 �GE+N �����)� �� ) �+* �'��$-,(� � ����� � I ) �3 � � ����� �

��� j 4 �GE�N ����� � �������'& �(� � � �$� �����9�����:�;��� � � �$�����)�
� � ) �# � � ����� � .:& �+�102$ � � ����� �

��� j 4 �GE�N ����� � �����9�!�! ���#"B$ � � �$� �����9�!�>�:�;��� � � �$� ���)� J��
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Though the computation looks complex, regression rewrit-
ing is a powerful tool and the final pseudo-successor state
axiom is simple. Observe that a pseudo-successor state ax-
iom not only defines the conditions under which fluent

�
is

true after performing complex action E , but it also defines
the action trajectory upon which the truth of

�
is predi-

cated. This is most valuable with nondeterministic actions.

Note that when the definition of &'����� j 4��GE ����� and the in-
termediate pseudo-successor state axiom, ((11) and (12),
respectively) are conjoined to � j 4 , they entail the complex
action precondition axioms and the complex action pseudo-
successor state axioms.

Proposition 2 � j 4�� ������� � ��� � �%T � � j 4�4(6�� � j 437�7
Effect axioms: While we have encoded the effects of our
complex actions, together with a solution to the frame prob-
lem in terms of pseudo-successor state axioms, many plan-
ners use effect axioms, rather than successor state axioms,
solving the frame problem in the procedural code of their
planner, rather than representationally. Hence, for comple-
tion we define effect axioms for complex actions, � j 4���� .

Effect Axioms � j 4���� , up to one positive effect axiom and
one negative effect axiom for every fluent - complex action
pair, where the execution of E can potentially change the
truth value of fluent

� ��� :

&'��� � j 4��GE ����� ��� 
	 � �� ����� o � � �� �)��� j 4 � �� �PE �����)� (17)

&'����� j 4 �GE ����� �	� �	 � �� ������o � � � �� �)��� j 4 � �� �PE �����)� (18)

Proposition 3 (Effect Axioms Entailment)

� � �qj 4�4/6 � �qj 437�7 T � � j 4��
�

I.e., the positive and negative complex action effect axioms
are entailed by the pseudo-successor state axioms. Hence,
we can easily extract effect axioms for complex actions
from our pseudo-successor state axioms.

In this section we have provided a representation of the
preconditions, successor state axioms and effects of com-
plex actions under a frame assumption. They are char-
acterized in terms of � j 4�4/6 , and � j 437�7 , and follow from
the semantically-justified account of actions in the situation
calculus. In the section to follow, we show how these rep-
resentations of complex actions lead to a simple approach
to planning with complex actions.

4 Complex Actions Planning

Given our operator-based characterization of complex ac-
tions in terms of their preconditions and effects, we turn to
the problem of operator-based planning with these complex
actions. For now, we restrict our consideration to the sub-
set of complex actions that are deterministic, I.e., primitive

actions � , sequences E�N2OPE3Q , conditional if K then E�N else E3Q
endIf, and while ^ ��K � E , plus others described in a longer
paper.

Following the problem statement in Section 3, our ap-
proach is to take as input [ �!h , g h ] – an action theory
�;h and a set of complex actions g h , both defined in terms
of actions in f . Following the results in the previous sec-
tion, we COMPILE [ � h , g h ] into a new theory � h
� , in
terms of actions f H (generally f���f H ), where each com-
plex action in g h corresponds to a new primitive action
in f H . Next, PLANning is performed in � h�� to produce a
plan in terms of f H . To extract a plan in terms of the primi-
tive actions, we REWRITE the theory, replacing primitive
actions from f H by their corresponding complex actions,
g h . Finally, using � h , the resulting sequence of primitive
actions is EXPANDed from the plan in f H into a plan in
terms of f .

Next, we show how this approach is realized, first using the
situation calculus and deductive plan synthesis, and then
using an arbitrary operator-based planning system that al-
lows conditional effects of actions in PDDL.

4.1 Deductive Plan Synthesis and Expansion

The following is the theory with primitive actions �!h .

� h ��� � �q4/6 � �87�7 � ��� d 4�� �87 * .
(1) COMPILE[ � h , g h ] ��� h�� :� Define � j 4�4/6 and � j 437�7 as described in Section 3.2.� � �4/6�� � j 4�4(6 � �q4/6 . � �7;7 � � j 437�7 . f H � f .� m-E���� g�� : Create a primitive action � �� . Substitute “ � �� ”
for “ E�� ” in � �4/6 & � �7�7 . f H � f H ��� � �� � .� � �7;7 � MERGE( � �7�7 � �57;7 ). Update ��� d 4 to � �� d 4 .

COMPILE produces a situation calculus theory in actions
f8H , comprising all the original primitive actions f plus
new primitive actions corresponding to each complex ac-
tion in g h . � h�� �!� � � �4(6 � � �7;7 � � �� d 4 � � 7 *
(2) PLAN[ � h�� ,goal] � plan[ f H ]: Given a goal formula," � �1* � � � in the language of � h , planning can be achieved
via deductive plan synthesis in � h�� . Following [7, 16], � h�� #R � �

" � �1* � � � . From the binding of � , we can read off a plan
I � � N � � � �)� �d J � � �� ��f H , a plan in f H . [16] describes a variety
of situation calculus planners implemented in Prolog.

(3) REWRITE[plan[ f H ]] � plan[ f , g h ]: Rewrite the
plan I � � N � � � �)� �d J �)� ��%$ f H as a plan I & N � � � � ��& d J in ( f , g h ),
where ')(+* % �( , for all % �( $ f , otherwise '%( equals the
corresponding ,-( from the compilation in Step (1).

(4) EXPAND[plan[ f , g h ], �;h ] � plan[ f ]: Use our same
deductive machinery to extract a final plan in f from
our plan in ( f , g h ), by expanding the complex actions in
I & N � � � � ��& d J . We do so by trivially rewriting our plan as a
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sequence of complex actions in Golog E�� � & N2O�&MQ+O � � � O & d .
A Golog interpreter, written in Prolog will return a
binding for situation � H where �;h # � R � H � � F � �GE � � �
� � H � �

" � �1* � �2H � . From the situation �2H we can read off a plan
I � N � � � �)���%J � ��� ��f .

Note that every plan our approach finds is also a plan in the
original primitive action theory, and vice-versa.

Theorem 1 � h � and � h are defined as in Section 4.1. Let� ��%�� � ��	 be a formula uniform in � such that
� ��%�� � �
	 $	 � �;h 	�
 	 � � h�� 	 , the intersection of the languages of �!h and

� h�� respectively. For all ground situations ��
 of � h�� , � h���� *����������� %���� � � � 
 	�� � ��%�� � � 
 	 iff there exists a ground situ-
ation � of �1h such that �1h � * ����������� %���� � � � 	�� � ��%�� � � 	
and EXPAND[REWRITE[seq( ��
 )], g h ] = seq( � ), where
� ��� � � � � �% � �
	$	 * �% .
Proof Sketch: First, by construction of � h � ,	 � � h 	! 	 � � h � 	 , and, for any action % in � h , � h � contains
the successor state and action precondition axioms of % in
�;h . It follows that, for any term � which denotes a situation
in the language of �1h , �;h � * � ��%�� � �
	"� ����������� %��#� � � �
	
iff � h���� * � ��%�� � �
	$� � ��������� %���� � � �
	 . Second, since
in any situation � , the expansion of an executable
complex action is also executable and has the same
effects, for any executable complex plan % %&
' � %�
( �*)+)+) � %�
��,
in � h
� , EXPAND[REWRITE % % 
 ' � % 
( �*)+)-) � % 
��, , g h ] *
% % ' � % ( ��)-)+) � %�. , is an executable plan in � h�� , and
� � � % %�
' � %�
( �*)+)-) � %�
��, �0/21 	 and �
� � % % ' � % ( �*)+)-) � %�. , ��/21 	 are
the same states in � h � (i.e. fluents has the same truth
value in both situations). Finally, by definition of
the REWRITE and EXPAND steps, % ' � % ( ��)-)+) � % . are
actions in �;h . It follows that �
� � % % ' � % ( �*)+)+) � % . , �0/ 1 	
is a term in the language of �!h which denotes a
situation, and thus �!h � * �

��%�� � � � � % % ' )+)+) % . , ��/ 1 	$	3������������ %���� � � � � � % % ' )+)-) % . , �0/ 1 	�	 if and only if � h���� *� ��%�� � �
� � % %�
' )-)+) %�
��, �0/ 1 	�	�� ����������� %���� � � �
� � % %�
' )+)-) %�
��, ��/ 1 	�	 .
Planning in � h�� is sound and complete with respect to plan-
ning in � h . Thus our approach to complex action planning
via transformation of the theory is well-founded.

4.2 Exploiting Existing Operator-Based Planners

Our approach is not limited to planners realized in the sit-
uation calculus. Most popular planners don’t use a suc-
cessor state axioms representation of the effects of actions.
E.g., all of the planners that participate in the AIPS Plan-
ning competition use PDDL as an initial specification of
the action theory. In this section we show how to exploit an
arbitrary operator-based planner that accepts PDDL plan-
ning domains with conditional effects [14], in order to plan
with complex actions.

(1) COMPILE[ � h , g h ]: Rather than employing succes-

sor state axioms, PDDL describes the effects of actions
in terms of (conditional) effects without a solution to the
frame problem. Section 3.2 provides a semantic justifica-
tion for an intuitive algorithm that compiles a PDDL rep-
resentation of the preconditions and effects of actions in
�;h , together with complex actions gih into a new PDDL
representation of preconditions and effects in � h�� , without
going through the intermediate stage of creating successor
state axioms. (We have such an algorithm, but space pre-
cluded its inclusion in this paper.) Intuitively, the effects
of a complex action are the effects of each action in the
execution of E , modulo subsequent effects.

(2) PLAN[ � h � ,goal]: Given a compiled PDDL represen-
tation � h � , we can generate a plan with any planner that
accepts PDDL with conditional effects. (We used FF [9].)

(3) REWRITE & (4) EXPAND: We can use STEP (3)-
(4) from Section 4.1. Alternatively, we can write a (fairly
straightforward) algorithm to expand the final plan in f H .
For maximal efficiency, we would cache the conditions that
uniquely determine the expansion of each complex action
in a situation.

5 Elaborations on Complex Action Planning

In this section we examine elaborations on complex action
planning. In particular, we examine the conditions under-
which adding complex actions to a theory causes other ac-
tions to be redundant and thus removable. Removing re-
dundant actions is desirable because it reduces the plan
search space. In an extended version of this paper, we dis-
cuss concurrency in complex action planning.

5.1 Removing Weaker Actions

When a complex action E N is compiled into a primitive ac-
tion theory as a new primitive action ��N , another primitive
action, �1Q may become redundant in the sense that in any
situation � , if �!Q is possible, �=N is also possible and has ex-
actly the same effects as �!Q . More generally, we define the
notion that primitive action �=N is stronger than primitive ac-
tion �!Q , �-N54 �1Q (and conversely that �!Q is weaker than �=N )
as follows:
�-N64 �1Q�7 I�&'�����
���!Q������ o

&'�����
��� N ����� � 
 
 ����� ��� N �����$� ��� ��� Q �����)�=J (19)

where 
 
 � ����� H � is an abbreviation for the first-order for-
mulae that is true iff situations � and � 
 have the same state.
The relation 8 is a preorder (it is reflexive and transitive).
It follows that for any situation calculus theory 9 and goal
formula

" � ��� , 9 T �XR � �
" � ��� iff 9 H T ��R � �

" � ��� , where 9 H is 9
with all weaker actions removed.

Note that removal of weaker primitive actions may result in
removal of the optimal plan. In particular, if ��N�4 �1Q and �-N
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is a compiled complex action that can expand into multiple
primitive actions, then by removing ��Q , we may lose the
optimal plan with respect to the number of primitive actions
in our initial domain. Also note that the notion of stronger
actions does not capture all the conditions underwhich an
action is redundant. In particular, � Q may be conditionally
redundant, or it might be redundant relative to � N in some
situation, and redundant relative to ��� in others.

Example: Let �-N and �1Q be primitive actions in � h ,
let �1Q achieve the preconditions for ��N , and let &'��� �
���-N �
be the situation suppressed expression [16, pg.112] for
&'��� �
���-N ����� . Define complex action E�� as if � &'��� �
���-N��
then �1Q endIf ; �-N . If we compile �=N , �1Q and E�� in � h into
primitive actions � H N , � H Q and � H � in � h � , following Section
4.1, then it follows that � H � 4 � H N .
5.2 Irrelevant Actions with Respect to a Goal

Let
" � ��� be a goal predicate that is true iff � satisifies the

goal formula. If the direct effect of an action � can never
make

" � ��� true, and if � cannot directly achieve the pre-
conditions of any of the actions, then � is irrelevant with
respect to goal predicate

" � ��� and can be removed. For-
mally, given a primitive action ��N and goal predicate

"
, we

consider � N as
�

-irrelevant in � if and only if, for � Q rang-
ing over all actions in � except � N , it follows from 9 that:

0 � 02�:�! �;.:*l0����������-N$�����)��7 I�� " ���������-N � � �)��o " � � �)� �

� &'��� �
���1Q�� �������-N �����)��o &'�����
���!Q������)�=J (20)

If �-N is
�

-irrelevant, then �=N will not be in any optimal
successful plan to achieve

"
, and can be removed from the

set of actions when planning to achieve
"

.

Example (continued): In the previous example, we
showed that � H N could be removed from � h�� . It then fol-
lows that, �;HQ will never be needed to make �;H N � � �
� -ible.
If ��HQ can never directly achieve the preconditions for any
other actions in the theory, then for all goal predicate

� � �
	
which are not among the effects of �;HQ , ��HQ is

�
-irrelevant.

6 Web Service Composition

The primary motivation for our work was to be able to
compose Web services using operator-based planning tech-
niques. With the results of Sections 3 and 4, we have ad-
dressed a fundamental barrier to automated Web service
composition. Service providers such as Amazon or United
Airlines will describe their Web services (Web-accessible
programs) as processes. In our vision of the Semantic
Web, this will be done using the DAML+OIL Web ser-
vice ontology, DAML-S [1], whose process description
constructs are similar to Golog. (The relationship between
DAML-S and the situation calculus is well-defined and has

been used to define the semantics of DAML-S.) To pro-
duce black-box or compiled representations of Web ser-
vices for automated composition, we can exploit the com-
pilation techniques described in this paper. Using them, we
compile process-oriented program descriptions of services
into black-box component descriptions. Once Web services
process descriptions have been compiled, we can use stan-
dard operator-based planning techniques to automatically
compose Web services.

7 Efficiency of Complex Action Planning

A secondary motivation for our work was to potentially im-
prove the efficiency of planning (e.g., [11, 8]) through our
operator-based approach to complex action planning. We
restrict our attention to complex action planning with the
deterministic actions listed in Sect. 4. Compiling a com-
plex action E is polynomial in the number of primitive ac-
tion occurrences in its definition. Note that this step can be
performed offline, and is amortized over multiple planning
runs. The expansion step is itself linear in the length of the
plan, and in the number of branchings in the complex ac-
tion definition. Of no surprise, plan generation dominates
the computational cost. In particular: i) complex action
operators tend to have more complex preconditions and ef-
fects than primitive actions, and ii) the size of the search
space will be changed. However, i) causes only a linear
slowdown and thus, the crucial point is ii).

Although the following analysis can be adapted to almost
any classical planner, for simplicity of the argument, let’s
consider a breadth-first search forward planner. Given �
ground actions, if the shortest successful plan is of length
� , the size of the primitive action domain search space is� � ��� 	 . Adding � ground complex actions yields � 
 *	��

�
ground actions in the compiled domain. [8] claims that
adding actions that correspond to compositions of other ac-
tions will yield a larger search space. We identify condi-
tions under which this is false.

Suppose the use of complex actions results in success-
ful plans of length �
�;a , a���� . One way to ensure
this is by requiring complex actions to correspond to non-
overlapping subplans in the shortest plan. In this case, the
number of states visited to find a plan of length ����a will
be
� � ��
 ������	 and the difference between the search spaces

will be
� � ��������
 ����� 	 . If

� ��������
 	 has a strictly positive
lower bound for any problem, the new search space will
be exponentially smaller than the old, as problem complex-
ity increases. Informally, complex action planning reduces
the planning search space when the complex actions signif-
icantly shorten the smallest successful plan relative to the
increase they cause in the breadth of the search space.

Finally, in addition to this potential search space reduction,
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some complex actions remove conflicts between the goals.
This results in less backtrackings and enables the use of
very efficient hill-climbing techniques (e.g., [9]).

8 Experimental Results

The techniques of Section 4.2 were implemented using
the operator-based breadth-first search forward planner, FF
[9]. FF supports conditional effects and uses its “enforced
hill-climbing” whenever possible. We tested our approach
on the ADL BRIEFCASE domain (BCD) 8. This domain
moves objects between locations using a briefcase. Three
experiments were run on multiple instances of the problem,
varying numbers of locations (#l) and portables (#p)9.

The first experiment was simply BCD alone. Note that FF
struggles as we increase (#p) and (#l). The next experi-
ments involved the addition of the complex action Move-
object. Move-object MO(locInit, locObj, Obj, locFinal) takes
as input the location of the briefcase locInit, an object Obj,
its location locObj, and a destination locFinal. It moves the
briefcase to locObj, puts the object in the briefcase, moves
the briefcase to locFinal, and removes Obj. MO is not a sub-
plan of the shortest plan, so we would not necessarily ex-
pect it to do well. Further, it does not reduce the search
space as it does not shorten the successful plan enough
to compensate for the number of ground complex actions
( �G$ ^�� $=H � is not positive). Nevertheless, adding the complex
action move-object (BCD+MO) turns on FF’s hill-climbing
techniques, which reduce the number of nodes considered.

Finally, we designed a complex action that does correspond
to subplans of the shortest successful plan and thus reduces
the search space. The complex action LOC(loc-bc, loc),
takes as input the location of the briefcase loc-bc, moves
the briefcase to location loc, removes all the objects in the
briefcase that should be at loc, and puts all other objects
at loc in the briefcase. The goal defines where an object
should be. To encode this complex action in PDDL, the ac-
tion must know the goal at the time it executes. Hence, we
added a persisting predicate 
 ) �#�-* � � 0��  ���q.��
�
	 �#� � to the
domain. This predicate always has the same values as the
�% ���q.
����	 �+� � predicate in the goal statement. This complex
action reduces the search space ( �
���B����� * �)����� * ) and
allows the use of hill-climbing techniques. Of no surprise,
(BCD+LOC) presented the best results of all three experi-
ment runs.

#l:5, #p:20 #l:6, #p:30 #l:7, #p:42
BCD 5549 (1.39) 201006 (2261) ? ( � 40h)
BCD+MO 859 (11.83) 2345 (201.47) 5195 (2211)
BCD+LOC 75 (.08) 139 (.27) 260 (.85)
Number of nodes (and time of run in seconds).

8http://rakaposhi.eas.asu.edu/domain-syntax.html
9Experiments run on Sun Sparc v9, 2 � 750GHz, 4GB of mem.

9 Discussion and Summary

The work in this paper was motivated by the problem of
automating Web service composition. In particular, we
posed the problem of composing Web services such as
UAL’s buyAirTicket(

�� ) or CNN’s getWeather(
�� ) in order to

achieve a user-defined goal. These Web services are de-
scribable as simple programs, using typical programming
language constructs. We conceived this task as the problem
of planning with complex actions, with the restriction that
the complex actions had to be the primitive building blocks
of a plan. Consequently, we posed the problem of how to
represent and plan with complex actions, using operator-
based planning techniques. To this end, we embarked upon
a theoretical analysis of the problem of how to represent
complex actions as operators. The situation calculus pro-
vided the formal foundation for our work, enabling us to
provide a formal definition of the preconditions, successor
state axioms, and effects of complex actions under a frame
assumption.

With this representational problem addressed we turned to
the practical matter of how to plan. We proposed a method
of planning that produced sound and complete plans rel-
ative to a corresponding primitive action domain. We
showed how to use our results to plan via deductive plan
synthesis as well as using an arbitrary operator-based plan-
ning system that accepts ADL as input.

We are currently incorporating these representation and
compilation results into DAML-S [1], an AI-inspired
markup language ontology for Web services. We’re also
incorporating the results into ongoing Web service compo-
sition work [13].

Finally, the second motivation for this work was to poten-
tially improve either the efficiency of planning or the qual-
ity of the plans generated, by exploiting complex actions
that capture some preferred subplans. We have shown how,
in some domains, using relevant complex actions will re-
sult in a dramatic speedup of the planning process. We dis-
cussed the impact of our approach on the planning search
space and illustrated predicted speedup with experiments.
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