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Temporal Planning has recently become a major focus of research ac-
tivity in Al Planning. There are now a number of different approaches to
handling domains in which time is an important, and sometimes scarce,
resource. These approaches, which include Graphplan extensions, model
checking techiques, hierarchical decomposition, heuristic strategies and rea-
soning about temporal networks, are capable of planning with durative ac-
tions, temporally extended goals, temporal windows and other features of
time-critical planning domains.

This workshop considers a range of these approaches and some of the
important technical problems addressed in their implementation. These
include:

1. Modelling time — how are temporal aspects of a domain best modelled?

2. Handling concurrency — what semantic constraints are imposed, on
exploitation of concurrent activity?

3. Validating plans — automated verification of plan correctness is poten-
tially much harder in temporal domains.

4. Managing continuous change.

The workshop complements the Third International Planning Competi-
tion, which is reaching its conclusion at AIPS in parallel with the workshop.
Temporal planning has been the key theme of the competition this year, and
several of the presenters at the workshop are also participants in the com-
petition. We hope that the workshop will help to focus attention on what
has been achieved so far as well as on some of the unresolved challenges of
temporal planning.
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Abstract

Temporalplanningis animportantproblem,asin mary real
world planningdomainsactionshave differentdurationsand
the goalsshouldbe achieved by a specifieddeadline,or as
soonas possible. This paperpresentsa novel approachto
temporalplanningthat is basedon Mixed Integer Program-
ming. In the new framework, a temporalplanningdomainis
modeledby two setsof linear inequalities. The first setin-
volvesinteger variablesandis a Graphplan-lile encodingof
asimplificationof the original problemwherethe durationof
the actionsis ignored. The secondsetinvolves both integer
andreal valuedvariables,and modelsthe temporalaspects
of the problem. The two setsinteractthroughthe common
integervariables andtheir combinationcanbe solved by us-
ing known Mix ed Integer ProgrammingechniquesThenew
methodaimsat generatinggoodsolutionsquickly, underdif-
ferentminimizationobjectves. Preliminaryexperimentake-
sultsillustratethe effectivenesf our approach.

Intr oduction

Over the lastyearstherehasbeena remarkableprogressn
solving STRIPSplanningproblems(Weld 1999). However,
for mary interestingapplicationsthe STRIPSlanguageis
inadequateWe needto solve problemsthatinvolve actions
that have differentdurations,consumeresourcesand must
be executedby certaindeadlinesWe needto generatelans
thatoptimizecomplex combinationf differentcriteria,in-
cluding completiontime, resourceutilization, action costs
andothers.

Suchadvancedpplicationdomainsnvolve numericvari-
ables,constraintsand complex objectie functions. Mixed
Integer Programming(MIP), andits languageof linearin-
equalities,can easily accommodatehesekey featuresand
thereforeseemdo providearich representationdtamenork
for such applications. However, there are relatively few
worksthatapplyIP to planningproblemswith numericcon-
straints(Wolfman & Weld 1999),(Kautz& Walser1999).

In the original STRIPS languageactions are instanta-
neousandtime is implicitly represented Several domain-
independensystemshave beenproposedo handlearicher
notionof time (e.g.,(Allen 1991;Tsang1986; Penberthy&
Weld 1994)). However, theseapproachescaleup poorly,
and can deal with only very simple problems. The suc-
cesf recentapproache® STRIPSplanning,suchasplan-
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ning graphsandheuristicsearchhasmotivatedthe applica-
tion of thesetechniquego temporalplanning.For instance,
TGP (Smith & Weld 1999)usesa generalizatiorof Graph-
planmutualexclusionreasonindo handleactionswith dura-
tions, while TP4 (Haslum& Geffner 2001) appliesheuris-
tic searchto solve problemswith action durationsandre-

sources.

In this paperwe apply MIP to temporalplanning,by de-
velopingmodelsfor domainsthat containactionswith dif-
ferentdurations.Our approactdecomposea planningdo-
maininto two interactingsetsof linearinequalitiesreferred
to asthelogical andthetempoal partrespectiely.

The logical partis an encodingof the planninggraphof
the STRIPSproblemthatis obtainedrom theoriginal prob-
lem by ignoring actiondurations.For this encodingwe use
themethoddevelopedby (Vosseretal. 1999)andimproved
by (Dimopoulos2001). This approactformulatesthe plan-
ning graphof a STRIPSplanningdomainasan IntegerPro-
grammingproblemandthenusesbranch-and-bountbr so-
lution extraction.

The temporal part associatesvith every action a real-
valuedvariablethat representshe starttime of the action.
Thelinearinequalitiesof this partensurethe correctnessf
the starttimes that are assignedo the actionstaking into
accountheir durations.

The combinationof thelogical andtemporalpartscanbe
solved in a uniform, integratedway by using well-known
MIP techniqueslike CPLEX. Since the two setsof con-
straintsinteract, this is much more effective than a nave
approachn which first we iteratively solve the logical part,
andthenwe checkwhetherthis potentialsolution satisfies
theconstraint®f thetemporalpart,until wefind avalid tem-
poralplan(i.e., a solutionfor boththe setsof constraints).

In orderto increasethe efficiency of the representation,
the structureof the domainis exploited. In particular we
proposesometechniqueghat useideasfrom domainanal-
ysis tools (Fox & Long 1998; Gerevini & Schubert1998;
2000)to reducethe numberof constraintsandvariablesof
thetemporalpartof a planningproblem leadingto stronger
MIP formulations.

In contrastto TGP and TP4 that generatglansof mini-
mumduration,the new approactdoesnot provide optimal-
ity guaranteesHowever, apartfrom the overall durationof
the plan, the MIP modelscan easily accommodateliffer-



ent optimizationcriteriaandary constraintthat canbe ex-
pressedslinearinequalities.

The rest of the paperis organizedas follows. First we
briefly give the necessarpackgroundthenwe presentour
basictemporaimodel,i.e.,thesetof inequalitieformingthe
temporalpartof the problemencoding(while for thelogical
partwe will usesomeknown encoding);thenwe describe
how planningproblemscanbe solvedin the new approach;
thenwe give somepreliminaryexperimentakesults;finally,
we give our conclusionsandmentionfuture work.

Preliminaries

Theplanninglanguageve considelis propositionalSTRIPS
extendedwith time. Actions have (positive) preconditions,
(add and delete)effects and constantdurationthat can be
ary realnumber Our assumptiongor the executionof ac-
tionsarethesameasthoseusedin (Smith& Weld 1999)and
(Haslum& Geffner 2001):

e Theprecondition®f anactionmustholdin thebeginning
andduringthe executionof the action.

¢ Add anddeleteeffectstake placeatsomepointduringthe
executionof an actionandcanonly be usedonly at the
endof the executionof theaction.

The above assumptiongequirethat the preconditionsand
effects of an actionsare protectedduring their execution.
Therefore thelinearinequalitiesof the MIP modelswe de-
velop,enforcethatactionswith contradictoryeffectsor with
contradictionsbetweentheir effects and preconditionsdo
notoverlapin time.

A MIP problem(Wolsey 1998)compriseof a mixture of
real-valuedandintegervariables a setof linearinequalities
on thesevariables,and an objective function. The models
developedin thepaperare0/1 MIP modelsi.e., integervari-
ablescanonly assumdhe valuesO and1. We assumethat
thereadeiis familiar with the basicsof MIP.

Our modeling techniquesutilize someideasdeveloped
in the contet of the domain analysistool DISCOPLAN
(Gerevini & Schubert2000). In particular they ex-
ploit single-valuednesgsv) constraintsand binary XOR-
constraints, which are automatically inferred by Dis-
COPLAN. An sv-constraintstatesthat the value of a cer
tain predicateargumentis uniquefor ary given valuesof
the remainingarguments. An exampleof an sv-constraint
in blocks-world is on(z, xy), statingthatary objectis on at
mostonething (“x” indicatesthe single-\aluedargument).
An exampleof XOR-constrainis (XOR on(z,y) clear(y))
statingthatary objectis eitherclearor hassomethingonit.

The Basic Temporal Model

Let P be a temporalplanning problemand let P° be its
STRIPSsimplification(i.e., actionsareinstantaneous)As-
sumethat P? is solved by an algorithm that builds and
searchets planninggraph.For eachaction(instantiatedp-
erator)A of the problemandeachlevel [ of thegraph,there
is a correspondingiodein the planninggraph,denotedby
Al, thatcanbeunderstoodisa binaryvariable.Assumethat
plansaregeneratedn the form of valueassignmentso the

actionvariablessuchthatthevaluel is assignedo variable
Al iff action A atlevel [ is includedin theplan.

Ourgoalnow is to find asetof linearinequalitiesor prob-
lem P that, given a plan for P°, assignstarttimesto the
actionsin the plan. Theinequalitiesthat modelthe tempo-
ral partof P involve, apartfrom the binaryactionvariables
Al, a setof real valuedvariablesasfollows. For every ac-
tion A andlevel of the graph,we introducea variable A,
thatrepresentshe starttime of action A atlevel [, i.e., the
time whenthe executionof the actionstarts. Similarly, for
everyfluent f of thedomain,andevery level I of thegraph,
weintroduceavariablef!, thatrepresentshetime atwhich
fluent f becomedrue. In thefollowing, dur(A) denoteghe
durationof action 4, whichis arealnumber

Thefirst setof inequalitiesof thetemporalmodelis used
to enforcethe constraintthat actionscan not start before
their preconditionsbecometrue. If f is a preconditionof
A, thefollowing setof inequalitiess includedin themodel,
for eachlevel [ of the planninggraph

L AL > 1L
Thenext setof inequalitiesrepresentshe contraintthata
fluentcanbecometrue after the executionof an actionthat
addsit. Thereforejf f isanaddeffectof actionA themodel
includes(A! is a0/1 variable)
@) fiit > A+ dur(B) - A
Notethatif fluent f wastrueatlevell beforetheexecution
of action A, theabove constraintauses’’; ™ to take avalue
thatcannot be smallerthanthe endtime of A. In combina-
tion with the previous constraint(1) this causesall actions
thathave f astheirpreconditionandappeain levelshigher
thanl, to startafter the endtime of A. Although thereis
away to overcomethis restriction,in this paperwe assume
thatthereis noreachablestateS suchthatafluent f is true
in S, andan actionthatadds f canbe executedin S (the
blocksworld andRocket areexamplesof suchdomains).
The temporalmodelpreventscontradictoryactionsfrom
overlapingin time. For every pair of actionsA and B such
that A deletesthe preconditionsof B, the following con-

straintsareaddedto the model
() Ayf' > Bl, +dur(B)- B!

For every pairof actionsA and B suchthat A deletesanadd
effectof B, themodelincludesthefollowing inequalities
(4.1) At > B, + dur(B) - B
(4.2) BL' > AL, + dur(B) - Al
For every fluent f, the following constraintgpropagatethe
starttime of f throughthelevelsof the planninggraph

G fi' > 1l
Similarly, for eachaction A, its starttime is propagated
throughthefollowing constraints

6) Agf' >4l
Finally, plansstartattime 1, whichis statecby
7 fu>1

The following theoremstatesthat any valid Graphplan-
style plansatisfyingconstraintg1)—(7)is temporallysound.



Theorem 1 (Soundness)For every action A thatis in a
planandsatisfiegheconstaintsabove thefollowing holds:
If p is preconditionof A, thenthere existsan action A, sud
thatp is anaddeffectof 4,, and

a) st(Ap) + dur(4,) < st(A);

b) if B is an actionthat hasp as a deleteeffect, st(B) +
dur(B) < st(A4,) or st(A) + dur(A) < st(B).

Furthermoe, if ¢ is anaddeffectof A4, then

c) for every action C in the plan that deletesq, st(C) +
dur(C) < st(A) or st(A) + dur(A) < st(C).
Proof: The correctnessof the underlying non-temporal
planningalgorithm guaranteeshatif A is anactionin the
planandp is a preconditionof A, therewill be anotherac-
tion A, in theplanthathasp asanaddeffect. Moreover, if
listhelevel of A andl’ thelevel of 4,, it mustbethe case
that!’ < [, andthereis no actionthatdeleteg andoccursin
ary levelI” with I" > I' andl” < 1.
In orderto prove (a), obsenethatbecausef inequality(2),
st(p!'+1) > st(AL) + dur(A4,). Moreover, the setof in-
equalities(5) will enforcest(p') > st(Aﬁ,') + dur(A,) (be-
causel’ < l). Finally, becauseof inequality (1), we have
st(A!) > st(p'), whichtogethewith thepreviousconstraint
givest(A!) > st(AL) + dur(Ap).
In orderto prove ()b) let B be ary actionthat hasp as
delete effect, and let I" be its level. As noted earlier,
the correctnessf the non-temporaplanimplies thateither
I" < U'orl” > | musthold. Assumel” < ['. Since
B deletesan add effect of A4,, inequality (4.2) will en-

force the constraintst(AL 1) > st(B'") + dur(B). This
constraint togetherthh the setof inequalities(6), impose
st(AL) > st(B'') + dur(B). Assumethat!” > I. Since
B deIetesa preconditionof A, inequality (3) will enforce
st(BY1) > st(A') + dur(A) which togethemwith inequal-
ities (6) ensurethat st(B'") > st(A') + dur(A). Thus
it is indeedthe casethat st(B) + dur(B) < st(Ap) or
st(A) + dur(A) < st(B) istrue.

In order to prove (c), assumethat an action C'' in the
plan deletesq, andthat ¢ is an add effect of A’. Clearly
I' < lorl" > [ (becauseof the correctnesof the non-
temporalplan). If I’ < [, sinceconstraintg4) will enforce
st(A'H1) > st(CY) + dur(C), by constraintg6) we have
st(Al) > st(C") + dur(C). Similarly, if I’ > I, sincecon-
straints(4) ensurethat st(C'*1) > st(A!) + dur(A), by
constraintg6) we have st(C"') > st(A!) + dur(A). There-
fore, it is indeedthe casethat st(C) + dur(C) < st(A) or
st(A) + dur(A) < st(C) istrue.O

Impr oved Temporal Modeling

Whenwe model a problemin termsof a setof linear in-
equalities the numberof constraintsand variablesthat are
presenin the setis a practicallyimportantissue,sincethis
cansignificantly affect the performanceof the solver. The
above modelof temporalplanningproblemscangeneratea
large numberof constrainteandvariablesput it canbe sub-
stantiallyimprovedif certainfeaturesof the domainstruc-
turearetakeninto account.Theimprovementghatwe will

discussaim at reducingthe numberof temporalconstraints,
aswell asthenumberof temporalvariableghatarerequired
to correctlymodela planningdomain. The reductionof the
numberof temporalconstraintsis basedon the notions of
argumentpersistence persistentpair of fluentsand strong
interferencethatwe give for binaryfluents?!

Definition 2 (Argumentpersistence)Let f be a binary
fluentsud that f(x, *xy) holds,and every action (instanti-
ated operator) that hasan instanceof f in its add effects
hasanotherinstanceof f with the samefirst argumentbut
differentsecondargumentin its preconditions.We saythat
f is persistenpbnits firstargument.

Persistencen the secondargumentof a fluentis defined
similarly. We now defineargumentpersistencen the first
argumentfor a pair of binary fluents. Persistencen other
arguments,or betweena binary and a unary fluent can be
definedin a similar way. In the following, X, Y, Z and
W indicateary constant,z, y and z universally quantified
variables,x, y andz operatorparameters.Moreover, we
assumehat no action hasary literal as both precondition
andaddeffect.

Definition 3 (Persistentpair of fluents) Let f1 and f2 be
two binary fluentssud that f1(z, xy), f2(z, *z) and (XOR
fl(z,y), f2(x, z)) hold. We saythat f1 and f2 is a per
sistentpair of fluentson their firstargument;f everyaction
thathas f1(X,Y) or f2(X, Z) as an add effect, also has
FUX, W) or f2(X,W") as a precondition,whee W #
Y,ZandW' #£Y,Z

Now we candefinethe notion of strong interferencebe-
tween actionsthat will be usedto improve the temporal
model?

Definition 4 (Stronginterfer ence) A pair of actionsA and
B stronglyinterfereif

e fisafluentsud that f(z, xy) holds, A hasa precondi-
tion f(X,Y), B hasa preconditionf(X, Z), andeither
Y # Z,orY = Z and A and B haveaninstanceof f as
addeffectwith X asthesamefirstargument@anddifferent
secondargument;or

e f1, f2is a persistentpair of fluentson their first argu-
ment,and A hasa preconditionf1(X,Y’) and B a pre-
condition f2(X, Z), or (a) they havea commonprecon-
dition f1(X,Y) or f2(X,Y") which they bothdeleteand
(b) they havean instanceof f1 or f2 asadd effectwith
X asthefirstargumentanddifferentsecondargument(if
they are instancef the samefluent).

For instance underthe assumptionsf the previous defi-
nition, A and B stronglyinterferewhen

e f1(a,b) is a preconditionof A and f2(a, ¢) is a precon-
dition of B, or

1\We restrictour analysisto binary fluents,which arethe most
commonin mary existing domainformalizations.Work on an ex-
tensionto fluentsof higherarity is in progress.

2For the sale of clarity, the definitionis given for the caseof
persistencen the first agumentof binary fluents, but it canbe
easilygeneralizedo the casesvherepersistencés on the second
agumentandf, f1, f2 areunaryfluents.



e when f1(a, b) is a preconditionof A and B, —f1(a,b)
is an effect of A and B, f2(a,b) is an effect of A, and
f1(a,c) aneffectof B.

It turnsoutthatfor pairsof actionsthatstronglyinterfere,
all constraintof the form (3) and(4) canbe omittedfrom
the temporalmodel, becausectionsthat strongly interfere
cannot overlapin time. We call suchmodelsreducedem-
poral models An exampleof reducedmodelis given after
thefollowing theoremstatingsoundnessf reducedempo-
ral models.

Theorem5 For anytwo actions A and B that strongly in-
terfere and are both includedin a plan, a reducedtem-
poral modelsatisfieseither st(A) > st(B) +dur(B) or
st(B) > st(A) + dur(A).

Proof (sketch): Assumethat both actionsA and B arein-
cludedin a plan generatedy the underlyingnon-temporal
planningalgorithm, andlet I be the level of A andi’ the
level of B. Sinceby Definition 4 the two actionshave mu-
tually exclusive preconditionsor mutually exclusive effects
the soundnessf the non-temporaklgorithmimpliesi’ # 1.
We first considerthe casein which! < I', and f(X,a) isa
preconditionof A and f(X,b) a preconditionof B, where
f is a persistentfluent on its first algument,anda, b ary
pair of different constants. Assumethat A has f(X,b)
asan addeffect. Consequentlybecauseof constraint(2),
st(f(X,b)!F1) > st(Al) + dur(A) will hold. Thenthe
set of constraints(5) will enforcethat st(f(X,b)") >
AL, + dur(A). Sincef(X,b) is a preconditionof B, con-
straints(1) will enforcest(B') > st(f(X,b)") andthere-
fore st(B") > st(A!) + dur(A).
Assumenow that either A doesnot have ary add effect
of theform f(X,Y), or it hasanaddeffect f(X,Y") with
Y # b. Thentherewill beasequencef actionsA,, ..., A,
in the plan, at levels Iy, ...,1,, respectiely, with n > 1,
I; > landl; < I', suchthat f(X,b;) is an add effect of
A; andapreconditionof 4;,, for someconstanb;, b, = b
andl;;; > [l;. Since f persistson its first agument,if
f(X,b;) is anaddeffect of A;, then,for somed, f(X,d)
mustbea preconditiorof A;. Hencejt mustbethecasethat
d = b;_1, whereb;_; isanaddeffectof actionA4;_:. There-
fore, the combinationof constraintg1), (2) and(5) implies,
alongthe sequencef actionsAy, .., A,, asetof constraints
st(AGAY) > st(Al) + dur(4;), for everyi > 1, whichim-
pliesthatst(Alr) > st(AL) + 3 cic s dur(A;). Then,
by constraintg6) st(B") > st(AY) + 3, c;cp_q dur(A;).
We now considetthetemporalrelationbetweeractionsA
andA;. Assumdfirstthataction A hasanaddeffect f (X, c)
for someconstant # b. Then, f (X, ¢) mustbeaprecondi-
tion of A;. Thereforest(A'1) > st(A!) + dur(A). Assume
now thataction A doesnot have ary instanceof fluent f in
its add effectswith X asits first agument. Then, by Def-
inition 2 and the assumedsoundnes®f the non-temporal
plan, f(X,a) mustbe a preconditionof A;, and A, A;

3For clarity the proof s given consideringonly persistencen
first aguments;generalizationto persistenceon different argu-
mentsis straightforvard.

do not strongly interfere, provided that they do not have
other preconditionsor effects that could causestrongin-
terference. Moreover, note that f(X, a) mustbe a delete
effect of A;. Since A; deletesa preconditionof A, con-
straint (4) applies,and st(A}) > st(A') + dur(A) must
hold. Hence,it is againthe casethat st(A}) > st(A') +
dur(A). This constraintfogethemith st(B') > st(A'') +
S icicn_ 1 dur(A;), giveusst(B') > st(Al) + dur(A).

Assume now that actions A and B, have both pre-
condition f(X,¢) andthat A adds f(X,a) and B adds
f(X,b), for somedifferent constantsa, b and ¢. Then
againtherewill be a sequencef actionsAy, ..., A, in the
plan, suchthat 4,, addsf(X,¢), and by an analogousar
gumentthe constraintsst(A;) > st(A!) + dur(A4) and
st(BY) > st(AY) + 3, <<, 1 dur(A;) will hold,enforc-
ing st(B") > st(A') + dur(A).

Now let again! < ', andassumehat A hasa precon-
dition f1(X,a) and B hasa preconditionf2(X,b), where
f1 and f2 is a persisteniair on the first algument,anda
andb is ary pair of differentconstantslf A hasf2(X,b) as
anaddeffect, thenusingargumentssimilar to the onegiven
above we canprovethatst(B') > st(A') + dur(A). Oth-
erwise therewill beasequencef actionsA4,, ..., A, in the
plan,atlevelsiy, ..., I, respectiely, withn > 1,1; > [ and
I; < l', suchthat f1(X, b;) or f2(X, b;) is anaddeffect of
A; for someconstanb;, andf2 (X, b) is anaddeffectof 4,,.
By argumentssimilarto thoseusedabove, we canprovethat
St(Bl,) 2 St(Alf) + Yi<i<n_1 dur(4;) and St(Alll) 2
st(AY)+dur(A) will hold. Thusst(BY) > st(A!)+dur(A)
will alsohold.

Finally, if I > I', we canuse symmetricargumentsto
thoseaboveto prove st(A') > st(B') + dur(B). O

We now discussanimprovementthatreduceshe number
of temporalvariablesin the modelof a problem. More im-
portantly it achievesmoreeffective propagatiorof the start
timesof actionsandfluents.

Let f be a binary fluent for which the sv-constraint
f(z,*y) holds. We canreplacein the modelall temporal
variablesst(f(X,Y)!) thatreferto the differentvaluesof
Y andsamevalueof X with onenew variablest(fn(X)!),
for eachlevel I. Similarly, if f(xz,y) holds. Moreover, if
fl(z,y) and f2(z, z) aretwo fluentsrelatedwith a XOR
constrain{XOR f1(z,y) f2(z, 2)), wecanreplacetheircor
respondingemporalvariablesreferringto the differentval-
uesof y and z by, but samevalue X for z, with a single
variablest(f12(X)!). Similarly, if (XOR f1(y, z) f2(z,z))
or (XOR f1(z,y) f2(z)) holds.We call this new setof vari-
ablesabstlacttempoal fluentvariables Notethatit canbe
thecasehatseveraldifferentsvor XOR constraintdold for
thesamefluent,giving riseto differentmodelsdependingn
theparticularabstracvariableghatarechoosenWe handle
suchcasesn anad-hocmannerbut herewe do not discuss
thisissuefurther.

In domainsthatinvolve operatorsvith morethantwo ar-
gumentghatcanbe instantiatedoy mary objects,thetech-
nigue of splitting action start time variablescan be used.



Let A(x,y,z) be anoperatorsuchthat, for every possible
value of parameter, all actionsthat have differentvalues
for the pair of parametery andz are mutually exclusive.
We denotesuchan operatoy A(x, xy, *z). Moreover, as-
sumethat all preconditionsand effectsof A(x, *y, *z) are
unary or binary fluents,noneof which hasthe pair y, z in
its parameters.If this is the case,we can split eachvari-
ablest(A(X,Y, Z)!) into two variablesst(4, (X, Y)!) and
st(A2(X, Z)Y), and add the constraintst(4, (X, Y)!) =
st(A2(X, Z)!) to the model. In the constraintg1) and (2)
of the temporalmodel, in which st(A(X,Y, Z)!) occurs
along with a starttime variable that refersto a fluent of
theform f(X), f(Y) or f(X,Y), variablest(A(X,Y, Z)!)
is replacedby st(A4;(X,Y)!). Similarly, if the starttime
fluent variablesthat occursin such a constraintis on a
fluent of the form f(X, Z), variable st(A(X,Y, Z)!) is
replacedby st(4,(X, Z)!). In constraints(3) and (4)
oneof st(A; (X,Y)!) andst(A42(X, Z)!) replacesvariable
st(A(X,Y, Z)Y), dependingon the fluent that givesrise to
theconflict.

Let again A(x, xy, *z) be an operatoras definedabove.
It may be the casethat the duration of the instancesof
A(x, xy, *z) doesnotdepencbn all its parametershut only
on a subsewf them. In the blocksworld for example,it is
possiblethat the durationof the move actionsdependson
the block that moves andthe destinationof the block, but
not the origin of the block. Assumethat the duration of
a given operatorA(x, xy, *z) doesnot dependon the val-
uesof parametekz. Then,we canreplaceall occurences
of dur(A(X,Y, Z)) - A(X,Y, Z)! in constraintg1)—(4) of
the temporalmodelby dur(A(X, Y, 7)) - 3=, A(X, Y, 2)},
where} " = denotedthe sumover all possiblevaluesof pa-
rameterz. If the durationof A(x, xy, *z) dependnly on
thevaluesof parametek we canreplacedur(A(X,Y, 7)) -
A(X,Y, Z) by dur(A(X,Y, 2))- 3, ¥, A(X, y, ). We
call thistechniqguecompactduration modeling In somedo-
mainsthistechniquecombinedwith starttime variablesplit-
ting mayleadto tight MIP formulations.

Example: Considerthe Rocket domainwith the usual
ld (load) and ul (unload) actions for packagesand fl
(fly) for airplanes. Assumethat theseactions have dif-
ferent durations. The basic temporalmodel for this do-
main includesall constraintsthat have beendescribedin
the previous section. Considerfor exampleld(pl, pl1,11),
which representsthe action of loading packagepl to
plane pl1 at location /1. The constraintsof type (1)
for this action are st(Id(pl, pi1,11)!) > st(at(pl,I1)!)
and st(Id(p1, pl1,11))! > st(at(pll,11)!) for eachlevel
l. There is one constraint of type (2) for each
level I, namely st(at(pl,11)"*1) > st(ld(pl,pll,11)) +
dur(ld(pl,pl1,11)) - z!,, wherez!, is a 0/1 variablethat
takesthevaluel if theactionld(pl, pl1, locl) is includedin
the plan,andO otherwise.

The temporal overlap of actions deleting precon-
ditions of ld(pl,pl1,11) is prohibited by constraints
(3), namely st(ld(pl,X,I1)'*Y) > st(ld(pl, pll,I1))!
+ dur(ld(pl,pl1,11)) - 2, and st(fly(pl1,11,Y)*+1) >
st(ld(p1,pl1,11))'+ dur(ld(pl,pll,i1)) - 2!, where X

standsfor ary planedifferentfrom pl1 andY for ary lo-
cationdifferentfrom /1. Sinceat(pl,11) andin(pl, Z) isa
persistenpair for any planeZ, andthe two load-actionsof
thefirst inequalitystronglyinterfere(they sharethe precon-
dition at(pl,11), but adddifferentinstanceof in with pl
asfirst agument),by Theoremb the first constraintis not
includedin the reducedmodel. However, the secondcon-
straintis included,sincetheload andfly actionsthatarein-
volveddo notstronglyinterfere. Theonly actionthatdeletes
the addeffect of Id(p1, pl1,11) is “blocked” througha pair
of constraintof type(4), whicharest(ul (p1, pi1,11)!+1) >
st(ld(p1,pl1,11)))+ dur(ld(pl, pil,1i1)) -z}, andits sym-
metric. Notethatby Theoremb theseconstraintsarenotin-
cludedin the reducedmodel,becausef the persistenpair
in(pl,pll), at(pl,11) appearingn the preconditionf the
two interferingactions.

Sinceat(z, xy) holdsfor ary planex andlocationy, all
occurrence®f st(at(pl,11)") canbe replacedby the vari-
ablest1(at(p1)!). Moreover, since(XOR at(z, y) in(z,y))
holds,st(at(pl, X)!) andst(at(pl,Y)!) canbereplacedy
st(atin(p1)").

Solving Planning Problems

When consideredalone, the temporalmodel that we have

describedcould find feasiblestarttimesfor the actionsof

a planthatis producedby ary algorithm solving planning
graphs.This STRIPSplannerwould ignorecompletelythe
durationof theactions,andthetemporalpartwould notneed
to know how the plannergenerateshe plans. Thetwo parts
would be “glued” togetherthroughthe 0/1 actionvariables
thataresharedoy thetwo parts.

This seperatiorof the logical andthe temporalpart of a
planningproblemfacilitatesthe useof a differentalgorithm
for eachof theseparts, e.g., propositionalsatisfiability for
the first and linear programmingfor the second,in an ar-
chitecuresimilarto LPSAT (Wolfman& Weld 1999). How-
ever, in theapproachakenherewe represenbothpartsby a
setof linearinequailitiesandusestandardranch-and-bound
ontheunionof thetwo parts.The potentialbenefitof sucha
unified algorithmicframework is the possibility of exploit-
ing the stronginteractionbetweerthetwo parts,which may
leadto extensive valuepropagation.

For the formulationof a logical part of a temporalplan-
ning problem as a set of linear inequalities, we use the
methoddevelopedby (Vossenet al. 1999) and improved
by (Dimopoulos2001). This approachessentiallytranslates
theplanninggraphof aSTRIPSprobleminto anintegerPro-
grammingmodel,andthenusesbranch-and-bounfibr solu-
tion extraction.

Theoveralldurationof the planis representetly thevari-
ablemks (for makespanjpndasetof constraintof theform
(al, + dur(a) - ¢ < mks), for every actiona andlevel I.
The objective functionthatis usedin the problemformula-
tion dependsn the optimizationobjectie. If the objective
is theminimizationof the makesparof theplantheobjective
functionis min(mks). If thereis a deadlinefor the overall
executionof the plan, variablemks takesthis value,andin
theobjectivefunctionany otherquantitycanbeused.Forin-
stancejf eachactiona; hasanassociatedostc; theoverall



TP4 TGP MIP
Pr. t/d/a t/dla t/dlall tt
bwl | 3/11/11 -/10/- 37/11/11/5| 817
bw2 | 51/11/14 -19/- 32/11/12/5 | 653
bw3 | 423/8/10 1231/8/9 9/8/9/4 276
bw4a -/13/- -112/- 65/14/13/6 -
ri 288/14/30| 140/14/24 || 54/14/24/7 | 1083
r2 -/14/- 3306/15/28| 79/15/28/7 | 949
r3 6252/9/36| 5692/9/29 || 432/10/29/6| -
r4 -19/- -19/- 263/11/34/6| -

Table 1: TP4, TGP and MIP on makespanminimization
problems.

costof theplanis minimizedthroughthe objective function
min(} 1 ci-al).

The alborithm startswith the encodingof the planning
graphof length1 (i.e, with onelevel), andthenit extends
the encodingby increasingthe numberof levelsin the un-
derlying graph,until afeasiblesolutionfor boththelogical
and the temporalpartsof the encodingis found. Let [ be
the level of the first solution,andlet opt! denotethe value
of the optimalsolutionfor thatlevel, underthe optimization
objectve. After the problemfor the! levelsis solvedto op-
timality, the encodingis extendedby consideringan extra
level of the underlyinggraph,anda new searchstartsfor a
solutionwith an objective function valuelessthanopt!.* If
anew, improved,solutionis found,theproceduragepeatdy
extendingagainthe encoding(i.e, by consideringan extra
level for theunderlyingplanninggraph).If atsomelevelno
bettersolutionis found,thealgorithmterminatesOf course,
the solutionsfoundarenot guaranteedo be optimal,asit is
possiblethatbettersolutionscanbe extractedif theunderly-
ing planninggraphis extendedfurther,

Experimental Results

Weransomaeinitial experimentswvith thenew temporalplan-
ning approach. The modelswere generatecby hand, us-
ing the algebraicmodelingsystemPLAM (ProLog and Al-
gebraicModeling) (Barth & Bockmayr1998), and solved
with CPLEX 7.1. In orderto gain someinsight aboutthe
difficulty of the problems,and the quality of the solution
thataregeneratedy the nev method,the makespanmini-
mizationproblemwerealsosolvedwith TP4 andTGP. TP4
andCPLEX wererun on a SunUltra-250with 1 GB RAM,
and an UltraSparcll400MHz processar TGP wasrun on
a Pentium500MHz machinerunningunderLinux. Table1
presentsomeof theexperimentalesults.Thebwrowsrefer
to blocksworld problems andther rows referto Rocket
problems. All blocksworld problemsareinstanceswith 8
blocks,while ther ocket problemsinvolve 4 locations,2
or 3 planesand9to 11 packagesAll runtimesreportedare
in seconds.A time limit of 7200secondsvas usedfor all
systems.

For TP4 and TGP, theentriest / d/ a in thetablearere-
spectvely theruntime (t ), planduration(d) andnumberof
actions(a) of thegenerategblan. A -/ d/ - entryindicates

“Whenwe extendtheencodingboththelogical andthetempo-
ral partsof encodingareextended.

thatthe systemwas searchingor a solutionof durationd,
whenthetime limit wasreachedandexecutionwasaborted.

The data for the MIP method are presentedin the
t/d/ a/ | format,with thefollowing meaning.Thenumber
in position| is thefirst level at which a feasiblesolutionis
found. Thedatat / d/ a referto the optimal solutionof the
problemthat correspondso graphlengthl . The duration
of this optimal solutionis presentedn d, andthe number
of actionsin the solutionin a. Thenumberin positiont is
theruntime, andincludesbhoththetime neededor proving
the infeasibility of the problemsassociatedvith planning
graphsof lengthlessthanl , aswell asfinding the optimal
solutionfor the graphof lengthl . The lastcolumnin the
table,labelledwith t t , presentshe overallruntime needed
for solvingtheproblemon all differentlevels,upto thelevel
wherethe solutiondoesnot improve further. A dashin this
columndenoteghat CPLEX reachedhe time limit before
completingthe searclof thelastlevel.

We notethatin all problems,exceptbw4, the bestsolu-
tion thatwasfoundby themethodwasatthesameplanning
graphlevel with thefirst feasiblesolution. In problembw4,
thefirst solutionwasfoundat level 6. The optimal solution
for this level is 14, the graphwas expanded,and a better
solutionwith duration13wasfoundafter3032secs.

It seemghatthe new MIP temporalplanningmethodper
formswell in providing goodsolutionsearlyin thecomputa-
tion. We have obtainedsimilar resultsfor otheroptimization
criteria, including minimizationthat combinesactionscost
andmakespanwith differentweights,thatwill be reported
in anextendedversionof this paper Of coursetherecanbe
casesasproblemr 3, wherethemethodfails to find theop-
timal solutionwithin areasonabléime. Neverthelessin all
problemsconsideredt quickly foundhigh quality solutions.

Conclusionsand Futur e Work

We have presenteda novel approachto temporalplanning
thatrelieson anexplicit representationf thetemporalcon-
straintspresentn aplanningproblem.We have shavedhow
thestructureof adomaincanbeexploitedin theMIP formu-
lations,andpresenedomeencourangingreliminaryresults
from anexperimentaknalysisof thenew method.

We are currently extendingour experimentsand investi-
gating ways of improving the new method. One promis-
ing directionis to exploit further the separatiorof the log-
ical and temporalpart of a planning problemby relaxing
theformerandtighteningthe latter. Anotherdirectioncon-
cernshandlinga more expressve planninglanguagecapa-
ble, for instance of dealingwith level 3 of PDDL 2.1, the
official languageof the AIPS-2002planning competition.
Suchfeaturesincludeactionswith preconditions/dectsin-
volving numericalquantities,resourcesand temporalcon-
ditions that are requiredto hold at somepoint during the
executionof anaction,atits beginning or atits end. It ap-
pearghatall suchfeaturescanbe accomodatetdy a simple
extensionof ourmodel.Finally, we areinvestigatingheuse
of ourtechniquegor generatingplansof goodquality under
different(possiblycompeting)criteria.
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Abstract propositions to be inferred from interactions between ac-
tions. The extra mutex relation is necessary because ac-
Graphplan (Blum & Furst 1995) has been successfully ex- tions can overlap the time points at which facts appear and

tended to plan with actions with durations (Smith & Weld there can be interference between them. TGP implements
ﬁggg) égg{;'dcéx%‘iﬁg'ib i‘rgg‘éﬁggzt?g; (ifrlgtli?/g’ achﬁ)’ngé . the strong mutex requirement that prevents any pairs of ac-
spanning several layers in the plan graph, with fact layers t|0n§, or aCt',onS and pI’Op.OSItlon.S, from, overlappimgny
corresponding to points in the flow of time. A simple model Wa_Y'f there is any potential fo'r Interaction betW?en them.
of time is used which prohibits much of the concurrency This strong requirement prohibits much of the interesting
available for exploitation in an interesting problem. In this concurrency in planning problems.

paper we describe an alternative approach, in which the fact However, it is often reasonable for actions that refer to
layers of a plan graph are used to represent periods of time ’

elapsing between the instantaneous start and end points of 1€ Same facts to be executed concurrently. For example,
actions. The extents of these periods of time in a successful ~ two durative actions which interact only at their end points

plan are determined using a linear constraint solver to en-  can be successfully overlapped, provided that they do not
sure that actions can be temporally arranged in a way that  end at the same moment. This is the observation exploited
avoids logical conflicts between them. The model of time by LPGP (Linear Programming GraphPlan). The language

used, embodied in the language PDDL2.1, is more expres- " . . .
sive than that of earlier systems, enabling the exploitation of used by LPGP represents actions with durations in terms

increased concurrency. We describe the planning algorithm, ~ Of the local pre- and post-conditions of their end points, as
LPGP (Linear Programming GraphPlan), the model of time well as invariant conditions that must hold over the inter-

used and some of the results obtained for LPGP in temporal  va| of execution. The language corresponds to level 3 of
planning domains. We also present some indicative compar-  {he qyrative actions component of PDDL2.1 (Fox & Long
isons with other temporal planners. 2001).

The key idea implemented in LPGP is that, although it
might make sense to view an action as havindetayed
effect (Bacchus & Ady 2001), logical change must be in-
Graphplan (Blum & Furst 1995) has proved an influential stantantaneous at the end of the delay. This is because log-
planning system providing a clean foundation for the de- ical change is by nature discrete (actions might have other,
velopment of a number of scaling extensions. One of the continuous, effects in addition). An action might also have
most interesting developments of Graphplan is the TGP immediate logical effects which are available as soon as
system (Smith & Weld 1999) - one of the first domain- the action starts executing. This view makes it natural to
independent planners to manage temporal planning without treat an action with a delayed effect in terms of its two end-
the aid of heuristic control rules. points separated by a period of time over which invariant

The approach taken in TGP is to associate real-valued du- conditions might be required to hold. As we describe in
rations with the action schemas and then to allow action lay- this paper, invariant conditions can be maintained across
ers to span several fact layers in the graph construction pro- the part of a plan graph between the start and end points of
cess. TGP does not build an explicit representation of the actions using a mechanism by which invariant conditions
graph. Instead TGP uses a highly optimised representation are checked at every fact layer that occurs between these
that exploits the monotonicities available in the Graphplan two points.
plan graph. However, the implicit graph can be understood  This paper describes the temporal planning approach of
in terms of the Graphplan plan graph with an extended bi- LPGP and presents some preliminary results suggesting
nary mutex relation enabling mutexes between actions and that its performance can be comparable to that of other non-

Introduction



heuristic temporal planning systems in the literature. Be-

hold between the end points of a durative action it is nec-

cause LPGP uniquely interprets fact layers as having dura- essary to ensure that they are maintained between each pair
tion some of the guarantees that Graphplan offers cease toof happenings executed in the plan within the interval of

apply in LPGP. In particular, LPGP does not guarantee par-
allel optimality because it is possible for plans that are long
in terms of action duration, but short in terms of the number
of fact layers visited, to be found before plans with shorter
temporal makespan but a larger number of visited fact lay-
ers. In order for LPGP to find parallel optimal plans it is
necessary for it to search beyond the layer at which the first
successful plan is extracted. This necessity is explained in
the following sections.

LPGP currently plans with the simple durative actions
level of PDDL2.1. In order to enable a Graphplan strat-
egy to exploit the view of durative actions as two con-

the durative action. A happening is a collection of (instan-
taneous) actions (or end points of durative actions) executed
at the same time. If we model durative actions with only the
pair of end point actions then the invariant is effectively ig-
nored. To correctly account for the invariant we introduce
a new action with the invariant as its precondition. In order
to force this action to sit between the end points of the du-
rative action from which it is derived, we give the action a
precondition achieved by the start action and an effect re-
quired as precondition by the end action. We want it to be
possible for multiple happenings to occur in the interval be-
tween the end points, and in that case the invariant should

nected instantaneous end points it is necessary to transformbe rechecked following each such happening. This means

PDDL2.1 actions into a particular format which can be seen
as an intermediate domain description language. We first
describe the way in which a PDDL2.1 domain is converted
into such a form. We then go on to describe the modifica-
tions to the Graphplan algorithm that allow correct temporal

that we must force the invariant checking action to be reap-
plied at each layer in the graph between the layer contain-
ing the start action and the layer containing the correspond-
ing end action. Left to its own devices Graphplan will at-
tempt to exploithoopsto make the effect of the invariant

planning behaviour to be achieved and the mechanisms by action persist until the end point at which it is required, or

which the temporal durations of states are introduced into
the planning structure. Finally, we present some results and
discuss our plans for future development.

Treatment of PDDL2.1 domains

PDDL2.1 extends PDDL in several important ways. In this
paper we consider only the temporal extension, and only
a restricted part of that. The treatment of numeric values
has been explored in the Graphplan framework (Koehler
1998), but we have not considered it further in this work.
PDDL2.1 offers the opportunity to use different kinds of
durative actions: the simplest are those in which the du-
rations are fixed, possibly as a function of the parameters
of the action. PDDL2.1 represents durative actions by de-
scribing the transitions that occur at the end points of the
interval of activity, using an essentially classical pre- and
post-condition model of these transitions, together with a
collection of invariant conditions that must hold over the
duration of the action.

A straightforward conversion of PDDL2.1 actions into

the effect of the start action persist until the invariant ac-
tion requires it, placing a single instance of the invariant
checking action at whichever intermediate layer is least in-
convenient. To prevent this we require two mechanisms,
one being a modification of the Graphplan machinery itself
and the other being an addition to the domain encoding.
The latter is the requirement to add an additional effect to
the invariant checking action, which is the special proposi-
tion achieved by the start action and used as a precondition
of the invariant-checking action itself. It can be seen that
this action then behaves like rop with additional pre-
conditions — the invariant conditions of the durative action
to which it corresponds. The modification in the Graph-
plan engine is not to generate the standawdpfor either

the special effect of the invariant-checking action or for the
effect of the start action that acts as precondition for the
invariant-checking action and the end action.

The way in which this collection of actions now fits to-
gether to model the enactment of a durative action can be
seen in Figure 1. An example of the actions generated for a

actions that can be used by a standard Graphplan planner isqyrative action from PDDL2.1 can be seen in Figure 2.

to create the simple actions representing the end points of
the durative actions. This is a good starting point, although

Because the operators that result from the translation pro-

we shall see that there are some complications that must be cess are instantaneous the standard Graphplan mutex rela-
addressed. The first of these is that we want to ensure thattion is used. There is no need to extend the mutex relation

the start and end point actions are always managed as a pairto take account of intervals containing points, because no

To achieve this, we add a new effect to the start action that

intervals arise in the graph construction process. The trans-

is required by, and deleted by, the end action. Thus, the end formation can be performed automatically from a PDDL2.1

action cannot be executed without also executing the start
action.

input, so should not be seen as introducing a new language,
but simply as a compilation into an internal representation

To implement the requirement that invariant conditions format.
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Pre: start Pre: As, inv Pre: As, inv Pre: As, Ai
A-invariant A-invariant
check check sooee
Add: As Add: As, Ai Add: As, Ai Del: As, Ai
+initial effects +final effects

Durative action. A. with invariant: inv

Figure 1: Modelling a durative action with a collection of
simple instantaneous actions.

(:durative-action debark
:parameters (?p - person ?a - aircraft ?c -
:duration (= ?duration debarking-time)
:condition (and (at start (in ?p ?a))
(over all (at ?a ?c)))
:effect (and (at start (not (in ?p ?a)))
(at end (at ?p ?c))))

city)

(:action debark-start
:parameters (?p -person ?a -aircraft ?c -city)
:duration (debarking-time)
:precondition (in ?p ?a)
:effect (and (not (in ?p ?a))
(debarking-inv ?p ?a ?c)))

(:action debark-inv
:parameters (?p -person ?a -aircraft ?c -city)
:precondition (and (debarking-inv ?p ?a ?c)
(at ?a ?c))
:effect (and (idebarking-inv ?p ?a ?c)
(debarking-inv ?p ?a ?c)))

(:action debark-end

:parameters (?p -person ?a -aircraft ?c -city)

:duration (debarking-time)

:precondition (idebarking-inv ?p ?a ?c)

:effect (and (not (idebarking-inv ?p ?a ?c))
(not (debarking-inv ?p ?a ?c))
(at ?p ?c))

Figure 2: The result of converting a PDDL2.1 durative ac-
tion (at the top) into linked instantaneous actions. Note the
introduction of the duration field in both the start and end
actions.

Modification to Graphplan

The main differences in the approach to introducing time
into Graphplan that we describe in this paper, and the ap-
proach used in TGP, are that we invert the way in which
time is attached to states and actions, we do not use the
graph layers to measure time in uniform increments and we
do not require an extended mutex relation. In TGP states
are instantaneous, while time flow is attached to the actions.
Actions can span several layers of the graph between the
point at which their preconditions must be achieved and the
end point at which they have their effects. TGP actions do
not have initial effects and actions are mutex with any other
actions that might attempt to access the propositions used or
changed by them. This is a strong mutex relationship, and
prevents any attempt to model, for example, executing an
action to wash ones hands while a sink is being filled — the
sink-filling action must end before the water is accessible.

TGP models the flow of time in uniform increments as-
sociated with the graph layers, each of length equal to the
GCD of the action durations. This has an important advan-
tage which is that the optimality of the plan length in terms
of graph layers is equivalent to the optimality in terms of
execution time. However, the price is very high: any plan
that has a long execution time relative to the lengths of any
of its actions will require a large number of fact layers to be
considered at plan extraction time, even if the plan requires
relatively few actions.

In our planner we attach duration to states, so each fact
layer is associated with a duration. The layers are used only
to capture the points at which events occur within the execu-
tion trace of the plan, rather than uniform passage of time.
By separating the graph structure from the flow of time in
this way we gain the benefit that plans with few events only
require short graph structures. However, it is not always
true that a plan that requires fewest distinct points of ac-
tivity will be the shortest in duration. For example, if two
goals can be achieved by the parallel execution of actions
A and B, with durations3 and5 time units respectively, or
by the single actio with duration100 units, the plan in
which A and B are used will require more distinct levels
of activity (the simultaneous start of and B, the end of
A and then the end aB) than the plan using’' alone. In
fact, this example is slightly simplified because of the need
to insert the special actions to check invariants. The com-
plete plan structure is illustrated in Figure 3. We discuss
this issue further, below.

The implementation of the machinery in the Graphplan
algorithm is achieved by modifying the basic algorithm as
follows.

Graph construction

The graph construction phase is modified so thahoops
are constructed for the facts that have-mw  suffix. This
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Plan 1 action is introduced, the correct entry is setltojust as

A-tart A-inv A-end for the invariant check, but also the constraint is switched
pgat <2 ginv || g <2 | Beend from an inequality to an equality. Backtracking through the
choice of any of these action types causes the exact reversal
Constraints: di + d2 + d3 = B-duration = 5 of these activities, resetting matrix entriestavhere they
d1 +d2=A-duration =3 were set td. The matrix associated with a simple example
developing plan structure is shown in Figure 4.
Plan 2 The result of these activities is that the plan, as it is
constructed, always has an associated linear programming
C-start d1l | Cinv d2

C-end problem. If the problem is ever unsolvable then the plan is

invalid and search must backtrack. An important decision
Constraints: d'1+d'2= 100 is when to check the equations. One possibility would be
to check them whenever the matrix is modified. However,
Figure 3: Two alternative plan structures showing how a the inequality constraints are typically less difficult to sat-
temporally longer plan can have a simpler activity structure, sfy than the equality constraints, so we choose to carry out
being represented in fewer plan graph layers. checks only when start actions are added to the plan, which
convert inequality constraints to equality constraints. This
has the benefit of reducing the number of calls to the lin-
ear constraint solver, but the cost of not always discovering
that the equations are unsolvable until several choices after
the point of failure. Other schemes would be possible, such
as checking the constraints at each layer in order to avoid
developing bad choices into the next layer.
Graph search This approach is very similar to that taken in Zeno (Pen-
This phase of the Graphplan algorithm is the one most af- Perthy 1993; Penberthy & Weld 1994), but in that planner
fected. When an end action is selected to act as the achieverthe underlying architecture was a partial order plan_ner. In
for a goal fact we introduce a temporal constraint. This e Graphplan framework we gain all of the benefits that
constraint will assert that the total duration of the fact lay- N2ve been associated with Graphplan in comparison with
ers between the start and end actions of the durative action partial order planners (and all of the weqknesses), anq we
must equal the duration of the action. However, when the are able to construct a complete collection of constraints

end action is first introduced we cannot yet know when the atall poinj[s in the planning_ process. In contrast, _Zeno was
start action will appear. Therefore, the constraint is initially unable to invoke the numeric constraint solver until the con-

an assertion that the layers between the current layer and Straints were properly instantiated, preventing it from iden-
the layer containing the end action must have total dura- tifying flawed p|ahs as garly as might be 'hoped.. Of course,
tion less than the duration of the associated action. The £€N© was handling a richer language, including numeric
two forms of constraints, then, are simply linear constraints €7ECtS, presenting a harder problem than a treatment of du-
on the durations of the fact layers and the equations must ration constraints alone.

be solved for these durations, minimizing the total duration A Vvery important question arises in determining the treat-
of the plan. This means that it is possible to use a linear mentof start actions as possible achievers. Whesnaiac-
programming algorithm (such as the simplex algorithm) to tion is used to achieve a goal the corresponding start action
solve the equations. The form of the constraints for such a Will be forced into the plan in order to satisfy the precon-
solver is best given as a matrix of the coefficients for the lin-  ditions of the end action. On the other hand, Btart ac-

ear combinations of the variables (which are the durations tion could satisfy a goal then the corresponding end action
attached to the fact layers). The matrix contains as many should already have been placed in the plahis organisa-
columns as there are fact |ayers in the graph and as manytion follows from the backward sweep search that is used to
rows as there are durative actions in the (current) plan. New construct a plan in Graphplan. Unfortunately, it is very dif-
columns are added to the matrix as the graph is extended, ficult to return to a previously visited layer in the search and
prior to Searching from each new |ayer_ As an end action is insert additional aCtionS, SO USing a start action to achieve
introduced into the plan a new row is added to the matrix. @ goal is very problematic. This problem does not arise in
When an invariant-checking action is added, the column de- TGP because the action representation precludes durative
noting the fact layer succeeding the action layer containing actions achieving anything at the start of their execution.
the invariant check is set tbin the row corresponding to To handle this problem we allow start actions to achieve
the end action coupled to this invariant check. When a start effects, but neveintroducethem into the plan as achievers

- -

forces the invariant checking actions to be used to propagate
these facts between layers, ensuring that the invariants are
checked as the propagation is carried out. Apart from this
minor change no modifications are needed to the standard
Grpahplan graph construction process.
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Factk  Actionk Factk+l Actionk+l Factk+2 Action k+2 Factk+3 Actionk+3 Factk+4 Actionk+4
A-stat [-7----~ AT V2 Bl i - | A-end
B-start | -|----- B-inv |-1----- - |B-inv |-1----- - | B-end
Cstart |-1----- - | Cinv | -1----- --| C-end
D-inv |-1----- --| D-inv b D-inv |-1----- - |D-inv |-1----- --| D-end
E-end
di 2 d3 d4 ds
Assume search has reached action layer k.
Asit progresses to layer k-1 these 00 01100 . = dur-A
matrix entries will be set to 1 when the 0 00111 ° = [ dur-B
appropriate invariant-checking or start e 00011 ° = dur-C
action isintroduced into that layer. 00 01111 e | <= | durD
00 000O0O0 <= \dur-E

L k+5columns_____ |

Constraint becomes equality
when start action is added to
plan.

Figure 4: The matrix of constraints associated with an example partially complete graph search.

unless the corresponding end action is already in the plan.
This means that if a start action is introduced into a plan

layer can never be constrained by any constraint other than
this lower bound, since it can never appbatweera start

because its end effect has been exploited then we can makeand end action. This leads the constraint solver to assign

use of any of the fortuitous side effects of the start action.
This is not a complete solution to the problem, since it is
possible to construct examples of durative actions in which
it is the initial effects that are sought, rather than final ef-
fects. For example, the durative action of burning a match
is useful for the existence of the heat and light created at the
start of the action, rather than for the creation of the burnt
stub at the end of the action. LPGP cannot currently han-
dle such actions properly, but we are working on extensions
that will enable exploitation of such start effects.

An interesting additional factor in our treatment is con-
nected to an important consequence of the mutex rela-
tionships that we use to govern the validity of plans in
PDDL2.1. The semantics of PDDL2.1 forbids actions from
being executed simultaneously if they could possibly inter-
fere with one another’s pre- or post-conditions. Therefore,
actions that do interact must be separated by a small, but
non-zero, interval. Typically, the only constraint we have
to satisfy is that the duration of separation must be posi-
tive. This gives rise to the need to introduce very small
values into a plan. In the validation of plans (Long & Fox
2001) we introduce a small constant that dictates the min-
imum degree of separation allowed between actions, in or-
der to avoid the problem that one plan might be judged
better than another simply because it used smaller separa-
tions than the second, possibly otherwise identical, plan.
This bound must be introduced into the equations we con-
struct as a lower bound on the values of the variables (the
fact layer durations). It will be observed that the first fact

the minimum duration to the first fact layer in every case,
which is a direct reflection of the decision in the semantics
of PDDL2.1 to begin the initial state at tinte while in-
sisting that states are always associated with intervals that
are half-open on the right. That decision prevents the first
actions in a plan from being executeddand forces them

to begin at a small, non-zero time afterThe value of the
small, non-zero time that is used is selected by the program-
mer in the current implementation (we set it at 0.001), but
it would be easy to set if from the command line, or, as we
discuss in (Long & Fox 2001), from a value communicated
in a problem description.

Results

We implemented the system in several stages: the first stage
is a simple translator, transforming PDDL2.1 domains into
the action sets described above. This is a stand-alone pro-
gram, built using the tool-kit associated with the PDDL2.1
parser we have released, and represents one of a collection
of translation tools for conversion of PDDL2.1 domain and
problem descriptions. The second stage is the adaptation
of a Graphplan implementation, to create a system we call
LPGP (Linear-Programming GraphPlan).

To solve the linear constraints we used the solve
library originally developed by Michel Berkelaar (Berke-
laar 2000). This we connected as a library to the LPGP
code, and used its APl to manage the constraint matrix.
This solver attempts to solve modified problems from the
same basis that solved the problem before the modification,
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Figure 5: Plot showing relative performance of TGP, TP4
and Temporal LPGP on temporal logistics problems. The
collection is the same as used in (Haslum & Geffner 2001):
problems range from 4 packages in 3 cities to 5 packages in
4 cities. Note that the time axis is log-scaled. The TGP per-
formance data was taken from (Haslum & Geffner 2001).

which is an excellent strategy in the context of our exploita-

tion: most often new constraints do not have a dramatic im-
pact on the constraint solution, since most durative actions
span few fact layers.

The results depicted in Figure 5 show performance
of LPGP compared with that of TGP and TP4 (Haslum
& Geffner 2001). TP4 is a temporal planner that uses
the HSP architecture (Bonet, Loerincs, & Geffner 1997;
Bonet & Geffner 1997) and follows the same route as TGP
in adopting a model of durative actions in which concur-
rent activity is constrained to avoid consulting proposi-
tions that are in use within another action. The data set
is taken from (Haslum & Geffner 2001) and was gener-
ated on a 900MHz PC. The TGP data is for the version
with EBL/DDB. It should be noted that LPGP does not use
EBL/DDB (the reasons for this are discussed further, be-
low). The domain is a simple extension of the Logistics
benchmark, allowing an additional action by which trucks
can drive between locations in different cities, but at the
cost of a longer action. TP4 and TGP are generating (tem-
poral makespan) optimal plans. In contrast, LPGP is gener-
ating plans that minimize thactivity makespanby which
we mean the number of distinct time points at which ac-
tivity occurs within the plan. Activity can include simulta-
neous initiation or termination of durative actions, and the
special invariant checking actions. Minimizing the activ-
ity makespan can lead to plans with sub-optimal temporal
makespan in the temporal logistics domain, so it should be
noted that TGP and TP4 are solving a harder problem than
is LPGP.

Figures 6 and 7 show LPGP’s performance in a temporal
planning domain called Mars Rover. This domain features a
network of locations and a collection of rover vehicles each
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Figure 6: Plot showing effect of plan graph length on LPGP
performance for small sample of Mars Rover problems.
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Figure 7: Plot showing the number of activities in each plan
against the time taken to produce it, using same sample of
Mars Rover problems as used in Figure 6
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able to access different portions of the network (for exam- proach can still have termination properties (since the best
ple, rough-terrain vehicles can navigate mountainous areas, plan so far acts as a bound on the duration for any other
whilst other rovers can only navigate relatively flat areas). plans), but it could also be able to find the plan with opti-
At different locations on the network there are tasks to be mal temporal makespan if given enough time.

completed, such as collecting and analysing soil and rock

samples and recording photographic images. The rovers Conclusions and further work

are equipped with different capabilities — some have cam- _ . .
eras on board and some have spectrometers and other equip:rh's paper has Qescnbed a successful attempt to exploit the
ment. The planner’s task is to allocate suitable rovers to the Graphplan architecture to construct temporal plans, but us-
different tasks so that required data can be communicated IN9 @ different approach to that used in TGP or TPSys (in
to a lander accessible to the rovers. The figures indicate the €ither of its versions (Garrido, Onaired & Barber 2001;
strong effect of graph construction and search on the time G&mdo, Fox, & Long 2001)). Where those systems use the
to plan and the weaker effect of number of activities in the 9raph itself to represent the flow of time, and to solve the
plan on the performance of the planner. It should be re- asspmated cqnstramtg on the ways in which the durations of
membered that each activity in the plan is represented by at actions mustinterlock in a successful plan, we use the graph

least three steps in the graphplan plan (the start, the end andt® capture only the distinct points of activity and the logi-
at least one invariant step). cal relationships between them, while handling the duration

constraints in a separate linear constraint solver. This offers
the significant benefit of reducing the necessary graph size
for most problems. It has the disadvantage that optimisa-
tion of temporal duration is then separated from the opti-
misation of graph length and this prevents the planner from
claiming temporal-optimality. However, an important bene-
fit of our treatment is that it provides an acceptably accurate
representation of the PDDL2.1 semantics, enabling the ex-
ploitation of interesting concurrency in temporal planning
domains.

Many extensions and modifications to Graphplan-based
planners have been explored in the past, including exten-
sions to the language to include ADL features (Nebel, Di-

A feature of the domain encoding is that whilst it is nec-
essary to remain located at a single spot whilst communicat-
ing image and geological data, the nature of the communi-
cation link between the lander and rovers equipped for soil
analysis means that soil analysis data can be communicated
while the rover is on the move. However, a restriction on
this is that, due to spikes generated when the motors start,
communication is not allowed over an interval that includes
the start of navigation. Thus, navigation and communica-
tion can overlap, once navigation has started. This means
that rovers carrying soil analysis data can communicate and
navigate, or collect other samples, concurrently. The plan

shown in figure 8 contains concurrency that it would not be mopoulos, & Koehler 1997), filtering to remove irrelevant

possible to exploit using TGP. information (Koehleret al. 1997), an efficient search be-
Although activity makespan is different from temporal  yong the fix-point (Long & Fox 1999), exploitation of
makespan it remains to be demonstrated how much longer symmetry (Fox & Long 1999) and handling sensory ac-
than optimal the makespans of activity-optimal plans are tjons (Anderson & Weld 1998). The modifications we
likely to be. We have observed that in pathological cases naye explored in this version of temporal Graphplan plan-
(where there are both sequences of very short duration ac- ying seem to be orthogonal to many of those extensions,
tions and sequences of very long duration actions available since the underlying Graphplan behaviour is largely un-
in the domain for achieving the same goal collections) there changed. It remains a possible direction for future work to
can be wide variation. However, this domain structure does exp|ore which of these extensions could be successfully in-
not seem to be arise commonly and we have observed thattegrated with the mechanisms discussed in this paper. The
LPGP typically constructs plans about twice the length of £g| /DDB modification proposed in (Kambhampati 1999)
those constructed by TP4. On the basis of our experiments is an obvious integration to try, as this yields interesting
to date LPGP seems to be comparable to Sapa (Kambham-performance improvements for Graphplan-based planners.
pati 2001) in terms of plan lengths. The key problem to be addressed is in constructing a con-
A very interesting possibility for an improvement in the flict set at a layer. In the extended algorithm we have de-
behaviour of LPGP, which we are currently exploring, ex- scribed it can happen that an action will fail because it
ploits the fact that LPGP can continue searching for better causes a violation of the temporal constraints, but this does
plans after it has found the first plan. We can use the tem- not lead to identification of a single point of blame in the
poral duration of the first plan as a bound for other possi- current layer. If the temporal constraints cannot be solved
ble plans, and continue to search for alternatives up to that it is potentially expensive to go back through them, deter-
bound. This would give a form adnytimebehaviour, in mining which is the most recent constraint that could be
which LPGP, after generating its first plan, could always modified to make the temporal constraints satisfiable. This
return the best plan it has available at any time. Such an ap- is an interesting search problem that we have not yet ad-
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0.001:
2.002:
2.002:
8.002:
9.003:
14.002:
14.003:
22.002:
24.003:
29.002:
39.0083:

(sample_rock rover2 rover2store waypointl) [8]
(navigate rover3 waypointl waypoint0) [6]
(navigate roverl waypoint2 waypoint5) [6]
(navigate rover2 waypointl waypoint7) [6]
(calibrate
(sample_soil roverl roverlstore waypoint5) [8]

(navigate roverl waypoint5 waypoint4) [6]

rover3 camera2 objectivel waypoint0) [5]

(communicate_rock_data rover2 general waypointl waypoint7 waypointl) [10]
(take_image rover3 waypoint0 objective2 camera2 high_res) [7]

(communicate_soil_data roverl general waypoint5 waypoint4 waypointl) [10]
(communicate_image_data rover3 general objective2 high_res

waypoint0 waypointl) [12]

Figure 8: Sample plan for Rover domain. The labels at the start of each action show when the action starts execution, and the
bracketed values following each action shows its duration. Note the concurrent transmission of soil data with navigation at

time 29.002-30.003.

dressed.

A critical extension to the PDDL language introduced in
PDDL2.1 is the ability to express plan metrics. Most real
planning problems require solutions to be judged by qual-
ities other than simply the number of steps or even their
temporal makespan. One of the most significant challenges
for the Graphplan architecture, if it is to remain relevant to
future developments of planning, is to find ways to mod-
ify the search to take into account such plan metric infor-
mation. The first step in addressing this challenge is to
find a convincing means by which to combine efficient be-
haviour with, at least heuristically, minimising the temporal
makespan of the plan. The idea we discuss above, in which
we continue generating plans after the first has been gener-
ated using the best plan so far as a bound on the continued
search, is a particularly interesting one and we intend to
make this a priority in our future work on LPGP.
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Abstract

Recent advances in constraint satisfaction and heuristic
search have made it possible to solve classical planning
problems significantly faster. There is an increasing amount
of work on extending these advances to solving more expres-
sive planning problems which contain metric time, quanti-
fiers and resource quantities. One can broadly classify clas-
sical planners into two categories: (i) planners doing refine-
ment search and (ii) planners iteratively processing a rep-
resentation of finite size like a SAT encoding or planning
graph or a constraint satisfaction problem (CSP). One key
challenge in the development of planners casting planning
as SAT or CSP is the identification of constraints which
are satisfied if and only if there is a plan bfsteps. This
task is even more complex for planners handling metric time
and/or resource quantities and/or quantifiers. In this paper
we show how such a SAT encoding can be synthesized for
temporal planning. This encoding contains twenty kinds of
constraints. We show how this encoding can be simplified.
Though solving a SAT encoding may not be the best ap-
proach to temporal planning (especially when there are too
many actions and/or too much variation in durations of ac-
tions), the set of constraints we identify makes it easier to
develop temporal planners casting planning as a constraint
satisfaction problem other than SAT, like integer linear pro-
gramming (ILP). The SAT encoding we present can be easily
adapted to more complex cases of temporal planning like the
one in which different pre-conditions and effects of an action
may be true at different times during its execution.

1 Introduction

inferred mutexes significantly improve the backward search
over planning graph for solution extraction. SAT is a spe-
cific kind of CSP in which all variables are boolean and
the constraints involve variables connected with operators
from boolean logic. Some of the recently developed effi-
cient planners cast planning as propositional satisfiability.
These include SAT-plan [Kautz & Selman 1996], [Kautz
et al 1996], MEDIC [Ernst et al 1997] and the planner
which casts hierarchical task network planning as satisfi-
ability [Mali 1999],[Mali 2000]. SAT encodings of a large
number of planning problems in benchmark domains con-
tain a significant number of binary clauses. Simplification
techniques for binary clauses have been shown to improve
the performance of planning as SAT [Brafman 2001]. Ad-
vances in SAT solving like better branching heuristics [Li
& Anbulagan 1997] can be exploited to further improve the
performance of SAT-based planners. Some of the recently
developed efficient planners cast planning as 0-1 integer lin-
ear programming (ILP) in which all variables are boolean
and all constraints are linear. These planners include the
planner from [Vossen et al 2000].

More expressive planning problems contain quantifiers,
conditional effects, metric time and resource quantities. Ex-
amples of such problems include many NASA planning ap-
plications [Smith & Weld 1999]. In these applications, both
spacecraft and planetary rovers use heaters to warm up var-
ious components and these actions may span several other
actions or experiments [Smith & Weld 1999]. There is an

Recent advances in classical planning have made it possi- increasing interest in extending/adapting advances in classi-
ble to solve larger planning problems than before. Many cal planning to solving more expressive planning problems.
of the recently developed planners cast planning as a con- Temporal Graphplan (TGP) is an extension of Graphplan
straint satisfaction problem. The planner in [Do & Kamb- [Blum & Furst 1997] to handle time durations of actions.
hampati 2000] solves a planning problem by solving a CSP The LPSAT planner [Wolfman & Weld 1999] solves plan-
generated based on the planning graph built by Graphplan ning problems involving resource quantities by transform-
[Blum & Furst 1997]. The CPlan planner [van Beek & ing them into problems containing linear constraints and
Chen 1999] solves planning as a constraint programming propositional clauses. Some of the constraints solved by
problem. Graphplan [Blum & Furst 1997] builds a repre- LPSAT have a logical and a mathematical part, e.g. the
sentation called planning graph and identifies mutual ex- constraint((a > 3) = (x V y)). Other more expressive
clusion constraints (mutexes) between actions. Graphplan planners include [Tsamardinos et al 2000].

propagates these mutexes to identify more mutexes. These Development of more expressive planners involves sev-
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eral challenges. These include verification of soundness and it is not necessary for different effects to hold at the
and completeness, besides getting optimal plans in a shortersame time. We show how temporal planning can be cast as
time. The tasks of ensuring soundness and completenessa CSP other than SAT.

are trivial for refinement planners. This is because refine-
ment planners maintain a different representation for dif-
ferent partial plans in the form of nodes in a search tree.

In progression, an action sequence is executed starting at

initial state and it is checked whether goal is true at the
end of its execution. A partial plan is a set of constraints
which may or may not be a plan. Partial plans generated

by forward state-space planners and backward state-space,

2 Background

In this section, we explain how SAT-based planners work
and describe the state-space SAT encoding from [Kautz et
al 1996] for classical planning where all actions have unit
duration. An action is a ground instance of an operator. For
example, ifmove(z, y, ) is an operator for moving block
from top of blocky or table to top of block: or table,

planners are sequences of actions whose goal achieving ca-, 4 yy # 2,7 # 2,2 # Table, then there ar®(n?)

pability can be verified by simple methods like progression.

A partial plan generated by partial order planner contains a

set of constraints like step-action bindings and partial or-

derings over steps. The goal achieving capability of such a

partial plan can be verified simply by finding if there exists

a total order over the steps which is consistent with the par-

tial order constraints in the partial plan such that the goal is

achieved when the steps are executed in the order specified

by the total order. The verification of soundness and com-

pleteness of more expressive planners which cast planning SAT pla
as CSP is non-trivial since a set of constraints needs to be

identified such that these are solved if and only if there is a

plan of k steps. This set needs to be loose enough to allow

actions when there areblocks.

SAT-plan [Kautz & Selman 1996] works in the following
manner. Based on initial state, number of steps assumed to
exist in plan (k), goal state and action description, it gener-
ates an encoding (SAT instance) such that the instance has
a model if and only if there is a plan of k steps. The steps
range from O tqk — 1). The encoding is simplified by rules
of inference of boolean logic, e.g.A (—a V b) can be sim-
plified to (aAb) (this simplification step is optional but most
nners carry this out). The encoding is then passed to
a SAT solver. Ifitis solved, the solution (truth assignment)
is interpreted and plan is output by reading the truth values
assigned to step-action binding and step ordering variables.

generation of all action sequences that are plans and tight If it cannot be solved, then value of k is increased and the

enough to exclude generation of any action sequence that
is not a plan. The correctness of the temporal planner TGP

[Smith & Weld 1999] is difficult to verify.

The adaptation of SAT-plan to handle metric time is chal-
lenging because of task of identifying all constraints that
must be satisfied if and only if there is a plan of bounded
length. Temporal planning problem is the problem of find-
ing a set of< action;, start_time; > tuples for achiev-
ing a given goal, starting with a given completely de-
scribed initial state using actions that have time durations.
start_time; is the start time of actionction;. This is the
time at which the execution afction; starts. We use the
following assumptions in temporal planning from [Smith
& Weld 1999] when setting up the SAT encoding. Effects
of actions are undefined during their execution. Action du-
rations are integers. Pre-conditions of an action in a plan
should all be true at its start time. The effects of an action
hold only at the end of its execution. The SAT encoding
is such that it has a solution if and only if there is a plan
of k time steps. In particular, we identify twenty kinds of
constraints which together form the encoding when trans-

process of encoding generation, simplification and solving
is repeated. Variables representing an occurrence of actions
at various steps are step-action binding variables.

The explanatory frame axiom-based state-space encod-
ing [Kautz et al 1996] contains the following constraints:
(i) All propositions true in true in initial state are true at
time O and all propositions false in the initial state are false
attime 0. (i) If an action occurs at timeits pre-conditions
are true at time and its effects are true at tinfe+ 1). (iii)

If an actiono; needs propositioptrue and action; deletes

p, theno; ando; cannot occur at same time. (iv) All propo-
sitions from goal are true at tinfe (v) If a propositionp is

true at timet and false at timé¢ + 1), some action deleting

p must occur at time. If a propositionp is false at timet

and true at timg¢ + 1), some action making true must
occur at timet. These constraints are included to ensure
that truth of a proposition cannot change unless an action
causing the change occurs. These constraints are known as
explanatory frame axioms.

3 SAT Encoding for Temporal Planning

lated into clauses. We also show how the encoding can be To generate a SAT encoding, we first need to bound
simplified so that the number of clauses and variables are the number of steps in plan at which actions occur. We
reduced without losing soundness and completeness. Wedenote this bound b¥. O denotes the set of all actions
show how the encoding can be adapted to more complex in domain andU denotes the set of all ground fluents

case of temporal planning in which it is not necessary for
different pre-conditions of an action to be true at same time

in domain. A fluent is a proposition whose truth can
change. Propositions that are not made true or false by any
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action are considered to be invariants whose truth remains number of pre-conditions and the number of effects of an
unchanged. Before explaining the constraints appear in the action. These constraints contribute | O | variables to

propositional encoding of a temporal planning problem,
we explain some relevant notation for various boolean
variables in the encodingz(t) is a boolean variable which
denotes the truth of true state of flugnat timet. If pt(t)

is assigned true, it means that fluenis true at timet. If
pt(t) is assigned false, it means that the flugig not true
at timet (so it is either false or undefined/unknowp).(t)
denotes that the truth of the undefined state of flyeat
time ¢t. If pu(t) is assigned true, it means that the flugnt
is undefined at time. If pu(t) is assigned false, it means
that the fluent is not undefined at timeé. In this casep

is either true or false at time pf(t) denotes that the truth
of the false state of fluent at timet. If pf(t) is assigned
true, it means that the flueptis false at timet. If pf(¢)

is assigned false, it means that the flugns not false at
time ¢t. In this casep is either true or undefined at time
t. 0;(t) denotes the occurrence of the ground actipat
time ¢. o;(t) is an action variablepf(t), pt(t) andpu(t)
are fluent variables. I§;(t) is assigned true, it means that
o; occurs at timet. If o;(t) is assigned false, it means
that o; does not occur at timé d; denotes the duration
of the ground actiom;. The time steps in the encoding at
which actions may occur range from 0 tb — 1). dax

is the maximum of durations of all actions. The following

the encoding. For example, if andy are pre-conditions

of actionos, and—z and z are its effects, this constraint
generatesos (j) = (¢t(j) Ayt(j) Awf(j + ds) A =t(j +
ds))), wherej € [0,k — ds]. Note that we require <

(k — d;) because ib; starts att > (k — d;), it will finish

at time(k + 1) or later and the encoding has orfly + 1)
time steps ranging fror@ to k.

6. If an actiono; does not delete any of its pre-conditions,
then if o; starts at time, where0 < ¢t < (k — d;), then

o; cannot start at any timé& < [t + 1,(t + d; — 1)], d;
being duration ofp;. These constraints prevent an occur-
rence of an action during its execution, when the action
does not delete any of its pre-conditions. These can be con-
sidered as mutual exclusion relationships of actions with
themselves. These constraints contribl{é.q.d’) clauses

to the encoding, where is the number of actions which
do not delete any of their own pre-conditions atids the
maximum of the durations of these actions.

7. If an actiono; does not delete its pre-conditian then

if o; starts at time, x remains true over the closed interval
[t + 1,¢ + d;] whend; > 1. If there arem actions that do
not delete any of their own pre-conditions, these constraints
contributeO (m.d,,,....k.m’) clauses to the encoding, where
m’ is the maximum number of pre-conditions of an action

constraints appear in the state space encoding of a temporalyot deleted by the action.
planning problem. The encoding is a state-space encoding 8. The pre-conditions of an actian which are deleted by

since it refers to states of all fluents at all time steps. We
assume that actions do not have negated pre-conditions.

1. The constraints of this kind state that each fluent is either
false or true or undefined at every time step. For all fluents
p, for all timest € [0, k], (pt(t) Vpf(t) Vpu(t)). There are
(k+1). | U | clauses of this kind. These cont&irik+1). |

U | variables.

2. The constraints of this kind state that at a time, a fluent
cannot be in more than one of the following states: true,
false and undefined. For all fluentsfor all timest € [0, ],
(pt(t) = —pf (1)), (pt(t) = —pu(t)), (pf(t) = —pu(t)).
There are3.(k + 1). | U | clauses of this kind.

3. Fluents true in initial state are true at time 0. Fluents
false in initial state are false at time 0. These constraints
contribute| U | unit clauses to the encoding. If the initial
state is(a A b A —¢ A —d), the encoding containgit(0) A
bt(0) A cf(0) Adf(0)).

4. Fluents from goal are true at tinke If goal is a conjunc-
tion of s fluents, these constraints contributenit clauses

to the encoding.

5. If an actiono; occurs (starts) at timg0 < ¢t < (k —

d;), its pre-conditions are true aand its effects are true at
time (¢ + d;). These constraints contribut&k. | O | .m)
clauses to the encoding being the maximum sum of the

o; are undefined over the closed interffak- 1,¢ + d; — 1]

if o; starts att. If there arem, actions that delete some

of their own pre-conditions, these constraints contribute

O(mq.dmas-k.m') clauses to the encoding, where’ is

the maximum number of pre-conditions of an action deleted

by the action. For example, if effects of actien are

—p and ¢, such thatp is one of its pre-conditions, and

duration ofoy is 3, then this constraint yield®4(j) =

(pu(j + 1) Apu(j +2))).

9. Effects of an actiom; (except pre-conditions @f; which

o; deletes) are undefined from tinfe+ 1) until time (¢ +

d; — 1), including both these times, if; starts at. These

constraints contribut®(| O | .dnq..k.m"") clauses to the

encoding, wheren'” is the maximum number of effects of

an action, excluding the pre-conditions deleted by it. For

example, if effects of action, are—p andgq, such thap is

one of its pre-conditions, and duration @f is 3, then this

constraint yieldgo4(j) = (qu(j + 1) A qu(j + 2)).
Constraints 10, 11, 12, 13, 14 and 15 are all explanatory

frame axioms. These contribu@(k. | U |) clauses to

the encoding. These constraints prevent changes in states

of fluents without occurrences of actions causing these

changes.

10. If fluent p is true at timet and false at timdt + 1),

some action of duration 1 which deletemust occur (start)
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at timet. For example, if actions,, og andogy are the only
actions of duration 1 which delete fluent this constraint
generate$(zt(t) Axf(t+ 1)) = (04(t) V os(t) V og(t))).
11. If fluentp is false at time and true at timét+1), some
action of duration 1 which makestrue must occur (start)
at timet.

12. If fluentp is true at time and undefined at timg + 1),
some action of duration greater than 1 which delptesist
occur (start) at time. For example, ifc = 20 and the only
actions of duration more than 1 which delete flugrdre
07,08 andoy1 such thatl; = 4, dg = 12 andd;; = 7, then
we have((zt(t) Azu(t+1)) = (o7(t)Vos(t)Voii(t))),t €
[0, 8]. We have((zt(t) Azu(t+1)) = (07(t)Vo11(t))),t €
[9,13]. We have((zt(t) Azu(t+1)) = o7(t)), t € [14,16].

at same time t. The clausego;(t) A 0;(t)),t € [0,k — 1]

are generated for all pairs of such actions to represent this
constraint in the encoding.

18. If o; has pre-conditiop which it also deletes and action
o;j only deletes (o; does not need), then ifo; starts at,
theno, cannot startatatimg > ¢t if (t'+d;) = (t+d;). To
represent this in the encoding, the clausés; (t) A 0;(t'))

are generated for all pairs of such actions, for all tihasd

t' suchthat + d;) = (t' +d;),t’ > t,t € [0,k — 1], €
[0,k —1].

19. If actionso; ando; both only delete some flueptand
both do not neeg, then it cannot be the case thatends

at starting time ob;. This avoids consecutive deletions of
a fluent without making the fluent true. To represent this

This constraint does not lead to any clauses for the change in the encoding, the clausego;(t) A o;(t')) are generated

in state ofx from true to unknown fot € [17,19]. This is
because any action changingn this fashion will end after
t = 20 in case it starts at time 17 or later.
13. If fluentp is false at timg € [0, k — 2] and undefined at
time (¢ 4+ 1), some action of duration greater than 1 which
makesp true must occur (start) at tinte
14.If fluentp is undefined at time € [0, k — 1] and false at
time (¢+1), some actiom, of duration greater than 1 which
makesp false must start at timg + 1 — d;). For example,
if 05,07 andoyg are the only actions which delete fluant
andds = 2,d; = 5 andd;y = 7, then this constraint is
represented bi(yu(t) Ayf(t+1)) = (o5(t —1) Vor(t —
4) V 019(t — 6))).
15. If fluent p is undefined at time € [0,k — 1] and true
attime(¢ + 1), some actiom; with duration greater than 1
which make9 true must start at tim@ + 1 — d;).

All of the following constraints represent mutual exclu-
sion relations between actions. These contribiité. |
O |?) clauses to the encoding. These constraints are identi-
fied after taking into account the all possible kinds of tem-
poral relationships between two actions (seven types) from
Figure 1 and all possible effects two actions may have on
a fluentp. Given two actions; ando; and a fluenp, the
actions can affect the fluent in the following ways: (i) both
o; ando; needp and both delete, (i) only o; needs and
botho; ando; deletep, (iii) neither o; nor o; needsp and
both deletep, (iv) neithero; noro; needs and both make
ptrue, (v)o; makesp true and; only delete9, (vi) o; only
needg ando; only deleteg and, (vii) o; makesp true and
o; both needg and deletegp.
16. If two actionso; ando; have same duration such that
o; deletes pre-condition af;, theno; ando; cannot start at
same timef. The clauses (o;(t) A 0;(t)),t € [0,k — 1]
are generated for all pairs of such actions to represent this
constraint in the encoding.
17. If o; with duration greater than 1 deletes pre-condition
p of actiono; which has duration 1 such thaf does not
delete its own pre-conditiop, theno; ando; cannot start

for all pairs of such actions, for all timesandt’ such that
(t+d;)=t,tec[0,k—1],t c[0,k—1].
20. If two actionso; ando; both only delete some fluept
and both do not need it, then it cannot be the casedhat
ends at ending time af;. To represent this in the encoding,
the clauses(o;(t) A 0,(t")) are generated for all pairs of
such actions, for all times and¢’ such that(t + d;) =
(t'+d;),t €[0,k—1],¢' € [0,k —1].

The encoding contain®(k.(| O | + | U |)) variables
andO(k.(| O | + | U |) + k. | O |?) clauses. The number
of variables and clauses in the SAT encoding of a temporal
planning problem are respectively higher than the the num-
ber of variables and clauses in the encoding of the same
problem with all action durations setto 1. This is mainly be-
cause of the action durations and the three variables needed
to model three different states of each fluent.

4 Discussion

We showed how temporal planning can be encoded as a
SAT problem and found the asymptotic number of vari-
ables and clauses in the encoding. In this section, we
show how the size of this encoding can be reduced with-
out losing soundness and completeness. We also show how
this encoding can be adapted to the more complex case
of temporal planning in which it is not necessary for all
pre-conditions of an action to be true at the same time and
different effects of an action may become true at different
times during its execution. We also show how the encoding
is useful in casting temporal planning as a CSP other than
SAT.

4.1 Reducing Encoding Size

Though a smaller encoding is not always easier to solve,
smaller encodings have been shown to be solvable faster
[Kautz & Selman 1996], [Ernst et al 1997], [Mali 1999].
The size of an encoding can be reduced by propagating the
truth assigned to unit clauses. Such unit clauses are avail-
able in the specification of initial state and goal in the en-
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Figure 1: Temporal relations between two actiohando”

coding. Almost all SAT simplification techniques which

apply to the case where all actions have duration 1 also ap-

sitions (which are effects of these actions) in proposition
level (i + 1).

ply to the case where actions have unequal durations and A key to the efficiency of Graphplan is the inference of

we will not discuss these.
One can select an accurate valuekafo avoid solving

several encodings generated with unacceptable lower val-

ues ofk. The planning graph [Blum & Furst 1997] can be
used to wisely choose the valuelofGraphplan works in 2
phases. The first involves growingkanning graph and is
called theplangraph construction phase. This is a forward

binary mutex (mutually exclusive) relations. Two kinds of
mutexes are found: (i) mutexes between actions, and (ii)
mutexes between propositions. Each of these two kinds
of mutexes could be static or dynamic. Static mutexes are
found by examining pre-conditions and effects of actions.
Dynamic mutexes are found by propagating static mutexes
using truths of conditions in the initial state. Note that dy-

phase, beginning with the initial state. The second phase is namic mutexes may be permanent or temporary. Two ac-
a solution extraction phase. This is backward search phasetions at action levef are mutex if (i) their effects are in-

starting with the goal. Plangraph, or planning graph (PG),
has two kinds of levels calleattion levelsandproposition
levels The Oth proposition level is the same as the initial
state. The Oth proposition level occurs before the Oth action
level which in turn occurs before the 1st proposition level
which precedes the 1st action level, etc. In general; the
proposition level is immediately succeeded by ttth ac-
tion level. And, thei th action level immediately precedes
(i 4+ 1) th proposition level. A proposition level and an ac-

consistent (the effect of one action is the negation of some
effect of another action), or (ii) one action deletes some pre-
condition of another action, or (iii) the actions have pre-
conditions that are mutex at proposition level For (iii)

one needs to understand the definition of mutex proposi-
tions given next. Two propositions ¢ in proposition level

i+ are mutex if (i)p is the negation of, or (ii) all ways (ac-
tions) of achievingy are mutex with all ways (actions) of
achievingg. Note that while considering all ways of achiev-

tion level can be considered as sets whose members are theéng a proposition, no-ops are also considered.

same as the contents of these levels. iteaction level in

the plangraph contains all actions whose all pre-conditions
appear in the th proposition level. There is also a dummy
action called ano-op, maintenance action or persistence
action in the i th action level for each proposition in the

1 th proposition level. The pre-condition and effect of this
action is the proposition for which the action was created.
This action is included in the plangraph because if no action
changing the truth of the proposition occurs, the truth of the
proposition remains same. Tke+ 1) th proposition level

is the union of the th proposition level and the effects of
the actions in thée th action level. Thus, proposition levél

is a superset of proposition levgl— 1). Similarly, action
level: is a superset of action levél — 1).

There are three kinds of edges in plangrafifh:edges
from propositions in proposition levéto the same proposi-
tions in proposition leveli+1) (for no-ops) (ii) edges from
propositions in proposition level to actions (whose pre-
condition list contains these propositions) in action level
¢+ and (iii) edges from actions in action levélto propo-

If the plangraph has a proposition level that contains all
conditions from the goal such that no two of these are mu-
tex, Graphplan starts a backward search for a plan. For
each condition in the goal, it chooses a source of sup-
port (an action) in the immediately preceding action level.
The pre-conditions of these actions become subgoals to be
achieved. If no two pre-conditions of the chosen actions
are mutex, it chooses sources of support for these subgoals
from the immediately preceding action level and continues
this process. In case subgoals are found to be mutex, it
backtracks, chooses different sources of support, and re-
peats this process. If all combinations of the supporting
actions fail for each subgoal at each proposition level, then
Graphplan grows plangraph with one more action level and
proposition level and tries the backward solution extraction
process again. If no solution is found, Graphplan extends
planning graph by one action level and 1 proposition level
and tries the solution extraction again. Graphplan is guar-
anteed to report unsolvability of a problem. A plangraph is
said tolevel off if the none of the following change when
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the plangraph is grown further: (i) the number of actions
in last action level, (ii) the number of propositions in last
proposition level, (iii) the number of pairs of actions that
are mutex in last action level, and (iv) the number of pairs
of mutex propositions in last proposition level. In the plan-
ning graph in Fig. 2, false propositions are not shown in
proposition levels for readability. Because of same reason,
mutex relations are not shown. The planning graph has 3
proposition levels and 2 action levels. M1, M2, M3 and
M4 are actions in the domain. The pre-conditions and ef-
fects of these actions are shown on the left and right sides
of the boxes respectively. Here is the planning graph figure.
The goal is achievable with the plan Step 0: M2, Step 1:
M1 & M3. The actions M1 and M2 are static mutex and
the actions M3, M4 are dynamic mutex in the first action
level. Kautz & Selman have shown that planning graph can
be used to reduce the size of a SAT encoding for planning
with actions of unit duration [Kautz & Selman 1999].

(lniid Sate: A& B Goa Sate E&F )

< A B>
Action Descriptions
AC—>[MIc——> B&F
‘ NOP M2 ML NOP ‘ B >[M2c——> -B&D

D—>MIC—> E
F—>Mj——>c

NOP M3 M2 NOP ‘
1

< A D c F E B

‘ NQP NQP M1

Figure 2: A planning graph

It is clear that actions that do not appear in the last
action level of the leveled off planning graph are not
relevant to solving the problem. Such actions need not
be represented in the SAT encoding. Let us consider
a leveled off planning graph with four action levels
which are {02,04}, {02,04,05}, {02,04,05,08709},
and, {o2,04,05,08,09,011} respectively, excluding
no-ops from the action levels. This planning graph is
constructed by Graphplan [Blum & Furst 1997]. If
O = {o; | 1 < i < 20}, then it can be concluded that
actions o1, 03, 0s, 07, 010, 012, 013, 014, 015,016,017, 018,

019 andogq are not relevant to solving the problem. These
need not be represented in the encoding for temporal
planning. Sinceos occurs in the first action level of
the planning graph, it is clear that in casge occurs in
temporal plan, its start time will be greater than or equal
to min(da,d4). This is because the planning graph shows
that o5 can occur only after one or more of the actions
from {02, 04} occur. This means that we need not create
variablesos (t), t € [0, min(dz,ds) — 1]. Similar argument
shows that we need not create the following variables:

og(t1),t1 € [0,(min(ds,ds) + min(ds,ds,ds)) — 1],
Og(tg),tg S [O, (min(dg,d4) + min(dg,d4,d5)) — 1]
and,011(f3),t3 S [0, (min(dg,d4) + min(dg,d4,d5) +
min(ds,ds,ds, ds,dg)) — 1]. This significantly reduces
the number of variables and clauses in the encoding.
This also reduces the number of literals in various
clauses. The number of stepan then be chosen so that
0 <k < 60" wheret = (min(d2,d4)+min(d2, d4,d5)+
min(d27d4,d5,d8,d9) + min(d27d4,d5,d8,d9,d11))
and 6" (max(de,ds) + max(da,dys,ds) +
ma:c(dg, d47d5,d8, dg) + max(dg, d4, d5,dg, dg, dll))

4.2 More Complex Temporal Planning

We assumed that all pre-conditions of an action are true
at the same time which is same as the time of start of ex-
ecution of the action. We also assumed that all effects
of an action hold at the same time which is same as the
time of end of execution of the action. In reality, dif-
ferent effects may hold at different times and it may not
be necessary for all pre-conditions of an action to hold
at the same time. Consider the actiowve(A, B, C)
which moves blockA from top of block B to top of
block C. Its pre-conditions arelear(A),on(A, B) and
clear(C). Let us assume that there are several grippers and
one does not need the pre-conditibind — empty. The
effects of this action aren(A, C), ~clear(C), clear(B)
and,—on(A4, B). clear(A) andon(A, B) have to be true

at same time. Howevetlear(C) can become true later
during the execution of the action since some other ac-
tion may move block from the top aof' before A is put
onC. The effect-on(A, B) holds immediately and the ef-
fecton(A, C') becomes true much later. Consider the action
fly(P, London, Paris) which flies planeP from London

to Paris. Its effects areut(P, Paris), ~at(P, London).

It is clear that—at(P, London) becomes true much ear-
lier thanat(P, Paris). Such an action may be specified
with times at which various pre-conditions are needed true
relative tos and various effects become true, relativesto
wheres is start time of the action.

Let us see whether one needs to change constraints from
section 3 to handle such actions and if so how. Constraints
1 through 4 do not need any change to handle such ac-
tions. Constraint 5 needs a minor change. The new con-
straint specifies that different pre-conditions and effects are
true at different times. Constraints 6 and 7 do not need any
change. Constraint 8 needs a minor change. The new con-
straint states that pre-condition of an action deleted by itself
is undefined over the interv@d + 1,¢ + r — 1], when the
pre-condition is deleted time units after the start of the
action,t being start time of the action. Constraint 9 needs
a minor change to specify that different effects of an action
are undefined over different time intervals. Constraints 10
and 11 do not need any change. Constraint 12 needs a mi-
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nor change. The new constraint states that if a flyeist classical assumptions to more expressive planning. More
true at timet and undefined at tim@ + 1), some action of expressive planning involves dealing with metric time,
duration greater than 1 which delefeat two time units or conditional effects, quantifiers and resource quantities.
more later than the time of start of its execution must occur Verifying the soundness and completeness of such planners
at timet. The remaining constraints can be easily adapted which cast planning as some kind of CSP is non-trivial.

to handle such actions. We developed a SAT encoding for temporal planning such
) that that the encoding is solvable if and only if there is a
4.3 Temporal Planning as CSP other than SAT plan whose execution time is less than or equal to chosen

Since SAT can be easily transformed into 0-1 ILP, an Pound(k + 1). We showed how the size of the encoding
ILP encoding of temporal planning can be directly cre- ©an be significantly reduced using information in planning

ated using our SAT encoding. For example, the clause 9raph. We showed how the SAT encoding can be adapted
(z V y V =z V —b) can be translated into the linear con- 0 handle actions all of whose pre-conditions need not be

straint (z/ +y/ + (1 — 2/) + (1 — ¥')) > 1 where the true at same time and/or whose effects become true at
domain of the integer variables, ', 2/, v is 0,1]. The different times. We also showed how the SAT encoding is

direct translation of our SAT encoding into 0-1 ILP encod- US€ful in casting temporal planning as a 0-1 ILP and as a
ing leads toO(k.(| O | + | U |)) integer variables and ~ CSP different from SAT and 0-1 ILP.
Ok.(|O | +|U|)+k.|O |?) linear constraints among
these. It has been empirically shown in [Vossen et al 2000] Acknowledgement - This work is supported in part by
that the ILP formulations need to be stronger to be easily NSF grant 11IS-0119630 to Mali. Mali also thanks students
solvable. The strength of an ILP formulation obtained by a in his graduate course "Artificial Intelligence Planning
direct translation of SAT can be improved by adding con- Techniques” (CS-790-001) taught in Fall 2000 and Fall
straints so as to reduce the number of non-integer solutions 2001 for useful discussions.
of the ILP formulation.
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Abstract

In this paperwe presentTANDOR, a domain-independent
temporalplannerthat handlesdurative actionsand returns
a setof solution plansorderedby increasingtemporalcost.
TANDOR guaranteethefirst solutionto bethe minimal du-
ration plan; next solutionwill be a longer plan and so on.
This functionality is quite relevantin mary domainsasthe
usermight be interestedin obtaininga good planin terms
of executioncostratherthanthe minimal durationsolution.
TANDOR appliesa heuristicextractedfrom a problemre-
laxationto guidea regressionsearchin anplanspacewhich
encodeghe differentalternatve solutionsto a problem.Un-
like statespacetemporalplanners,the branchingfactorin
TANDOR s vastly reducedthus allowing to obtain a very
goodperformancen athe experimentalevaluation.

INTRODUCTION

Classicaplanningmodelsarenotsuitablefor temporalplan-
ning domainswhereactionstake differenttimes,actionscan
be executedconcurrentlyand plansneedto achieve goals
within givendeadlinesThe maingoalin temporalplanning
is to computethe minimal durationplan. This optimal so-
lution usually entailsa high costin the plan executionas
more resourcedr more expensve resourcesare neededo

carry out the plan. This way, a trip from city A to city B

will befasterby planebut alsomoreexpensve thandriving

betweerbothcities. Or usinga singlevehicleto transporta
setof objectsratherthanseveralvehiclesmight be a prefer

ablesolutionif the userwantsto usethe minimum number
of resourcegspossible.

TANDOR is a domain-independeriemporalplannerca-
pable to efficiently computesereral solution plans for a
given temporalproblem. TANDOR guaranteeshe mini-
mal durationplan. Afterwards,it progressiely computes
othersolutionplansin increasingemporalcost. TANDOR
behaesvery muchlike POCL planners. Unlike standard
partial-ordeplanning, TANDOR is apropositionatemporal
plannerwhich usesthe information extractedfrom a prob-
lem relaxationto guidearegressiorsearchin aplanspace.

*This work hasbeenpartially supportedoy projectsDP12001-
2094-C03-03MCyT), UPV n. 2001001 7andUPV n. 20010980.
Copyright © 2002, American Associationfor Artificial Intelli-
gence(www.aaai.og). All rightsresenred.
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The main contribution of TANDOR s its excellentper
formanceand scaling-upas shown in the experimentalre-
sultsfor severaltemporaldomains. Unlike mostof the re-
cent heuristictemporalplanners,namely TP4 (Haslum &
Geffner2001)or SARA (Do & Kambhampat001),which
arestatespaceplannersTANDOR workson aspaceof tem-
poralplans,whatallows to vastly reducethe branchingfac-
tor duringthe searchprocess At eachplannodeTANDOR
appliesa completeprocesof conflict checkingto obtainall
possibletemporalsolutions.

Thispaperis organizedasfollows: next sectionshonvsthe
structureof durative actionsusedin TANDOR, the follow-
ing oneis a brief revision on the main conceptsof POCL
planning, sectionComponentof TANDOR explains the
maincomponent®f thetemporalplanner sectionConflicts
shaws the conflict resolutionprocesssectionTPOP algo-
rithm givesa completedescriptionof the algorithmimple-
mentedin TANDOR; last but one sectionshavs someex-
perimentalresultsobtainedwith TANDOR andlast section
concludes.

INTERNAL MODEL OF TIME: DURATIVE
ACTIONS

TANDOR handlesa very simple model of duratve ac-
tions. Unlike consenative modelsof actions(Smith& Weld
1999),durative actionsallow to includelocal conditionsand
effectsto be satisfiedat differenttimesduringthe execution
of the action. This approachallow actionsto overlapeven
whentheirprecondition®r effectsreferto the sameproposi-
tionsbecaus@ow all literalsareannotatedvith time points.
TANDOR hasbeenadaptedto the new versionof PDDL
languagePDDL 2.1 (Fox & Long 2001).Fromall thecom-
ponentscitedin (Fox & Long 2001), TANDOR makesuse
of all but endconditions

The two basic componentsin TANDOR are temporal
propositionsandtemporalactions.A temporalproposition,
m, isatuple< p,t > wherep is the propositionandt is the
timeinstantatwhichp is produced A temporalactiona is a
tuple< a, s, e > wherea representtheactionitself, s is the
starttime ande theendtime of theaction(e = s + dur(a)).

Leta =< a,s,e > beatemporalaction:

e Cond(a) = SCond(a) U Inv(a) whereSCond(a) is the
setof conditionsto beguaranteedtthe startof theaction



andlnv(a) is the setof invariantconditionsthatmustbe
guaranteedverthe executionof theaction[s, e].

e Eff(e) = SEff(a)UEEff(a) whereSEff(a) = SAdd(a)U
SDel(a) is the setof effectsto be assertedttime s, and
EEff(a) = EAdd(a) U EDel(a) is the setof positive and
negative effectsto be assertedat time e. Givena =<
a,s,e >, SEff(a) = {< p,t >: p € Add(a) U Del(a) A
t = s} andEEff(a) = {< p,t >: p € Add(a) U Del(a) A
t=e}.

TANDOR dealswith adiscretemodelof time andwe will
assumehatconditionsandnegative effectsof a sameaction
cansimultaneouslyccuratthe sametime pointwithoutbe-
ing this a causeof inconsisteng in the model. In the same
way, positive effects are available sincethe first instantof
time at which they are produced. Thatis, we will assume
closedtemporalintervalsfor the effectsof anaction.

REVIEWING SOME POCL CONCEPTS

POCL plannerswork on a plan spaceby progressiely re-
fining an initial empty plan. Eachnodein the plan space
encodes partial-ordemplan which is constructedby incre-
mentallyaddingall plan components.The basicPOPLAN
algorithmis shovnin Tablel (Yang1997).

Algorithm POPLAN(©, IT;,,:);

Input: A setof planningoperatorsd, andaninitial plan
I1;,,;; consistingof a startstepanda finish stepanda con-
straintthatthe startstepbe beforethefinish step;

Output: A correctplanif asolutioncanbefound.

OpenlLi st
r epeat
II: = Sel ect Pl an (OpenlLi st);
renove II from Qpenli st ;
if Correct (II)= TRUE then return(Il);
el se
flaw : = Sel ect Fl awm( II) ;
if flawis a threat then

D= et

Succ : = Resol ve-Threat (flaw, II);
el se
Succ : = Establish-Precond (II);
add all nodes in Succ to QpenlLi st;
until OpenList is enpty;

return (fail);

Tablel: POPLANalgorithm

The search-controproblemin POCL plannersoccursin
two dimensions.In the first, a decisionhasto be madeas
to which nodeamongthe setof all frontier nodesshouldbe
selectechext for expansion.A seconddimensionof search
control is definedas the problemof selectinga next flaw
from the selectechodeto work on.

Threats A threatrepresents potentialconflict between
an effect of a step S; in the plan and a causallink when
S; cannullify thelink (Peot& Smith 1993). Threatscan
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be solved by applyingdemotionof S;, promotionof S; or
by introducinga variable-bindingconstraintto sepaate the
potentialvaluesthattwo variablescanbeassignedo.

COMPONENTS OF TANDOR

TANDOR behaesvery muchlike POCL planners.Unlike
standargartial-ordemplanning, TANDOR is apropositional
temporalplannerwhich usesheinformationextractedfrom
a problemrelaxationto guide a regressionsearchin a plan
space.

Thegoalof TANDOR is to computethe solutionplansin
increasingorder of temporalcost. First stageof the algo-
rithm builds arelaxedplanninggraphwhichis laterusedfor
the calculationof admissibleheuristics.During the second
stageTANDOR incrementallybuilds the plan spacewhere
eachnoderepresentadifferentalternative to solve theprob-
lem.

Creatingthe Temporal Planning Graph

The Temporal Planning Graph (TPG) is a relaxed graph
where delete effects of actionsareignored. The TPG is
adirected,layeredgraphalternatingpropositionandaction
levels.

Definition 1 (propositionlevel) A propositionlevel P[t] is
madeup of all tempoal propositionsgeneated at time ¢.
PI0] consistof all theliterals in theinitial situation.

Pltl={<p,t>t=0V3a=<a,s,e>A<p,t>€
{SAdd(e) U EAdd(a)}}

Definition 2 (action level) Anactionlevel A[t] isformedby
all tempoal actionsthat canbeexecutedat timet andhave
notappeaedin a previousactionlevel.

Alt] = {a =< a,t,e >: VYp € Cond(a) 3 < p,t' >
[t <t AVB=<ada,s,e > s <t—ad#a}

First level in the TPG is P[0] which containsall liter-
alsin the initial situation. Given a propositionlevel P[],
TANDOR checkswhetherit is possibleto createA[¢] ac-
cordingto definition 2. Notice that no specialcheckingis
requiredfor invariantconditionsasdeleteeffectsof actions
areignoredin the TPG . OnceA[t] is createdthe effectsof
actionsin A[t] areaddedin the correspondingproposition
level accordingo definition1. Following, TANDOR moves
forwardin time to the next P[t] andthe processds repeated
again.

The TPG creationterminatesvhenno new temporalac-
tionscanbeaddedn thegraph thatis whenthelastproposi-
tion level hasbeenanalyzed.Notice the TPG creationdoes
not stop when a propositionlevel P[t] containingall top-
level goalsis reached.This is sobecausave cannot guar
anteethat the solution comprisedfrom P[0] to P[¢] is the
minimal durationplan as deleteeffects have beenignored
andconflictsamongactionstoo. Consequentlythe TPG is
afully extendedgraphwhich containsat leastone tempo-
ral instanceof eachdifferentactionandencodesll different
temporalplansfor the problemat hand. The valuet of the
firsttemporalpropositionevel P[t] whereall top-level goals
have appeareds usedasa lower boundduring the second



stageandwill representhe durationof the optimal plan if
no harmfulinteractionsoccuramongactions.

The set of fully instantiatedactionsextractedfrom the
TPG is usedin two ways:

a) in the unificationprocesst the time of finding an action
whoseeffectsachieve a precondition

b) to computeheestimatediurationof thepartialplancom-
prisedin anode

Creating the spaceof temporal plans

Thesecondstageof TANDOR is aregressiorsearchprocess
to createthe spaceof temporalplans. Eachnode(temporal
plan)in thesearchspacds anAND graph,(AG), andrepre-
sentsapartialsolutionplan. Fromtheinformationcontained
in the TPG, TANDOR computeghe estimateddurationof
the partialplancomprisedn the AG .

The plan comprisedin an AG may contain conflicts or
harmful interactionsamongthe actionsin the node. The
conflictresolutionusuallyentailsan updatingof the AG es-
timatedvalue. Whenthis valueis higherthanthe valuesof
the remainingsolutions(frontier nodesof the plan space),
TANDOR selectsanotherAG andproceedsn thesameway.

Following, we detail the compositionof AND graphs.
Next sectionexplainsthe typesof conflictsandtheir reso-
lution andthe following one shaws the completealgorithm
of thetemporalplanner(TPOP ).

Structur e of AND graphs

Definition 3 (AND graph) An AG isatuple< N, E,h >
whee:

e N is a setof tempoal actionswhee eath nodeis the
producerof a tempoal proposition

e F is a setof tempoal ordering relationsamongactions
in N

e h is theestimatedverall duration of the partial solution
plan comprisedn the AG

Definition 4 (temporal ordering relation) Let
a =< a,s,e > andf =< d,s,¢ >. A tempo-
ral ordering relation betweena and g (representedas

o <be B)isatuple< t,d > whee:

t is the type of ordering relation and representsthe two
time points (start/endtimesof a and 3) betweenwhich
therelationis posed

e d is the minimal tempoal distancebetweenboth time
points

Thefour typesof orderingrelationsare:

o a <=5 gindicatesthat 8 startsits executionafter d
time unitshave elapsedrom the starttime of ¢, i.e. s’ >
s+d

o a 29" gindicateshatexecutionof 8 will finishafter
d time units have elapsedfrom the starttime of «, i.e.
e >s+d

28

Table2: Transitvinesspropertyfor temporalorderingrela-
tions

B |s—sd |s—ed |e—sd |e—ed
o~
a—f
s—s,d | <s—s, | <s—e | <s—s, | <s—e,
d+d > |d+d > |d+d + |d+d +
dur(B) > | dur(B) >
s—e,d | <s—s, |[<s—e |[<s—s, | <s—e,
d+d —|d+d - |d+d > |d+d >
dur(8) > | dur(B) >
e—s,d | <e—s, | <e—e | <e—s, | <e—ce,
d+d > |d+d > |d+d + |d+d +
dur(8) > | dur(B) >
e—ed |<e—s, | <e—e | <e—s, | <e—ce,
d+d —|d+d - |d+d > |d+d >
dur(B) > | dur(B) >

o a <N B indicatesthat executionof g startsafter d
time units have elapsedrom theendtime of a, i.e. s’ >
e+d

o a <=4 gindicateshatexecutionof 3 will finish after
dtimeunitshave elapsedrom theendtime of ¢, i.e. e’ >
e+d

Temporalorderingrelationsfulfill thetransitvinessprop-
erty. Table 2 shows the resultsof combiningthe different
typesof temporalorderings. Rows representx — 8 and
columnsg — .

Orderingrelationsare also usedto set causallinks be-
tweena produceranda neederaction. Therearetwo types
of causalinks accordingto the productiontime of effects:

o a 5" B.d>0,if 3 < pt > SAdd(a) Ap €
Cond(B) At < &

o a =% 8.d > 0,if 3 < p,t > EAdd(a) Ap €

Cond(B) At < s

torepresenthata startor endeffectof «a is usedto satisfy
a conditionof 3. Notice that no matterthe type of condi-
tion of B asboth startconditionsandinvariantsrequirethe
effectto hold atthe beginning of the neederaction. We will
simplify the representationf causallinks by usingthe no-

tationa <t_:S$d> B, which denotesitherof the two above
orderingrelations.
Obviously, transitivinessis also appliedto causallinks.

For example, if @ <=3 g andpg <=~ 4, a
causallink betweena and v would be representedas

<e—s,d+d +dur(B)>
o e—s ur(B3) "

Property 1 (correctnessand consistencyof an AND graph)
AG =< N,E,h > is correct and consistent if
VB =< a,s,e >€ N p € Cond(5):

1) 3a€N:a<t_Sd>B€Eand



2) if p e SCond(B) —
Vy € N :< —p,t' >€ SDel(y) U EDel(y) —
t<t<sVt<s<t
if p € Inv(8) -
Vy € N : < —p,t' >€ SDel(y) U EDel(y) —
<t<svVt<e<t

Basically propertyl stateghatan AG is correctandcon-
sistentif thereexists a produceractionfor every condition
of all actionsin the AG andthereis nota contradictorytem-
poral propositionbetweerthe productiontime pointandthe
requiredtime interval.

Definition 5 (temporal solution plan) A valid tempoal
planfor a planningproblemis the setof nodesN of a cor-
rectandconsisteniAG.

CONFLICTS

Conflictsarisewhenpropertyl is not satisfied.Particularly,
if part1) of propertyl holdsandpart?2) fails thena definite
conflictis foundin the graph. Otherwise whenthe causal
link is notestablisheget, thereexistsa potentialconflictin
the AG. Conceptuallyconflictsarevery similar to threatsin
partial-ordercausal-linkplanning.

TANDOR is aimedto detectpotentialconflictsin AND
graphs. When a potential conflict is found in an AG,
TANDOR createsall possibleconflict-freecombinationsof
actions.

Definition 6 (potential conflict) Let AG = (N, E,h)
wheea =< a,s,e >, 3 € N. ¢(a, B) isapotentialconflict
if oneof thetwo following expressionsolds:

1) p € SCond(a)A < p,t' >€ SDel(8) UEDel(8) At' <
s
2)p € Inv(a)A < p,t' >€ SDel(8) UEDel(B) At <e

Solving (avoiding) a potentialconflictimpliesto createa
conflict-freeAG beforesolvingthe conditionsof theactions
involvedin theconflict. Let ¢(a, §) beapotentialconflictas
definedin 6. Therearetwo generalvaysof solvingpotential
conflicts.

Method 1. Choosea produceractiony for « suchthat <
p,t >€ SAdd(y) UEAdd(vy) andpostthetemporalordering

relationsg <"=%"> ~ andy <=2~ a.
Let')’ =< a/,sl,el > andt = 8 if < p,t >c SAdd(’y)
ort =e; if <p,¢t >€ EAdd(y):

e if t' <t < sthennoneof theactionshasto be moved

e if ¢ < ¢’ thenthetemporalorderingrelation <t 4l 0%
impliesto move« forwardin time adistanceof t' — ¢t + 1
time units

o if ¢ > s thenthecausalink ~ <>y impliesto move
« forwardin time adistanceof t — s time units.

This is a generalmethodto solve ary type of conflict. If
the produceraction+ is alreadyestablishedn the AG then
the conflictbecomes definiteconflict.

A commoncharacteristiof this solving methodis thatit
malkes necessaryhe useof two different produceractions
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Figure?2: Conflictresolution:method2

for « and . Figurel shaws the four possiblecasesf ap-
plication of method1. Dashedlines indicateorderingre-
lationsand solid lines causallinks. Conditionsare placed
above the correspondingime point of the actionand pos-
itive and neagtve effectsbelow the action. Clearly; in the
four cases? needsanothemproduceractionfor its condition
p. Notice that this resolutionmethodis alsovalid in case
< p,s >€ SDel(a) or < p,e >€ EDel(a).

Method 2. The secondmethodis only applicableif it is
feasibleto seta directtemporalorderingrelationbetweenx
andg, regardlesshe produceractionsof a andg.

e if p € SCond(a) then establishthe temporalordering

<s—t',1> . S .
a ~°=537 B, which moves forwardin time a distance

of s — ¢/ 4+ 1 time units
o if p € Inv(a) then establishthe temporal ordering

o <L B, which movesg forwardin time a distance
of e — t' + 1 time units

Notice that this resolution methodis not valid if p €
SCond(a)A < p,s >€ SDel(a) orp € Inv(a)A < p,e >€
EDel(«). In thefour caseshown in Figure2 botha and
cansharethe sameproduceraction.

Oncedescribedhe two generalconflict resolutionmeth-
ods,we cangive a definitionof unsohableconflict.



Definition 7 (unsolvable conflict) ¢(«, 3) is anunsolvable
conflictif botha and 3 share thesameproduceractionand

method2 of resolutioncannotbe applied, that is it is not

feasibleto establisha directtempoal ordering betweeny

andg.

TPOP ALGORITHM

The algorithmto build the temporalPOP(TPOP ) is very
similar to the standard®OPLAN algorithmshown in table
1. Therearesomedifferenceghough:

e Unification process While POP planners use a
establish — precond procedurdo find all possiblechoices
to achieve a goal, TANDOR malkes use of the already
instantiatedactionsin the TPG. This way, the pattern
matchingprocesss lesscostly asactionsareinstantiated
only once.

e Precondition resolution When solving a precondition
p of anactiona;, TANDOR might usean actionin the
TPG (new stepin POCL planners)r analreadyexisting
actionin the AG itself (old stepin POCL planners). If
bothchoicescomefrom the sameoperatoy TANDOR ig-
noresthe creationof a successonodewhich introducesa
new actionfrom the TPG andonly keepsonechild node
with the old actionfrom the AG . This apparentack of
completenesss recoveredduring the conflict resolution
processvhenapplyingMethod1. Actually, Method1 is
atechniquebasedon the white-knightconceptdeveloped
by Chapman(Chapmanl987)to restorea precondition.
The useof this so called restoation techniquehasbeen
successfullyappliedin POCL plannerdor solvingthreats
(SebastiaDnaindia,& Marzal2000). In summaryif us-
ing anexisting actionin the AG to achieve a precondition
is a wrong choicethena conflict will eventuallyarisein
the AG andit will be solvedby meansof the methodsex-
posedn theprevioussection.

The TPOP algorithmis inputthe TPG of a problemand
returnsthe minimal durationtemporalplan. If thealgorithm
keepson being executedit will return other solutionsor-
deredby increasingtemporalcost. The algorithm consists
of thefollowing steps:

1) TPOP initialization . Initially, the TPOP andthefirst AG
, AGy = (N, E, h), is composeaf two ficticiousactions
a =< ag,0,0 >, 8 =< an, h,h >€ N whichrepresent

theinitial andfinal staterespectiely; o <"~ g ¢ E
and h is the time ¢ of the first propositionlevel in the
TPG atwhichall top-level goalsarefoundsimultaneoulsy
(thiswill be,in the bestcase the optimal plan duration).
Cond(p) representshetop-level goalsandEff («) thelit-

eralsin theinitial situation.SetAG = {AG,}.
2) SelectAG.

2.1 if SetAG is emptythenexecutionof TANDOR is fin-
ished.

2.2 AG = minpSetAG.
3) Selectflaw from AG.

30

3.1 if AG containspotentialconflicts
x selectaconflictc andcreateall possiblewvaysof solv-
ing ¢ by applyingmethod 1 andmethod 2.
x for each method application create an AG

{AGy,AGy,...}.
* SetAG = SetAG — AGU {AG;, AGy,...}.
x goto2

3.2 selectanactiona =< a,s,e >€ N in AG suchthat
Cond(«) areunsohed
x if noneof the actionsin N hasunsohed conditions
thenreturnAG asatemporalsolutionplan. If another
plansolutionis requiredgoto 2; otherwise,TANDOR
executionis finished.
x TANDOR searcheén the TPG for the setof actions
A to generateachp € Cond(a)
x remove§ € A if 8 istheinverseactionof a
*x remove~y € A if theintroductionof -y createsaloop
with apredecessaactionof a
x for eachcombinatiorof valid produceractionfor con-
ditionsin Cond(«) createanAG : {AG1,AG,...}.
*x SetAG = SetAG — AGU {AG;,AGy,...}
* goto2

Thefunctionto computethe heuristicvalueof AG is very
simple. Theestimatediurationof thepartialplancomprised
in AG (startor endtime of the final ficticious action ) is
determinedy thestart/endimesof theactionsin AG . If no
conflictsappearin AG thenstarttimesof actionsaregiven
by the TPG andconsequentlyhevalueof A will remainthe
sameastheinitial value.If someconflictsarisein thegraph
thenthestart/endimesof actionsmaychangeandthesenew
valueswill be propagatedhroughthe graphto updatethe
valueof h accordingly

The propagationprocesscomputesthe new start/end
timesof actionsaccordingto the changegrovoked by the
conflict resolution(seesection). Then for a given node
a =< a,s,e > whoseconditionsare all solved (Vp €

Cond(a) 38 : B <=5 & € E), the starttime of a is
computedass = max; pecond(a) < Pyt >€ SAdd(B3) U
EAdd(3). This processs repeateduccessiely up to reach-
ing thefinal ficticiousaction.

Thereareseveral criteriathat TANDOR appliesto prune

anodein thesearctspace:
1) anunsohableconflictis foundin the AG

2) theonly choiceto achiere aconditionof anactiona is the
inverseactionof «. Thisdoesnotapplyif 8 anda share

the sameproduceractionand <=2 .
3) theonly choiceto achieve a conditionof anactiona is by
usinganactionwhich generates loopin a branchof the

AG.

By applyingthesecriteriaaswell astheuseof somelocal
heuristicsas“selectfirstly the confictwith leastnumberof
resolutionalternatves” or “selectfirstly the actionwith the
leastnumberof solving choices”, we achiese plan spaces
with verylow branchingfactors.In orderto accomplisteffi-
cienttemporalplanning,branchings asimportantaslower-
boundheuristics.



Table3: Durationof actionsfor thefirst temporaldomain

loading 20 | unloading | 20
fly C1 C2 60 | drive C1 C2] 200
drive C1 C3 | 180 | drive C2 C3| 30

Table4: Resultsfor thefirst temporaldomain

instance | TPG | Sol.1 | Sol.2 | Sol.3 | TOTAL
1 0.051| 0.061| 0.085| 0.107 | 0.304
2 0.051| 0.082| 0.027 | 0.155| 0.315
3 0.063| 0.086| 0.06 | 0.144 | 0.353
4 0.052| 0.118| 0.092 | 0.020| 0.282

SOME EXPERIMENT AL RESULTS

In this sectionwe shov someexperimentalkesultsobtained
with TANDOR. All the testswere run ten times on a
SUN Ultra 10 machine. We evaluatethe performanceof
TANDOR on problemsfrom two metrictemporaldomains.

The first domainis a similar versionof the temporallo-
gisticsdomain. The settingis formedby threecitiesC1, C2
and C3 with airportsin C1 andC2. Thereis oneobjectto
transportfrom C1 to C3. Table3 shows the durationsof ac-
tions(symmetricahctionshavethesameduration).We have
testeddifferentinstance®f this problem,changinghenum-
berandlocationof planesandtrucksamongcities. For each
instancethereare several planswhich TANDOR returnsin
orderof increasingluration.We describeonly thefirst three
plansfor instancel.

¢ instancel. Oneplanein C1; atruckT1in C1 andanother
truck T2 in C2. Theoptimalplanfor thisinstances to fly
from C1 to C2 andthendrivefrom C2 to C3 with truck T2.
The total plan durationis 170 time units. Next solution
takes 220 time units and corresponddgo the plan which
drivesdirectly from C1 to C3 with the truck T1. Next
plantakes270t.u. andconsistsof driving from C1 to C2
with truck T1 andthendrive from C2 to C3 with thesame
truck.

e instance2. Oneplanein C1; atruckin C1 andanother
truckin C3.

¢ instance3. Two planesandtwo trucks,oneplaneandone
truckin C1, theotherplaneandtruckin C2.

e instance4. Oneplanein C2, two trucksin C1 and C2
respectiely.

Table4 shaws the resultsin secondsFirst columnis the
time for the TPG construction,secondcolumn shaws the
time necessaryo obtainthe first solution, third andfourth
columnis the additionaltime to get the secondand third
plan. Lastcolumnshavs thetotal time.

Thedifferenttimesfor eachsolutiondepend®nthenum-
berof conflictsfoundin theresolutionprocessaswell asthe
numberof ways of solving thoseconflicts. As we cansee,
timesarevery similar for all the probleminstances.
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Table5: Resultsfor thezeno-trael domain

instance TPG Sol. | TOTAL
zeno-trael1 | 0.002 | 0.003| 0.005
zeno-trael 2 | 0.007 | 0.019| 0.026
zeno-trael 3 | 0.009| 0.048| 0.057
zeno-trael4 | 0.012| 0.104| 0.116

The seconddomainis the zeno-taveldomain(Penberthy
& Weld 1994)in whichit is necessaryo transporone,two,
threeor four objectsfrom oneplaceto anotheby usingonly
onevehicle. Table5 shows the runningtimesof TANDOR
for the zeno-trael domain. The mostsignificantaspectof
theseresultsis not the timesthemselesbut that TANDOR
scaleaup verywell to reasonablsizedproblems As we can
seein table5 the time for solving one problemis roughly
twice as much as the previous instance. In SAPA (Do &
Kambhampat?001)theresultsobtainedfor zenolto zeno4
in aSunUltra5 machinewith 256 MB RAM gofrom 0.35to
7.76 secondswhenusingthe sum-duation heuristics. And
theresultsof TGP (Smith& Weld 1999)publishedn (Gar
rido, Fox, & Long2001)show that TGP needdessthan0.1
secondgo solve zenolandmorethan100secondgo solve
eitherof theotherinstances.

CONCLUSIONS AND FUTURE WORK

In this paperwe have presentedTANDOR, an admissible
heuristictemporalplannerwhich is ableto returndifferent
solution plans orderedby increasingtemporalcost. This
functionalityis veryrelevantis practicaldomainsastheuser
might be interestedn obtaininga good quality plan rather
thanthe minimal durationone.

TANDOR performsa regressionsearchin a plan space
andappliesaheuristicderivedfrom arelaxedtemporalplan-
ning graph. TANDOR performsverywell in typical tempo-
ral domainsas shavn in the preliminary experimentalre-
sults. The applicationof lower-boundheuristicsin a search
proceswith verylow branchingfactorsis aimedat scability
with reasonabl@lanquality.

Currenly we areinvestigatingon the applicationof POP
heuristicson threatsandgoal selectionto TANDOR. In the
long term, our objective is to incorporateresourcananage-
mentin TANDOR to integrateplanningandscheduling.
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Handling Durative Actions in a Continuous Planning Framework
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Abstract

This paper describes a continuous planning framework to be
used by a planning agent which is situated within an envi-
ronment, in which goals have priorities and deadlines while
actions have duration. In contrast to much work in planning
in which a set of goals is posed to a planner which then gen-
erates a complete plan to achieve such goals, this framework
assumes that goals may be generated continuously, which
requires the interleaving of planning and execution. Con-
straints upon time may mean it is not possible for all goals

to be achieved — as a consequence the planning agent must

be able to prioritise its goals. A crucial component of this
framework is a temporal manager which enables the plan-
ner to reason about whether or not there is sufficient time
available to achieve all goals, and to calculate deadlines for
actions and outstanding subgoals. In this paper, the way in
which the partial order planning paradigm could be extended
to reason with PDDL2.1 level 3 durative actions is also in-
vestigated with a view to incorporating this paradigm within
the continuous planning framework. The issue of plan met-
rics is discussed as the continuous planning framework of-
fers the possibility of evaluating the degree to which plans
support the planning agentaotivationsas well as taking
into account the number of high priority goals that have been
achieved.

Introduction

to the system while it is planning, which requires planning
and execution to be interleaved. Goals have deadlines and
actions take time to execute which means a core compo-
nent of the framework is responsible for reasoning about
whether or not goals may be achieved by their deadlines,
and for assigning deadlines to actions and subgoals. Goals
also have an associated priority so that instead of simply
failing to return a plan if there is insufficient time to satisfy
one or more goals by their deadlines, the system is able to
abandon the achievement of some goals in favour of achiev-
ing others. Finally, the agentraotivationsmay be used as
part of a heuristic to enable the planner to select the most
promising plan for further refinement.

This paper presents the continuous planning framework
in section and then describasotivationsand how they
enable the planning agent to generate and prioritise goals,
and select good plans for subsequent refinement. The core
component, th@lan to achieve goatomponent which uses
an extended partial order planning paradigm is presented
and discussed. The remainder of the paper then describes
how the partial order planning paradigm could be extended
to reason with the extra expressive power of PDDL2.1 level
3 durative actions. Finally, conclusions and further work
are discussed.

The focus of much work on planning is primarily concerned The Continuous Planning Framework

with developing planners which are efficient and which pro- The continuous planning framework is illustrated in figure 1
duce plans that are both sound and complete (Blum & Furst and was designed for an autonomous agent (such as a robot)
1995; Bacchus & Ady 2001; Smith & Weld 1999). Inthese situated within an environment. An underlying assumption
systems, goals are presented by an external user, and planis that the agent (via th@enerate/update goatomponent)

ning ceases either once a plan has been generated whichcan generate new goals in response to its current context
achieves these goals or if the planner fails to generate a (this is encapsulated within the current initial state model,
plan. There is no facility for the achievement of new goals the plan, as well as the agent’s motivations). For the pur-
that are presented to the planner once the planning processpose of this paper it is assumed that this component can
has commenced. In addition, once a plan has been cre- be emulated by a user keying in new goals. Solid rectan-
ated it remains unexecuted. The framework introduced in gular boxes represent the various processes in the frame-
this paper has been designed for an agent situated within anwork that are the focus of this research — these processes
environment which requires continuous planning. It is as- have been implemented using Allegro Common Lisp. The
sumed that the agent has a setradtivationswhich enable dashed boxes represent two components responsible for up-
it to generate and prioritise goals. New goals may be posed dating the agent’'s motivations and and for generating goals.
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roivalions turn may cause new goals to be generated or existing goals
to be updated.

The continuous planning framework is similar to

‘ Sage (Knoblock 1995) — an extension of UCPOP (Pen-

prepbay munn— D N} perthy & ngd 1994) \Nhigh supports sim_ultaneous ac-

i } | AN tions execution and which integrates planning and execu-
Select god Dipdte | tion. Sage however, does not reason about time or take

oreon LT‘}"}?‘?”?} into account the context of the planning agent when choos-
— ot T ing plang for subsequent refinement. The remaindgr of the

tievegoa y paper will focus mostly on the component responsible for

Bxeate i generating plans. A full description of the remaining com-

ponents can be found in (Coddington 2001).
Figure 1: The Continuous Planning/Execution Framework Motivations

Motivations may be thought of as long term higher level
gdrives or emotional states which direct an agent which is
situated within an environment to both plan and act. As-
sociated with each motivation is a value indicating its cur-
rent weight — this value changes over time and provides a
driving force directing the generation of goals to satisfy the
motivation. For example, a truck-driving agent might have
a motivation concerned with conserving fuel. The weight

which the agent continually generates goals in response to associated with this motivation depends upon the level of

its perceived current and predicted future states of the en- fuelin the truck —as the level of fuel c_iecreases and falls b_e-
vironment as well as in response to its motivations. Each 0W some threshold, a goal to replenish the fuel supply will

newly generated goal has a deadline by which it must be be generated. The weight associated with motivations has a
achieved, as well as a value indicating its importance or pri- direct effect upon the priority of goals generated to satisfy
ority. Newly generated goals are added to the representation th0se motivations. Finally, whilst acting to achieve goals,
of the planning problem. The proceSslect goal or action the ag_ent may cause changes to its motivations. ThrOl_Jgh
determines whether one of the goals should be achieved or €X€Culing an action, an agent may support or undermine
whether one of the actions (belonging within a plan) should [tS motivations. For example, the truck-driving agent will
be executed. When this process chooses to achieve a goalundermme the motivation to conserve fuel when it drives
the goal is passed to a planner which plans to achieve the ToM one location to another, and will support that moti-
goal. An important part of the planning process involves vation when it refuels. It is therefore possible to evaluate
determining whether or not goals may be achieved by their the degree to which the actions in a plan (and therefore
deadlines as well as assigning deadlines to actions and sub-IN€ Plan itself) support or undermine the agent's motiva-

goals. The planner generates a search space of alternatived!Ons- This is exploited as part of a plan evaluation metric.
when planning, which requires a plan evaluation metric to In summary, motivations, together with the agent’s context

select the most promising plan for further refinemese-{ (the pgrceived current state and predicted future states cap-
lect best plaih This metric is designed to take into account tured in the plan), enable the agent to generate and priori-

the total duration, the number of actions, the number of high S€ goals with deadlines, and enable the agent to evaluate

priority goals that have been achieved, as well as the degree Pl2ns. favouring plans which best support the motivations.
to which the plan supports the agent's motivations. Full details concerning motivations and the way in which

When a decision is made to execute an action Fe- they cause goals to be generated can be found in (Norman

cute actioncomponent updates the plan and the model of 1997).
the current state to reflect the changes that have occurred . .
following execution. If the actual outcome differs signif- Planning to achieve goals

icantly (i.e. enough to undermine the plan in some way) Figure 2 shows the subcomponents of the planRé&ar( to
from the predicted outcome, the componBetcoveris re- achieve goglin more detail. A goal (selected by the com-
sponsible for repairing the plan. In addition, as a conse- ponentSelect goal or actiohis presented to the planner
guence of changes to the environment and plan following which generates a plan to achieve that goal. Currently, the
execution, the agent’s motivations may change (these are planner uses an extended partial order planning paradigm
updated by the componebipdate motivations which in (for example SNLP (McAllester & Rosenblitt 1991)). Once

These have not been implemented and will not be discusse
in this paper — details can be found in (Norman 1997,
Coddington 2001). The ovals represent knowledge sources
— these represent the planning problem, (including the ini-
tial and goal states as well as the current plan) and the
agent’s motivations.

This framework can be viewed as a dynamic system in
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| about the scalability of partial order planning by presenting
+ novel heuristic control techniques.

Achieve AChleVlng a goal

goal

The partial order planning paradigm has been extended in
¢ Edt e two ways to support the fact that goals have an associated
‘ il deadline and a value indicating their importance, while ac-

Estimate A tions have duration.

deadlines

Plan to achieve goal e When creating a new action or further instantiating an
existing action in order to achieve a goal it is necessary
y to estimate the duration of that action. The duration of an
action may depend upon the values assigned to its param-
Figure 2: Planning to achieve a goal eters. For example, the duration assigned to an instance

of the operator schenwdive-to(?x, ?ywill depend upon
the values assigned to the variabfbsand ?y. In this
case, the exact duration can only be determined when
both ?x and ?y have been instantiated. In the current
implementation of the framework, a worst case estimate
of the duration of each incomplete action instantiation
is provided which requires a degree of domain knowl-
edge. For example, if the domain contains a network of
locations within a town, the worst case estimate of the
duration associated with instances of thizze-to(?x, ?y)
would be the time taken to travel between the two fur-
thest apart locations.

a plan has been generated, the compogisstimate dead-
linesis responsible for both determining whether there is
sufficient time available to achieve all goals in the plan as
well as for assigning deadlines to actions (and therefore
subgoals). If this process fails it means there is insufficient
time available to achieve all of the goals within the plan
in which case the plan is edited to remove a goal, together
with its associated actions and constraints. Once a plan has
been edited, thEstimate deadlinesomponent reestimates
deadlines. When the temporal component has successfully
assigned deadlines to actions, the process is complete.

The Plan to achieve goatomponent of the continuous o In order to edit the plan, a record must be kept of the
planning framework was implemented using an extended  dependencies that exist between actions and goals. Cur-

partial order planning paradigm for several reasons. Firstly,  rently, each action contains a list of the goals to which
partial order planners output plans that offer a higher de-  they contribute.

gree of execution flexibility than those generated by Graph-

plan (Blum & Furst 1995) and state search planners and e Goals have a value indicating their priority. Actions
are arguably better suited for frameworks in which plan- which contribute to those goals are also assigned a value
ning and execution are interleaved (Nguyen & Kambham-  indicating their priority — if an action contributes to a sin-
pati 2001). In particular, the set of persistence constraints  gle goal, the action inherits the value indicating the im-
(which maintain the truth of preconditions), may be used portance of that goal, if the action contributes to more
when monitoring the outcome of execution to see whether  than one goal it is assigned the sum of the values indicat-
the remaining plan is still valid. In addition, partial order ing the importance of each goal. Preconditions of actions
planning is arguably more suited than Graphplan or state  have the same priority as their associated action.

search planners to the requirement that new goals may be

generated during the planning process as the new goals may® Actions are assigned values indicating the degree to
simply be added to the set of outstanding goals without ~ which they support the agent's motivations (for further
affecting the planning process. Graphplan style planners, details see (Coddington 2001)).

in contrast, would have to recommence the plan extraction ) ) )

process to take into account the new goals. Smith (Smith, Estimating Deadlines

Frank, & Jonsson 2000) argues that partial order planners Actions and their associated preconditions must be assigned
offer a more promising approach for handling domains with - a deadline in order that the planner can ensure that the goal
durative actions, temporal and resource constraints. The to which they contribute will be met by its deadline. The
main drawback of partial order planning has been the lack purpose of thé&stimate deadlinesomponent is twofold.

of a good heuristic for selecting plans for further refine-

ment; search control is of fundamental importance for par- e To enable theSelect goal or actiomomponent to deter-

tial order planning. However, recent work by (Nguyen & mine which goal is to be achieved or whether an action
Kambhampati 2001) challenges the prevailing pessimism is to be executed.
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e To reason about whether there is sufficient time available repeated. An alternative approach would be to simply re-
to achieve all goals by their respective deadlines. plan from scratch, once it is established that there is insuffi-
) o _ cient time available to achieve all goals, by presenting only
The algorithm adopts a pessimistic approach when esti- 5 supset (selected by taking into account the priorities and
mating deadlines —if actions are only partially ordered with  geadlines of each goal) of the original set of goals (gener-
respect to each other those actions are each assigned the eatgg by the componel@enerate/update go3lso the plan-
liest possible deadline. For example, if three actiensu, ner. In the future it is intended to perform a set of experi-
andag, each with a duration of 3 minutes and which remain  ments to determine whether or not the decision to edit the
unordered with respect to each other, are chosen to achievep|an is more or less efficient than replanning from scratch.
a goa] with the deadline 17:00, the algorithm estimates the | replanning from scratch proves to be less costly, some
deadline for each action to be 16:51. This means that during of the main benefits of partial order planning such as being

the early stages of plan refinement the deadlines estimated gpe to plan to achieve goals using a skeletal partial order
for actions and subgoals are likely to be too early. This is plan, will be lost.

in contrast to DEVISER (Vere 1983) which estimates exe-

cution windows bounded by the earliest possible execution  pgrtial order planning for PDDL2.1 level 3

time (which is too early) as well as the latest possible exe- durative actions

cution time (which is too late). If there is insufficient time

available to achieve a goal, the algorithm fails and returns The partial order planning paradigm used as the basis for

the goal. thePlan to achieve goatomponent of the continuous plan-
N ning framework makes the classical temporal planning as-
Editing the plan sumption whereby actions with duration are viewed as a

If there is insufficient time available to achieve a goal, the black box —the preconditions of durative
Edit the plancomponent removes that goal together with its actions must be true at the starting point of execution and
associated actions and constraints. This requires a recordremain true throughout the interval during which the action
of the dependencies between actions and goals to be main-is executed, while effects become true at the end point of
tained as described in section . Once a plan has been edited gxecution but are undefined during the interval of execu-
deadlines are reestimated for the actions in a plan. Should tion. Both temporally extended GraphPlan based systems
there still be insufficient time available to achieve all goals, such as TGP (Smith & Weld 1999) and TPSYS (Garrido,
the plan is again edited. This process continues until there Onainda, & Barber 2001) and partial order planners such
is sufficient time available to execute the remaining plan.  as DEVISER (Vere 1983) make this assumption about du-
) rative actions. However, this assumption excludes many
Evaluating Plans valid plans as there is no way of syntactically distinguish-
A plan evaluation heuristic has been implemented which ing between preconditions (propositions that are required to
takes into account the degree to which a plan supports the be true only until the starting point of the action) and invari-
agent’s motivations, the number of higher priority achieved ant conditions (propositions that are required to remain true
goals, the total execution time, as well as the number of ac- throughout the interval of execution), while effects are only
tions. Further details of the heuristic may be found in (Cod- defined at the end point of execution.

dington 2001). In contrast, PDDL2.1 level 3 durative actions (Fox &
] ) Long 2001) provide greater expressive power by allowing
Discussion the domain modeller to specify local pre and postcondi-

The decision to edit the plan once it has been determined tions of the end-points of the interval over which execution
that there is insufficient time available to achieve all of the of the durative action takes place, as well as any invariant
goals, was based upon the desire to emulate human decisionconditions that must hold throughout that interval (Fox &
making — humans tend to abandon some goals in favour of Long 2001). This is achieved by using temporally anno-
others if there is insufficient time available to achieve all tated conditions and effects: the annotation of a condition
goals. It seems preferable to preserve as much of the origi- states whether the associated proposition must be asserted
nal plan as possible as opposed to replanning from scratch. at thestart of the interval, theend of the interval orover
However, this approach has various associated costs — inthe interval; the annotation of an effect asserts whether the
particular, it is necessary during the planning process to proposition occurs immediately or at the end point of the
maintain a record of the dependencies between actions andinterval. Figure 3 shows how a PDDL2.1 level 3 durative
goals to facilitate plan editing. In addition, once a plan has action models a person boarding an aeroplane. A num-
been edited, deadlines have to be reassigned to the remain-ber of researchers have recently developed extensions of
ing actions in the plan, and, if there is still insufficient time  GraphPlan or state search planners capable of reasoning
available, the cycle of editing and reassigning deadlines is with PDDL2.1 level 3 durative actions (Do & Kambham-
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(:durative-action board

:parameters (?p - person ?a - airplane ?c - city)

:condition (and (at start (at ?p ?c))
(at start (at ?a ?c))
(over all (at ?a ?c)))
.effect (and (at start (not (at ?p ?c)))
(at end (in ?p ?a))))

Figure 3: APDDL2.1board operator.

pati 2001; Garrido, Fox, & Long 2001).
Since the advent of GraphPlan and the many GraphPlan

formed into two STRIPS actions, one for each of the end-
points, start andfinish associated withD A. When invari-

inspired successors, partial order planning has been ne-ants are specified it is necessary to ensure that the invari-
glected due to its comparatively poor performance. How- ant remains true over the interval that occurs between the
ever, the extra burden of reasoning about time even mak- startandendpoint associated witlD A. In a partial order

ing the simplistic black-box assumptions about durative ac- planner this may be achieved by modelling invariant condi-
tions (stated above) causes the performance of temporally tions as special causal links which may be protected using
extended GraphPlan based systems (such as (Smith & Weld standard partial order planning threat resolution procedures.
1999)) or state search planners to deteriorate in comparison The only aspect of durative actions which is not captured
to their performance in non-temporal domains. The extra in this transformation using standard partial order planning
expressive power of PDDL2.1 with regard to modelling du- machinery is the duration associated witil. This may be
rative actions seems likely to lead to an even greater dete- modelled by minor modifications to both the representation
rioration in performance if only because of the additional of temporal constraints as well as to the temporal constraint
constraint reasoning that must be done to ensure temporal consistency checker. The extension that is required is to

consistency (Coddington, Fox, & Long 2001).

Partial order planning (McAllester & Rosenblitt 1991;
Penberthy & Weld 1994), on the other hand, is more suit-
able for modelling concurrency between actions with differ-
ent durations, and, because it avoids full instantiation, may
be more efficient when reasoning with planning domains
specified using PDDL2.1. It was therefore decided to in-
vestigate extending the partial order planning algorithm to
solve problems specified using the level 3 durative action
specification of PDDL2.1 level 3 with a view to incorpo-
rating it in the continuous planning framework described in
section . In the remainder of this paper, the algorithm is
described in further detail.

Extending partial order planning

ensure that if an action,,,; is temporally constrained to
come after,;,,+, anda.,q iS constrained to come before
bend, then the duration of; is strictly less than the dura-
tion of b. In the partial order framework, checking that this
requirement is satisfied will help to prune inconsistent alter-
natives early. Alternatively it might be left to the final par-
tial plan linearisation process to ensure that sufficient time
elapses between the start and end points of durative actions,
but this is a less efficient solution because of the failure to
identify some temporally inconsistent plans.

The process is as follows: When instantiated, a dura-
tive actionD A is converted into two action® A;,,; and
DA.,q Which are added to the actionsbelonging to the
partial planP.

One way of planning with PDDL2.1 level 3 durative actions 1. Thenamefield of D Aiqr¢ (D Aena) is thenamefield of

(see (Fox & Long 2001)) is to decompose them into their
instantaneous start and end actions, taking care to maintain
the relationship between start and end and also between

those points and any invariant conditions specified by the 2.

durative action. The meaning of a durative action is ob-
tained by the construction of two instantane@usl-point
actions, with a standard STRIPS semantics (assuming there

are no non-atomic conditions or effects), and a collection of 3.

instantaneoumonitoringactions responsible for maintain-
ing invariant conditions over the specified duration. This
approach provides a simple basis for handling durative ac-
tons in a partial order framework.

If no invariant conditions (of the forrfover all p) )
are specified, a durative actidnA can simply be trans-

4.

DA appended with the suffigtart for D A+ (Or end
for DAcna)-

Theparameterdield of D A4t (DAerng) COntains the
set of typed variables belonging within the precondition
and effect propositions dD Aot (D Aend).

The preconditionof DA+ (DAcynqg) IS equal to the
conjunction of the set of all propositiopssuch thafat
start p) ((at end p) )is acondition ofDA.

Theeffectof DA (DAeng) is equal to the conjunc-
tion of the set of all simple effect propositiogssuch that
(at start e) ((at end e) )isan effect ofDA.
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Should the durative actio A contain invariant condi-
tions of the form(over all p) , causal links are cre-
ated of the formD A;at —— D Aenqg and added to the set
of causal linksL. The implications of modelling invariant
conditions as causal links is discussed further in section
below.

In addition, the temporal constrai A,y < DAcng
is added to the set of constrairids

When the level 3 durative action templa@ard de-
scribed in figure 3 is selected to achieve the goal
(in ernie plane) itis instantiated and transformed into the
actionsboard;q,+ andboard..,q of figure 4.

The temporal constraihbardg.,; < board.,q is added
to the set of temporal constraints

The invariant conditiorfover all (at plane ?c1))s trans-
formed into a causal link

(at plane ?cl)

boardgiart — boardgnq

and added to the set of causal links The justification for
this is discussed in the following section.

Modelling Invariant Conditions

The decision to model invariant conditions of the form
(over all p) as causal links of the form A, ——
DA.,q assumes (if the causal link is interpreted in the
traditional partial order planning manner) that the action
DA+ establishes the invariant conditipr(i.e. D Ao
containg as an effect proposition) while the actiéh4..,, 4
consume® (i.e. DA.,4 containsp as a condition proposi-
tion). In fact, there are three cases to consider:

e DA, .~ CONtaing as a precondition;
e DA, .+ CONtaing as an effect;

e DA, does not contaip either as a precondition or as
an effect.

In the first of these cases the causal libk;,,; ——
DA, is added, and the gogb, D A, ) is added to the

open conditions of the plan. This expresses the requirement

thatp be maintained over the whole interval of the action,

causal links:  (t, P, t')

(G

goals:

causal links:
P goals:

(t, P, t)

causal links:
goals:

tP1)
(P.1)

Figure 5: Three Invariant Situations

because the temporal relations between time points in the
plan are all strict precedence relations (partial order plan-
ners typically do not reason about synchronous activity)
this case can be treated as equivalent to the first. That is,
the causal inkD A0t —— DAenq is added to the plan,
along with the goalp, D A4r¢). The goal ensures that an
achiever will be found fop, the causal link ensures that
will be preserved until the end point. The subtlety exists
because, if we could exploit synchronicity it would be nec-
essary to be precise about the exact point at whinkeds
to be asserted to satisfy the invariant. Because we cannot,
we are forced to ensure thais asserted strictly before the
point at which it is required (which is immediately after ap-
plication of the action).

Figure 5 describes the three cases and the causal links
that must be added.

The fill-bath operator, shown in figure 6, is an example of
the second case above. The invariant condiftap-on ?b)
is achieved by the fill-bath action itself and has to be main-
tained throughout the filling interval. THeoard operator,
given in section 3, is an example of the first case (the plane
must be at the city as a condition of board and throughout
the duration of boarding).

Conclusions and Further Work

but it is a non-standard use of causal links to use them to In this paper a continuous planning framework was pre-

promise that a condition will be maintained before it has
actually been achieved. On the other hand, the plan will
be invalidated ifp cannot be achieved fdp A,;,,+, and the
sooner itis known thgt must be maintained the less wasted
search will be incurred.

The second case is a simple one - the causal link
DAgtars —= DA.pnq is added to the plan whebB Ag;q,+
and DA,.,, are added, becausPA,.,,; is itself the
achiever of its own invariant condition.

The last case, in whichis an invariant but neither a pre-
condition or a start effect, is slightly more subtle. In fact,

sented in which it is assumed that a situated planning agent
is able to generate and prioritise goals taking into account
its context andnotivations Goals have deadlines and ac-
tions have duration which means it may not be possible to
achieve goals by their deadlines. In addition, planning and
execution must be interleaved while the agent’s motivations
may be used as part of a heuristic to select the most promis-
ing plan for further refinement. The component responsible
for generating planslan to achieve godwas based upon
the partial order planning paradigm which was extended to
reason about whether or not there is sufficient time available

38



(raction board-start (raction board-end

:parameters (ernie plane ?cl - city) :parameters (ernie plane)
:condition (and (at ernie ?cl) :condition ()

(at plane ?c1l))
:effect (not (at ernie ?cl))) :effect (in ernie plane))

Figure 4: The PDDL2.board operator is converted into two simple action instanbesrd-start andboard-end

(:durative-action fill-bath

:parameters (?b)

:duration (= ?duration (/ capacity flow))

:conditions (and (at start (plug-in ?b)

(at start (= (level ?b) 0))

(at start (tap-off ?b))

(at start (in-bathroom))

(at end (in-bathroom))

(over all (plug-in ?b))

(over all (tap-on ?b))

(over all (bath-filling ?b))))

.effect (and (at start (tap-on ?b))
(at start (not (tap-off ?b)))
(at start (bath-filling ?b))
(at end (not (tap-on ?h)))
(at end (tap-off ?b))
(at end (not (bath-filing ?b)))
(at end (assign (level ?b) capacity))))

Figure 6: A PDDL2.1 fill-bath operator.

to achieve all goals, to estimate deadlines for actions, and to to the component responsible for assigning deadlines to ac-
maintain a record of the dependencies between actions andtions Estimate deadline® cope with the fact that durative
goals to facilitate plan editing. The degree to which plans actions are now represented using two consecutive start and
support the motivations of an agent, together with the num- end point instantaneous STRIPS actions. Such extensions
ber of goals of high priority offer an extra plan metric when  will enable the continuous planning framework described in
selecting the best solution to a planning problem — the use this paper to reason about goals with deadlines and durative
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Abstract

In this papemwe addresshe problemof post-processingo-

sition constraineglans,outputby mary of the recenteffi-

cient metric temporalplannersto improve their execution
flexibility. Specifically given a position constrainecplan,
we considerthe problemof generatinga partially ordered
(aka“order constrained”)plan that usesthe sameactions.
Although variationsof this “partialization” problemhave

beenaddressedh classicalplanning,the metric and tem-
poral consideration®ring in significantcomplications We
develop a generalCSPencodingfor partializing position-
constrainedemporalplans,thatcanbe optimizedunderan
objective function dealingwith a variety of temporalflex-

ibility criteria, suchas makespan. We then presentsome
greedyvalue orderingstratgies that are designedto effi-

ciently generatesolutionswith good makespanvaluesfor

theseencodings.We demonstratehe effectivenessof our
greedypartializationapproachin the context of a recent
metric temporalplannerthat produces.c. plans. We also
briefly discussand evaluatean extensionof our partializa-
tion approacHor temporalplanswith resourceconstraints.

1 Intr oduction

Of late, therehasbeensignificantinterestin synthesizingand
managingplansfor metrictemporaldomains.Plansfor metric
temporaldomainscanbeclassifiedbroadlyinto two cateyories—
"position constrained’(p.c.) and “order constrained”(o.c.).
Theformerspecifythe exactly starttime for eachof theactions
in the plan, while the latter only specifythe relative orderings
betweerthe actions. The two typesof plansoffer complemen-
tary tradeofs vis a vis searchandexecution. Specifically con-
strainingthe positionsgives completestateinformation about
the partial plan,makingit easierto controlthe search Not sur
prisingly, several of the more effective methodsfor plan syn-
thesisin metric temporaldomainssearchfor andgeneratep.c.
plans(c.f. TLPlan1], Sap#3], TGP[18]).

At thesametime, from anexecutionpoint of view, o.c. plans
aremoreadvantageoughanp.c. plans—they provide betterex-
ecutionflexibility bothin termsof makespanandin terms of
“schedulingflexibility” (which measurethe possibleaxecution
tracessupportedytheplan[20;15]). They arealsomoreeffec-
tive in interfacingthe plannerto othermodulessuchassched-
tjlers(]c.f. [19;11]), andin supportingeplanningandplanreuse
21;9].

A solutionto the dilemmapresentedy thesecomplemen-
tary tradeofs is to searchin the spaceof p.c. plans,but post-
procesgheresultingp.c. planinto ano.c. plan. Althoughsuch
post-processingpproachehiave beenconsideredn classical

planning([10; 21; 2]), the problemis considerablymore com-
plex in thecaseof metrictemporalplanning. Thecomplications
includethe needto handlethemoreexpressve actionrepresen-
tationandtheneedto handlea varietyof objective functionsfor
partialization(in the caseof classicaplanning,wejustconsider
theleastnumberof orderings)

Our contritution in this paperis to first developa Constraint
Satishction Optimization Problem(CSOP)encodingfor con-
vertingap.c. planin metric/temporatiomainsnto ano.c. plan.
This generaframenork allows usto specifya variety of objec-
tive functionsto choosebetweerthe potentialpartializationsof
thep.c. plan. We thendevelopagreedyalgorithmfor partializa-
tion, which canbe seenasspecificvariablesandvalueordering
stratgjiesoverthe CSOPencoding We will demonstratéheef-
fectivenessf thesepartializationalgorithmin the contet of a
recentmetric/temporaplannercalledSap43]. Ourresultsshav
thatthetemporalflexibility measuressuchasthe makespanpf
theplansproducedy Sapacanbesignificantlyimprovedwhile
retainingSapas efficiency advantages.

The paperis organizedasfollows. In Section2, we discuss
thebackgroundn actionrepresentatiothatwe assumeor the
temporalplanning problem and the definitionsrelatedto the
partializationproblem.Then,in Section3 we discusgshe CSOP
encodingfor the partializationproblem. Section4 focuseson
how the CSOPencodingcanbe solved. In Section4, we also
provide agreedyvariableandvalueorderingstrateiesfor solv-
ing theencoding.Theempiricalresultsfor this greedyordering
stratgyy areprovidedin Section5. In Section6, we shov how
the partializationencodingcan be extendedto handletempo-
ral planningproblemswith continuouschanges Section7 dis-
cussesherelatedwork andSection8 present®ur conclusions.

2 Preliminaries

2.1 Action representation

The representatiomf actionsthat we assuman this paperis
similar to thatusedon [1], and[3]. Here,we shall review the
temporalaspectof the representationpostponingthe discus-
sionof resourceconsumptioraspect¢o Section6. Eachaction
A hasadurationD 4, startingtime st 4, andanendtime et 4 =
sta + D 4. Theprecondition®f anactionmayeitherbeinstan-
taneour durative andtheir effectsmayoccuratary time point
duringtheirexecution.Action A hasprecondition® € Pre(A)
thatmayberequiredto betruefor duration[st”, et”;] suchthat
sta < stfy < eth < ets. Figurel shows graphicallythe
action A = load(p,t,1) (load(package, truck,location)). In
this action, preconditionp; = at(p,l) only needsto be true
at the startingpoint of A (stf! = eth! = st4), precondition
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At(p,l)

At(t,))
~At(p.) |
In(p,t)

Figurel: Action Example

Load(p,t,!)

p2 = at(t,l) needsto be true throughoutthe durationof A
(st?e = sta,et’y = eta)). Weneedaperiodoftimed < D4 to
achievetheeffecte; = —At(p, 1), whichindicateshatthepack-
ageis notontheground(sty = st4 < ety < et4), andneed
thewholeactiondurationto achiere the effecte; = In(p, t) or
having thepackagensidethetruck (st = sta < et} = eta).
For eacheffecte of action A thatoccursatet, thereis adura-
tion [st4, et4] : sta < st4§ < ety < et in whichwe donot
allow arny procesghatleadsto theeventthatcauses-e to occur
Notethatunlike preconditionsaneffect e canbothbe positive
(add)or negative (delete).

An importantissuein corvertingap.c. planinto ano.c. plan
is to ensurehatactionsthatarenotorderedwith respecto each
otherarefreeof ary interferenceln generalfwo actionsA and
A’ interfereif 3p: —-p € E(A) A (p € P(A") JE(A"). Unlike
classicaplanning thetemporalconcurreng betweend and A’
dependn the exacttemporalconstraintgvaluesof st?, et? in
A andA’). Thus,thetemporakelationsbetweertwo interfering
actionsA and A’ dependon the exactpropositionp thatrelates
themandit is possibleto have morethanoneinterferencere-
lation betweentwo actions,eachoneenforcingdifferentsetof
temporalconstraints Thereforewe usethe notation®? 4, to

denotea specificinterferenceelationbetweenAd, A’ asit holds
if -p € E(A) andp € P(A")|J E(A"). Eachinterferenceela-
tion ®? 4 constrainghetemporalordersbetweend and A’ -
specificallywith the constraint(et ;¥ < st¥y,) Vv (eth, < st ;7).
In ourexamplein Figurel, if any actionA’ thatusesthepropo-
sition At(p, 1) of having the effect of causingAt(p, ), then 4’
is interferencauponp with action A = load(p, t,1).

2.2 Problem Definition

Positionand Order constrainedplans: A positionconstained
plan (p.c.) is a plan whee the executiontime of eact actionis
fixedto a specifictime point. An order constained(o.c.) plan
is a plan wher only the relative orderingsbetweerthe actions
are specified.

Therearetwo typesof positionconstraineglans:serial and
parallel. In aserialpositionconstrainegblan,noconcurreng is
allowed. In a parallelpositionconstrainedglan, actionsareal-
lowedto executeconcurently Examplesof theserialp.c. plans
arethe onesreturnedby classicalplannerssuchas GRT [17],
MIPS[5] andtheirtemporalcousins Theparallelp.c. plansare
the onesreturnedby Graphplan-baseglannersandtheir tem-
poral cousinssuchasSap43], TGH 18], TP47]. Examplesof
plannerghatoutputorderconstrainedo.c.) plansareZend 16],
HSTH14], IxTexT[11].

Figure 2 shows a valid p.c. parallelplan consistingof four
actions Ay, As, A3, A4 with their startingtime pointsfixedto
T1,T5,T3,T, andano.c planconsistingof the samesetof ac-
tionsandachieving the samegoals.For eachaction,theshaded
regionsshav the durationsgn which eachpreconditioror effect
shouldhold during eachaction’s executiontime. The darker
onesrepresenthe effect and the lighters represenfprecondi-
tions. For example,action A; hasa precondition) andeffect
R; action A3 hasno preconditionsandtwo effects—R andS.

It shouldbe easyto seethato.c. plansprovide moreexecu-
tion flexibility thanp.c. plans. In particular ano.c. plancan
be “dispatched”for executionin any way consistentwith the

© ©

Al A2:
[ T ] [r
LT r] [ Te]
[Ts] [®
=T LT s |
A3: A4
T3 T1 T4 T2

Figure2: Examplesf p.c. ando.c. plans

relative orderingamongthe actions. In otherwords, for each
valid o.c. plan P,., theremay be multiple valid p.c. plansthat
satisfytheorderingsn P,., whichcanbeseerasdifferentways
of dispatchingheo.c. plan.

A measuref thetemporalquality of aplanis its “makespar.
The makespanof a planis the minimum time neededo exe-
cuteaplan. For ap.c. plan,the makespans the durationfrom
the earlieststartingtime until the latestendingtime amongall
actions. In the caseof serialp.c. plans,it is easyto seethat
the makespanwill be greaterthanor equalto the sumof the
durationsof all the actionsin the plan. For the o.c. plan, the
malkespanis the minimum makespanof ary of the p.c. plans
that are consistenwith it. Givenano.c. plan P,., thereis a
polynomialtime algorithmbasedon topologicalsortof the or-
deringsin P,., which outputsa p.c. plan P,. whereall the
actionsareassignedkarliestpossiblestarttime point according
to the orderingin P,.. The makespanof thatp.c. plan P, is
thenusedasthe makesparof the original o.c. plan P,..

While generatinga p.c. plan consistentwith an o.c. plan
is easyenough,in this paper we areinterestedn the reverse
problem—thabf generatingano.c. plangivenap.c. plan. Thus,
for a given p.c. plan P,., we want to find the optimal o.c.
planaccordingo somecriterionof temporal/&ecutionflexibil-
ity suchassmallestmakesparor smallesnumberof orderings.
In thenext sectionwe shallprovideageneralCSPencodingor
this “partializationproblem? Finding optimal solutionfor this
encodingturns out to be NP-hardeven for classicalplanning
(i.e., non-duratve actions)2]. Consequentlywe shalldevelop
valueorderingstratgjiesthatareableto find areasonablsolu-
tion for theencodingn polynomialtime.

3 Formulating a CSOPencodingfor the
partialization problem

Supposehat P,., containinga setof actions.A, andtheir start-
ing times st’’, is avalid p.c. planfor sometemporalplanning
problemP. Let P, be a partializationof P, for the problem
P. P,. mustthensatisfythefollowing conditions:

1. P,. containghesameactionsA asP..

2. P,. is executable.This requiresthat the preconditionsof
all actionsare satisfied,andno pair of interferingactions
areallowedto executeconcurrently

3. P, isavalid planfor P. Thisrequireghat P, satisfiesall
thetop level goals(includingdeadlinegoals)of P.

(Optional)Theorderingson P, aresuchthat P, is alegal
dispatch{execution)of P,..

5. (Optional) The setof orderingsin P, is minimal (i.e., no
orderingis redundant)

Giventhat P,. is an order constrainedplan, ensuringgoal
andpreconditiorsatishctioninvolvesensuringhat(a) thereis a
causakupportfor theconditionandthat(b) thecondition,once
supported,s not violated by any possiblyinterveningaction.
Thefourth constrainensureshat P, isin somesenseanorder
genealization of P,. [10]. This is not strictly neededif our

4,
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interestis only to improve temporalflexibility.! Finally, the
fifth constraintabove is optionalin the sensehatary objectve
functiondefinedin termsof the orderingsarnyway ensureghat
P,. containsno redundanbrderings.

In thefollowing, we will developa CSPencodingfor finding
P,. that capturesthe constraintsabove. This involves speci-
fying the variables,their domains,andthe inter-variablecon-
straints.

Variables: Theencodingwill consistof both continuougtem-
poral) and discretevariables. The continuousvariablesrepre-
sentthetemporalaspect®f actionsin theplan,andthediscrete
variablegepresenthelogical causaktructureandorderingse-
tweentheactionsin the plan. Specifically for the setof actions
in thep.c. plan P, andtwo additionalactions4; andA, repre-
sentingtheinitial andfinal dummyactions? the setof variables
areasfollows:

Temporal variables: For eachaction 4, the encodinghasone
variablest 4 to representhe time point at which we canstart
executing A. The domainfor this variableis Dom(st4) =

[0, 4+00).

Discretevariables: Thereareseveraldifferenttypesof discrete
variablegepresentinghecausaktructureandqualitatve order

ingsbetweeractions:

e Causaleffect: We needvariablesto specify the causal
links relationshipbetweenactions. Specifically for each
factp € P(A) anda setof actions{By, Bs.....B,} such
thatp € E(B;), we setup one variable: S% where
Dom(Sf,) = {B]_,Ban}

e Supportivelyrelated: Two actionsA and A’ are support-
ively relatedif 3p € (E(A) N P(4"). For eachsuchpair,
we introduceonevariable O 4, : Dom(Q% 4) = {=<
,L} (Abefore, A, or no-oder betweend & A'). In our

examplein Figure?2, someorderingvariablesare:Q§1A2,
O%ya,0 O
AzAs AzAy

o Destructivelyrelated (interference)Two actions A and
A’ are destructvely relatedif they interfere with each
other For eachsuchpair, usingthe samenotationintro-
ducedat the end of Section2.1, we introduceone vari-
able®” 1, Dom(®" 1)) = {<,>} (A before, A', or
A after, A'). For theplanin Figure2, the orderingvari-

ablesare: @’ ,; and®7%, 4, 2

Following arethe necessargonstraintdo representherela-
tionsbetweerdifferentvariables:

1. If B supportgheconditionp for A, thenthereshouldbea
supportve orderingbetweenB and A w.r.t. p:
Sp =B = O%A =<

2. Causallink protections:If B supportsp to A, thenevery
other action A’ that hasan effect —p mustbe prevented
from comingbetweenB and A:

S =B=VA, -peE(A): (®%p =<V (®"%,=>)

3. Constraintsto prevent non-minimalorderings(optional):
If B doesnot supportp to A, thenthereis no needfor a

1In theterminologyof [2], thepresencef fourth constrainensures
that P, is ade-orderingof P,., while in its absence?,. caneitherbe
ade-orderingor are-ordering.

2 A; hasno preconditionsand haseffectsthat addthe factsin the
initial state. A, hasno effect andhaspreconditionsepresentinghe
goals.

3Sometimes,we will use the notation A <, A’ to represent

vy — P —
o =<and®”’ ,, =<.

supportve orderingbetweenB and A w.r.t. p:
Si#B=Ofy =1
4. Thereare constraintsbetweenorderingvariablesand ac-

tion start time variables(as per the discussionin Sec-

tion 2.1). Specifically we wantto enforcethatif A <, A’

thenet’, < st},. However, becauseve only maintainone

continuousvariablest 4 in the encodingfor eachaction,

theconstraintsareasfollow:

Olar == sta+ (eth — sta) < star + (sthy, — star).
Par =< sta+ (et,” —sta) < star + (eth, — star).
Par == star + (eth, — star) < sta+ (st P — sta).

Noticethatall values(sty, —st ), (et —st 1) areconstants
for all actionsA andpropositiongp.

5. Deadlinesand other temporal constraints: Thesemodel
ary deadlinglypeconstraintsn termsof thetemporalari-
ables.For example,if all thegoalsneedto beachieredbe-
foretime t,, thenwe needto adda constraint:st 4, < t,.
Othertemporalconstraintssuchasthosethat specifythat
certainactionsshouldbeexecutedbefore/aftecertaintime
points, can also be handledby adding similar temporal
constraintdo theencoding.

6. Constraintso make the orderingson P,. consistentwith
P, (optional): Let T'4 be the fixed startingtime point of
actionA in theoriginal p.cplanP,.. To guarante¢hat Py
is consistentwith the setof orderingsin the resultingo.c
plan P,., we adda constrainto ensurghatthevalueT, is
alwayspresenin thelive domainof thetemporalvariable
styg.

Giventhe presencef bothdiscreteandtemporalvariablesn
this encoding,the bestway to handleit is to view it asa lev-
eledCSPencodingwherein the satisficingassignmentso the
discretevariablesactivatea setof temporalconstraintdetween
the temporalvariables. Thesetemporalconstraintsalongwith
the deadlineand order consisteng constraintsarerepresented
asatemporalconstraintnetwork [4]. Solving the network in-
volvesmakingthe domainsandinter-variableintervals consis-
tentacrossall temporalconstraint§20]. The consistentempo-
ral network thenrepresentshe o.c. plan. Actionsin the plan
canbe executedin ary way consistentwith the temporalnet-
work (thusproviding executionflexibility).

Objective Function: Eachsatisficingassignmenfor the en-

codingabovewill correspondo apossiblepartializationof P,

i.e., ano.c. planthatcontainsall the actionsof P,.. How-

ever, someof theseassignmentgo.c. plans)may have better
execution propertiesthan the others. We can handlethis by

specifyingan objective function to be optimized,andtreating
theencodingasa ConstraintSatisactionOptimization(CSOP)
encoding. The only requirementon the objectve function is

thatit be specifiablein termsof thevariablesof the encodings.
Objective functionssuchas makespanminimizationandorder
minimizationreadily satisfythis requirement.

4 Solvingthe partialization encoding

As mentionedabove, the encoding,oncesetup,canbe solved
by a coupledframawork (suchasthe oneusedin LPSAT [22])

wherein a discreteCSP solver is usedto handlethe discrete
variablesandatemporalCSPsol\eris usedto handlethetem-
poralvariables.Every assignmento the discretevariableswill

activate a set of constraintsbetweenthe temporal variables,
which, in conjunctionwith the constraintof type 4 and5 can



be solved by the temporalCSPsolver. All the temporalcon-
straintsare “simple” [4] and canthus be handledin termsof
a simpletemporalnetwork. Optimizationcanbe doneusinga
branchandboundschemeon top of this.

Notwithstandingheforegoingdiscussionsolvingthe CSOP
encodingwill beNP-hardproblem(this followsfrom [2]). Con-
sequentlywe focuson developingvariableandvalue ordering
stratgjiesfor the encodingwhich canensurethatthe very first
satisficingsolutionfound will have a high quality in termsof
the objective function. Clearly, thesestratgieswill dependon
the specificobjective function. In the following, we will de-
velop stratgyiesthat are suitedto objective functionsbasedon
minimizing themakespan.

4.1 Greedyvalue ordering strategiesfor solvingthe
encoding
In this sectionwe discussavalueorderingstratgy thatfindsan
assignmento the CSOPencodingsuchthatthe corresponding
o.cplan P, is biasedo have areasonablggoodmakespanThe
stratgly dependsheavily on the positionsof all the actionsin
the original p.c. plan. Thus,it works basedon the factthatthe
alignmentof actionsin the original p.c. plan guaranteeshat
causalityand preservingconstraintsare satisfied. Specifically
all CSPvariablesareassignedialuesasfollows:
Supporting Variables: For eachvariableS% representinghe
actionthatis usedto supportpreconditionp of action 4, we
chooseaction A’ suchthat:

1. p € E(A") andet?, < st} in thep.c.plan Pp,.

2. Thereis noactionB s.t: =p € E(B) andet, < et} <
sth in Pye.

3. Thereis nootheractionC thatalsosatisfieswo conditions
aboveandet?, < et .

Interfer enceordering variables: For eachvariable®?, ,,, we
assigrvalue:

1. @54 ==if eth < sth, in Py..

2. @Y == if eth, < sthy in Pp.

Other ordering variables: For all theorderingvariablesO?, 4,
that are not enforcedto have value < by the assignmentso
supportingvariablesS?, ,,, we assigrvaluesQ%, ,, =L.

This strateyy is backtrack-freedueto the factthatthe origi-
nal p.c. planis correct. Thus, all preconditionsof all actions
aresatisfiedandfor all supportingvariableswe canalwaysfind
anaction A’ that satisfiesthe threeconstraintdisted above to
supporta preconditionp of action A. More over, one of the
temporalconstraintdhatleadto the assignmenof interference
ordering variables@®?, ,, will alwaysbe satisfiedbecausehe
p.c. planis consistenandno pair of actionsthathave interfer
encerelationsoverlapeachother Finally, this strateyy ensures
that the orderingson P, are consistentwith the original P..
Therefore the searchis backtrack-freeand no constraintis vi-
olatedbecauséhereis onelegal dispatchof thefinal o.c. plan
P,., whichis the startingp.c. plan P,.. Moreover, because¢he
p.cplan P,. is oneamongmultiple p.c plansthatareconsistent
with the o.cplan P,., the makesparof P,. is guaranteedo be
equalor betterthan P,..

Complexity: It is alsoeasyto seethatthe compleity of the
greedyalgorithmis O(S % A + I 4+ O) whereS is the number
of supportingrelations,A is the numberof actionsin the plan,
I is thenumberof interferenceelationsandO is the numberof

orderingvariablesInturnS < Ax P, I < A% andO < P x A?

whereP is the numberof preconditionof anaction. Thus,the
compleity of thealgorithmis O (P x A?).
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5 Empirical resultsfor Temporal Planning

We haveimplementedhevariableandvalueorderingdiscussed
in thelastsection(Sectiond.1) andtestedt with the Sapaplan-
ner. Sapais a forward statespaceplannerthat outputsparallel
p.c. plans. Theresultsreportedin [3] shov thatwhile Sapais
quite efficient, it often generateplanswith inferior makespan
values.Ouraimis to seehow muchof animprovementour par
tialization algorithmprovidesfor the plansproducedby Sapa.
Thetestsuiteis the80 randomtemporallogisticsprovidedwith
TP4planner In this planningdomaintrucksmove packagebe-
tweenlocationsinsidea city andairplaneamove thembetween
cities. Figure3 and 4 showv thecomparisorresultsfor only the
20largestproblemsjn termsof numberof citiesandpackages,
among80 of thatsuite.In Figure3, trucksareallowedto move
packagedetweerdifferentlocationsin differentcities,while in
theFigure4, trucksarenotallowedto do so.

The graphsshav the comparisonbetweenfour different
malkespanvalues: (1) the optimal makespan(as returnedby
TGP[18]); (2) the makesparof the plan returnedby Sapa;(3)
the makespanof the o.c. resultingfrom the greedyalgorithm
for partializationdiscussedn the lastsection;and(4) thetotal
durationof all actions,which would be the makesparvaluere-
turnedby severalserialtemporalplannerssuchasGRT [17], or
MIPS[5] if they producethe samesolutionasSapa.Noticethat
the makespanvalueof zeo for the optimalmakesparindicates
thatthe problemis not solvableby TGP

For the first test which allows driving betweencities ac-
tion, comparedto the optimal makespan,on the average,the
malkespanof the serialp.c. plans(i.e, cumulative action du-
ration) is about4.34 times larger, the makespanof the plans
outputby Sapais about3.23 timeslarger and the Sapaplans
after postprocessingare about2.61timeslonger (over the set
of 75 solvableproblems; TGP failedto solve the other5). For
thesecondest,withoutthedriving inter-city actions.Thecom-
parisonresultswith regardto optimal solutionsare: 2.39times
longerfor serialplans,1.75timeslongerfor the plansoutputby



Sapa,and 1.31timeslongerafter partialization. Theseresults
areaveragedverthesetof 69 out of the 80 problemshatwere
solvableby TGP*

Thus, the partialization algorithm improves the makespan
valuesof the plansoutput by Sapaby an averageof 20% in
the first setand 25% in the secondset. Notice also that the
sametechniquecanbe usedby GRT [17] or MIPS [5] andin
this casetheimprovementwould be 40%and45%respectiely
for thetwo problemsets.

The partializationand topological sort times are extremely
short. Specifically they arelessthan0.1 seconddor all prob-
lemswith the numberof actionsrangingfrom 16 to 37. Thus,
usingour partializationalgorithmasa post-processingtagees-
sentiallypreseresthesignificantefficiency advantage®f plan-
nerssuchas Sapa,GRT andMIPS, that searchin the spaceof
p.c. plans,while improving the temporalflexibility of the plans
generatedby thoseplanners.

Finally, it shouldbe notedthat partializationimproves not
only makesparbut alsoothertemporalfflexibility measurestor
example,the “schedulingflexibility” of a plan definedin [15],
which measureshe numberof actionsthatdo not have any or-
deringrelationsamongthem.,is significantlyhigherfor the par
tialized plans,comparecevento the parallelp.c. plansgener
atedby TGP In fact, our partializationroutine canbe applied
to the plansproduceddy TGPto improve their schedulinglex-
ibility .

6 Temporal planning with continuouschanges

An advantageof settingup an encodingfor the partialization
problemis thatthe encodingcanbegeneralizedo handleother
typesof constrainton the plan. In fact, we have extendedthe
encodingto handletemporalproblemsin the presencef met-
ric/resourceeonsumptionln this sectionwe briefly summarize
theextension,andpresensomepreliminaryempiricalresults.
Extending the Representation: Let V;” be a valueof a metric
resourcer at a time point ¢, we assumehat an action A that
usesr hasfollowing constraints:

1. Resourceduration: Like propositions,A usesr for a pe-
riod betweertwo time pointsst’ andet’; s.t:
stg < sty <et’y <ety.

2. Resoure preconditions: At time point st”;, theremay
be some constraintson the value of r (suchas the ac-

tion should have enoughresourcesto be executetable).

We assumethat the constraintsare in the form of com-
parisonsuchas: V] ¢ K, where K is a constant,and
o € {<,>,<,>,=}. To simplify the discussion for
the restof this section,we will only discussthe casefor
o = >. Theothercasesrevery similar.

3. Resource effects: Actions may increase/decreasan
amountU’; of r duringthe periodfrom st to et’y.

Extending the encoding: To be able to outputthe o.c plan
that is resource-consistentyhich meansthat all resourcere-
latedconstraintd/;;. > K aresatisfiedoy the setof orderings

in theo.cplan,we needto introducea new setof variablesand
constraintgo ourgeneralCSOPencodingdiscussedh previous
sectionsThedetailsareasfollows:

Variables: For eachpair of actions A and A’ that use the
sameresourcer, we introduceone variable (', ,, to repre-
sentthe resource-enforcedrdering betweenthem (similar to

“While TGPcouldnotsolve severalproblemsn thistestsuite,Sapa
is ableto solve all 80 of them.
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Figure5: Resultsfor temporalproblemswith resources

theway (O 4, representshe preconditionenforcedorderings;
seeSection3). If A and A’ can not use the sameresource
at the sarmetime, then Dom((®’ 1) = {<,>}, otherwise
DOm(QAAI) :{'<,>‘,J_} o )
Constraints: Therearetwo additionaltypesof constraints:

1. Constraints representing the relations between the
resource-relatedrderingsandactionstarttime variables:
Olar =< & sta+ (et —sta) < st + (sthy — star)
Ol ==& star + (et —star) < sta+ (st —sta)
Notice that the values(sty — st4) and (et’; — st4) are
constantgor a givenaction A thatusesresourcer.

2. Constraintsto guaranteehe resourceconsisteng for all
actions: Specifically for a given action A that usesre-
sourcer and hasa resourceconstraintVy. > K, let

{4, A,,......A,} beasetof actionsthatalsouser and
Init, bethevalueof r attheinitial state. We setup one
constrainthatinvolvesall variables(’; , asfollows:

)y

A L, AU <0

Init, + Y Ui, +
A;<rA

Uy, > K

(whereA; <, Aisshorthandor O, ==). Thecon-

straint above ensuresthat regardlessof how the actions
A; that have no ordering relation with A (@LA =1)

are alignedtemporallywith A, the orderingsbetweenA

and other actionsguaranteghat A hasenoughresource
(Vi > K) to execute.

Greedyvalue ordering: Besidethe default variableandvalue
orderingusedby ary solver thatwe chooseto solve our CSOP
encodingwe canalsousethevalueorderingsimilarto thestrat-
egy usedto assigrvaluesto the causabndorderingvariablesn
Section4.1. Specifically the variables(®’, ,, canbe assigned
valueshasedntheirfixedstartingtimesin theoriginal p.cplan
P, asfollows:

o Ol ==if et’y < st?y, in Pye.
o Ol =+ if et’y, < st7 in P.
e (O 4 =L otherwise.

Due to the factthatthe original p.c plan P, is correct,it is
easyto seethatthe valueorderingdiscusse@bove will leadto
abacktrack-freesearctoverthesetof resource-relatedrdering
variableqgdo notcauseany temporalor resourceénconsisteny).
Preliminary Empirical Evaluation: We implementedthis
valueorderingstratgyy andtestedt with a setof logisticsprob-
lemsin which differenttrucks and airplanesconsumefuel at
differentrateswhile moving packages.They alsoneedto re-
fuel whenthey do not have enoughfuel in their tank to finish
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thetrip. We testedwith 10 problemsandtheresultsareshavn
in Figure5. Currently thereis no plannerthat canhandlere-
sourcesaandoutputoptimal makespan.Therefore we compare
only thetotal duration the makesparof parallelplansoutputby
Sapaandthe makesparvaluesafter partialization. Theresults
shaw thaton averagethebacktrack-freeralueorderingstrateyy
improvesthe makesparvalueby 22%.

7 RelatedWork

The complementantradeofs provided by the p.c. and o.c.
planshave beenrecognizedn classicalplanning. One of the
earliestefforts to attemptto improve the temporalflexibility of
plans was the work by Fade and Regnier [6] who discussed
an approachfor removing redundanorderingsfrom the plans
generatecby STRIPSsystem. Later work by Mooney [13]
and Kambhampatand Kedar[10]characterizedhis partializa-
tion processasone of explanation-basedrdergeneralization.
Backstrom[2] cateyorized approachedor partializationinto
“de-ordering” approachesnd “re-ordering” approaches.The
ordergeneralizatioralgorithmsfall underthe de-orderingcate-
gory. Hewasalsothefirst to pointoutthe NP-hardnessf max-
imal partialization,andto characterizehe previous algorithms
asgreedyapproaches.

Thework presentedn this papercanbe seenasa principled
generalizatiorof the partializationapproaches metrictempo-
ral planning. Our novel contributionsinclude: (1) providing a
CSPencodingfor the partializationproblemand(2) character
izing the greedyalgorithmsfor partializationas specificvalue
orderingstratgieson this encoding.In termsof theformer, our
partializationencodingis generalin thatit encompasselsoth
de-orderingand re-orderingpartializations—basedn whether
or not we include the optional constraintsto make the order
ingson P, consistentvith P,.. In termsof thelatter, thework
in [21] and[10] canbe seenasproviding a greedyvalueorder
ing strat@yy overthe partializationencodingfor classicaplans.
However, unlike the stratgyieswe presentedh Sectionst.1and
6, theirvalueorderingstratgiesarenot sensitve to any specific
optimizationmetric.

It is interestingto notethatour encodingfor partializationis
closelyrelatedto the so-called‘causalencodings’{8]. Unlike
casualencodingswhich needto considersupportinga precon-
dition or goal with every possibleactionin the actionlibrary,
the partializationencodingsonly needto considerthe actions
thatarepresenin P,.. In this sensethey aresimilar to theen-
codingsfor replanningandplan reusedescribedn [12]. Also,
unlike causalencodings,the encodingsfor partializationde-
mand optimizing ratherthan satisficingsolutions. Finally, in
contrastto our encodinggfor partializationwhich specifically
handlemetric temporalplans,causalencodingsn [8] arelim-
ited to classicadomains.

8 Conclusion

In this papemwe addressethe problemof post-processingosi-
tion constrainednetrictemporalplansto improve their execu-
tion flexibility . We developeda generalCSPencodingfor par
tializing position-constrainetemporalplans,that can be opti-
mizedunderanobjectivefunctiondealingwith avarietyof tem-
poralflexibility criteria, suchasmakespan.We thenpresented
greedyvalueorderingstratgjiesthataredesignedo efficiently
generatesolutionswith goodmakesparnvaluesfor theseencod-
ings. We evaluatedheeffectivenes®f our greedypartialization
approachn the contet of arecentmetrictemporalplannerthat

produces.c. plans.Ourresultsdemonstrat¢hatthepartializa-
tion approachs ableto provide between25-40%improvement
in themakespanwith extremelylittle overhead We alsobriefly

discussedhn extensionof our partializationapproachfor tem-
poral planswith resourceconstraintsanddemonstrate@mpir

ically thatpartializationcanleadto up to 22% improvementof

themakespan Currently we arefocusingon developinggreedy
valueorderingstratgjiesthataresensitve to othertypesof tem-
poralflexibility measurebesidesnakespan.
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Abstract

The paper considers the extensions to the domain-
independent Model Checking Integrated Planning Sys-
tem (MIPS) to pre-processes and solve mixed propo-
sitional and numerical planning problems in PDDL+
syntax for the 3rd international planning competition.
The static analyzer grounds all predicates and functors,
distinguishes constant from fluent atoms and numeri-
cal constants from variables. It further approximates
the bounding intervals for the resource variables, and
encodes their possible finite domain. Pre-compilation
also establishes symmetries within the object set and
dependencies among the set of operators.

Based on the inferred information, the directed search
exploration algorithm applies critical path schedul-
ing to parallelize sequential plans and to refine a re-
laxed plan graph heuristic, while different pruning ap-
proaches effectively reduce the branching factor.

Introduction

For the 2002’s international planning competition new
levels of the planning domain description language
PDDL+ (Fox & Long 2001) have been designed to
specify problems that include durative actions and re-
sources. While Level 1 considers pure propositional
planning, Level 2 also includes numerical resources, and
Level 3 additionally includes actions with durations.
At the moment four Level 2-3 competition problems
are published. Desert-Rat is a domain with an infi-
nite branching factor which was manually discretized
in (Edelkamp 2001b): n supply tanks are available as
fuel resources for trucks to finally reach the goal dis-
tance d from the base. Zeno-Travel requires to fly pas-
sengers with aircrafts to their respective target airports.
Boarding and debarking consumes a constant amount
of time. Each plane has a determined capacity for fuel,
while flying aircrafts changes the fuel level according
to the distances between the cities and with respect to
two different speeds. Fuel can be restored by refueling
the aircraft. Jugs-and-Water problems model two jugs,
namely Jug-1 and Jug-2. Initially, both are empty and

Copyright (© 2002, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

have a predefined capacity. It is allowed to completely
fill either Jug-1 or Jug-2 from a tap, to fill Jug-1 from
Jug-2, or Jug-2 from Jug-1, and to empty either jug on
the ground. The goal is to achieve content 1 in Jug-
1. Taxi is a variant of a transportation domain with
a representation of locations using numeric coordinates
and distance as a calculated function of those values.
In the example problem there are seven people located
somewhere on the grid-structured map and four taxis
serving them.

This paper presents extensions to the Model Check-
ing Integrated Planning System MIPS (Edelkamp &
Helmert 2001) to cope with this new expressiveness.
It summarizes and extends precursory work as follows.
In (Edelkamp & Helmert 1999) we showed how a static
analyzer can cluster atoms into mutually exclusive fact
groups to minimize the state description length, a tech-
nique especially important for symbolic planning strate-
gies (Edelkamp & Reffel 1999). In (Edelkamp 2001b)
first results on PDDL+ planning problems were pre-
sented. The preliminary treatment exemplifies the pars-
ing process in Zeno-Travel and Desert-Rats. More-
over, propositional heuristics and manual branching
cuts are applied to find sequential plans. In (Edelkamp
2002a) we proposed critical path scheduling for con-
current plans, an efficient method for detecting and
using symmetry, and refinements to the relaxed plan-
ning heuristic. Explicit (Edelkamp 2001¢) and symbolic
pattern databases (Edelkamp 2002b) are off-line gener-
ated estimators referring to completely explored prob-
lem abstractions. In this unifying treatment we newly
contribute two approximate exploration techniques to
bound and to fix numerical domains, an any-time search
wrapper to produce optimal plans and a numerical ex-
tension to the FF plan graph heuristic, yielding first
plans in the Taxi domain.

The organization of the paper is as follows. To intro-
duce the underlying problem structure we provide a for-
mal characterization of mized propositional and numer-
ical planning problems. We then present a scheduling
algorithm compacting a sequential plan into a concur-
rent plan with minimal critical path length. Next we
introduce our static analyzer that infers problem de-
scriptions according to the given framework and that
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deduces all different kinds of information needed for
exploration: dependencies, symmetry, bounds and en-
codings of domains for resource variables. In the experi-
mental section we provide plans to challenging planning
problems to all four benchmark domains. Finally, we
reflect the current state of the MIPS planning system
and draw conclusions.

Problem Structure

A PDDL+ domain specification contains predicates and
functions, the basis to define parameterized actions
with pre- and postconditions. Static analysis usually
ground predicates and functions, by instantiating all
parameters of the operators. Grounded predicates are
called atoms, and grounded functions are called re-
source variables.

State Space

Let A be the set of propositional atoms and V' be the set
of variables in domain D, indexed by an isomorphism
¢ : B — {1,...,|V|} for another set of propositional
atoms B, AN B = (). The domain D is the set of real
numbers, but, as we will see later on, for each variable
D can be individually refined to a smaller set. Proba-
bly the most important variable is total-time, which in-
creases monotonically with each applied operator. The
difference in total-time before and after an applied ac-
tion is its duration. If the duration is zero an action is
called instantaneous.

A Mixed Numerical and Propositional Planning Prob-
lem is a state space problem P =< §,0,Z,G >, with
S C 2% x DIPI being the set of states, 2 being the
power set notation of A, Z € S, G C S, and O being
the set of operators that transform states into states.
An operator o = (a, 8,7,9) € O has propositional pre-
conditions «, propositional effects 3, numerical precon-
ditions 7, and numerical effects §.

It is sufficient to assume that the propositional part
satisfies the STRIPS setting, where @ C A is the pre-
condition and 8 = (f,,04) is the effect with add list
8. C A, and the delete list 53 C A. For the numerical
part -y is a set of constraints of numerical variables and
constants in the assumed calculus. Similarly, ¢ is a set
of rules transforming constraints into others.

Numerical Preconditions and Effects

For v (and ¢) we assume variables to be conditioned
on (or assigned to) the term evaluation of arithmetic
formula trees in set T as follows.

A numerical constraint / numerical precondition ¢ €
v is a triple ¢ = (h.,®,t.) where h, € B, ® €
{<,<,=,>,>}, and t. € T.. A numerical modifier /
numerical effect m € §, is a triple m = (hp, B, tm)
where h,, € B, ® € {<,1,|}, and ¢,,, € T.

There is no fundamental difference to more general
preconditions and effects. Our current implementation

generates one generic precondition tree, thereby includ-
ing boolean and logical operators and arithmetic sub-
trees.

Semantics

An operator o = («,,7,9) € O applied to a state
S = (S,,8,) € 24 x DIBl| 5, € 24 and S, € DIBI,
yields a successor state S’ = (57,5),) € 24 x DIBl as
follows. If o C S, and S, satisfies all ¢ € v then
S, = Sp U Bu\ Ba and for all m € 4 the vector S, is
updated.

A vector S, = (S1,...,5|p|) of numerical variables
satisfies a numerical constraint ¢ = (h., ®,t.) € v if
S4(h.) @ eval(Sy,t.) is true, where eval(S,,t.) € D
is obtained by substituting all b € B in t. by Sy,
followed by a simplification of ¢.. Similarly, the vec-
tor S, = (S1,...,8p|) is updated to vector S, =
(S1,---.8[p)) by modifier m = (hm,®,tm) € 4, if

° S‘;(hm) = eval(Sn;t'rn) fOI' @ = 4_,
® Sl = St +eval(Sn,tm) for & = 1, and
¢ S;(hm) = S¢(hm) - eval(Sn,tm) for b = l

Sequential and Concurrent Plans

A sequential plan s = (01,...,0k) is an ordered se-
quence of operators o; € O, i € {1,...,k}, that trans-
form the initial state Z into one of the goal states
G € G, i.e. there exists a sequence of states S; € S,
i € {0,...,k}, with Sy = Z, S, = G and S; is the
outcome of applying o; to S;_1, 7 € {1,...,k}.

Schedules order the operators along the time line,
i.e. the value of total-time before applying o; is re-
quired to start at ¢;. In optimal schedules each event
either starts or ends at the start or end time of an-
other event for a possibly exponential but finite num-
ber of valid schedules. Therefore a concurrent plan
e = ((01,t1),..., (0K, tx)) of ms is an optimal sched-
ule of a sequential plan. If t; = ¢; for ¢ < j then o; is
executed before 0;. The definition is sound, since next
section will show that optimal schedules with respect
to sequential exist and can be computed efficiently.

Scheduling

An operator o is said to precede another operator o' in
O, o <, o for short, if and only if 0 and o' are de-
pendent and be the index of operator o not larger than
the index of o’. Obviously, <, defines a partial order
relation. Therefore, given a sequential plan oq,..., 0%
to the PDDL+ planning problem produces an acyclic
set of precedence constraints 0; <, 05, 1 < i < j <k,
on the set of operators. It is also important to observe
that the constraints are already topologically sorted ac-
cording to <, by taking the ordering {1,...,k}.

Critical Path Analysis

The Project Evaluation and Review Technique (PERT)
is a critical path analysis algorithm usually applied to
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Procedure Critical-Path

for all i € {1,...,k}

e(0;) = d(0;)

for all je {1,...,i—1}

if (Oj SO Oi)
if e(0;) < e(0;) + d(0;)
e(0;) — e(0;) + d(o;)

return e(oy)

Table 1: Algorithm to Compute Critical Path Length.

project management problems. The critical path is es-
tablished, when the total time for activities on this
path is greater than any other path of operators. A
delay in any tasks on the critical path leads to a de-
lay in the project. The heart of PERT is a network
of tasks needed to complete a project, showing the or-
der in which the tasks need to be completed and their
dependencies between them. Fortunately, as shown in
Table 1, PERT scheduling reduces to a derivate of Di-
jkstra’s single shortest path algorithm within acyclic
graphs (Cormen, Leiserson, & Rivest 1990).

Usually, duration d(o;) is the difference of time
stamps in the sequential plan. Since PDDL+ provides
different objective function c, e.g. the sum of total-time
and total-fuel-used in Zeno-Travel, d(o;) can be fixed as
c(s;) —c(si—1) for i € {1,...,k}.

The time and space complexities of the algorithm
Critical-Path are O(k?), where k is the length of the
sequential plan. Using an adjacency list representation
these efforts can be reduced to time and space propor-
tional to the number of vertices and edges in the de-
pendence graph.

Static Analysis

Based on the number of counted objects, a unique index
for each grounded predicate and function is devised. A
relaxed, so-called fact-space exploration on the propo-
sitional part of the problem determines a superset of
all reachable atoms and allows to distinguish constant
from fluent atoms, since only the latter ones are reached
by exploration (Edelkamp & Helmert 1999). Fact-
space exploration also determines all grounded opera-
tors. Once all preconditions are satisfied and grounded,
the symbolic effect-lists are instantiated.

Atoms are clustered into groups, so that each state
in the planning space can be expressed as a conjunct
of atoms selected from each group. In the Zeno-Travel
domain, the unique position of the passengers and the
unique position of each plane determine the partition.

According to the formal characterization of numeri-
cal modifiers and synchronous to fact space exploration
of the propositional part of the problem, all heads of nu-
merical formulae in the effect lists are grounded. This

allows to early distinguish constant numerical quanti-
ties from variable ones.

In ZenoTravel only the current fuel level for each
plane, the total amount of consumed fuel and the sim-
ulation time are variable. All other numerical predi-
cates are constants to be are substituted in the formula-
bodies. This simplifies the grounded operators, and the
formula trees of most numerical conditions and assign-
ments reduce to constants. However, some operators
like refueling in Zeno-Travel depend on fluent state
variables that have to be instantiated on the fly.

Dependent Operators

Two grounded operators o = («,3,7,0) and o =
(o, 8',7,4¢") in O are dependent, if one of the following
three conditions holds:

Loan(B,UpB) #0, (B.UB) N #0,

2. For one ¢ = (h.,®,t.) € ~ and one m' =

(hl,,®,t.) € & h. € LeafVariables(t,,) or hl, €
LeafVariables(t.),
3. For one ¢ = (h,,®,t.) € + and one m =

(hms@,tm) € 61 hy € LeafVariables(tl,) or hl, €
LeafVariables(t,, ),

where LeafVariables(t) is defined as the union of all
variable-leaves in the formula tree ¢t € T.

The coarse approximation of the exact dependence
relation can be refined according to the PDDL+ guide-
lines for mutex operators, but for our purposes to define
a preference relationship for improving sequential plans
this approach is sufficient. In our implementation the
dependence relation is computed beforehand and tabu-
larized for a constant time access. It also allows to de-
tect transpositions of two operators o and oy for prune
exploration in one case, which is called a transposition
cut.

To detect domains for which any schedule leads to no
improvement. a planning domain is said to be inher-
ently sequential if all operators in any sequential plan
are dependent or instantaneous. The static Analyzer
checks by testing each operator pair. While DesertRats
and Jugs-and-Water are inherently sequential, Zeno-
Travel and Taxi are not.

Grounding Variables

Even plan existence for numerical planning is unde-
cidable, since PDDL+ planning reduces to the halting
problem for abacus programs (Helmert 2002). If the
state space is finite then PDDL+ problems are trivially
decidable, since planning reduces to graph search. Since
|24| is already finite, the crucial part is to show that
DBl is finite, which is true if both D and B are finite.
Since | B| is finite, the cardinalities of variable domains
are good indicators for the hardness of the problems.

Static analysis can approximate variable domains by
finding bounding intervals for the variables and by re-
fining the actual contents of a finite domain intervals
by another exploration scheme.
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Procedure Bounding
(min, max) « (I, I,)
while (min, max) # (min’, max’)
foralloe O
if o.test(min, max)

(min”, max”’) « o.restrict(min, max)
(min’, max’) < o.update(min”, max’)

(min’, max’) «
(min, max) U (min’, max’)
(min, max) « (min’, max’)
return (min, max)

Table 2: Algorithm to Compute Bounding Intervals for
Variables.

We will use the domain information only for heuris-
tic evaluation, so that lack of accurancy for this phase
will only decrease the algorithms’ performance, not its
overall applicability.

Bounding Variables For finding bounding intervals
for the variables we apply the strategy of Table 2.

At first, the minimal and maximal resource vectors
(min, max) are initialized to the value vector of the ini-
tial state. In the while-loop this vector is enlarged until
a fixpoint is reached. In each iteration every opera-
tor is tested for applicability by checking all numeri-
cal preconditions with the current vector of intervals
(min, max). The corresponding variable bounds were
propergated in the arithmetic precondition trees. If the
preconditions are satisfied, the intervals in (min, max)
are restricted with constraint propergation within the
set of preconditions expressions (Meriott & Stuckey
1998). Updating now takes the restricted vector of in-
terval (min”, max”) and applies the effect lists to it. Af-
terwards the resulting intervals (min’, max’) are merged
with the original vector pair (min, max).

Unfortunately, the algorithm might not terminate for
unbounded variable like total-time. The natural op-
tion we take is to allow each operator to apply only
once. Since the above approximation scheme is used
for a relaxed scheduling heurstic and not for the overall
planning process this is not a severe restriction, since
the relaxed plan graph construction also allows each
operator only to be invoked at most once.

The Tazxi-Domain has nine variables: total-time,
street taxil, street taxi2, street taxi3, street
taxi4, avenue taxil, avenue taxi2, avenue taxi3,
and avenue taxi4. Since total-time is always as-
sumed to be unbounded the process yields the inter-
val [24,94] for the street—* variables and [1,97] for all
avenue-*-variables.

Procedure Instantiate
for all (r,v) € I,
Q.enqueue(r,v)
D, — {v}
while Q # 0
(r,v) «— Q.dequeue()
for ally A m = (hp, B, tm) €7
if r € LeafVariables(t,,)
for all S «— generate(t,,,r,®)
if S € (min, max)
v — eval(ty,, S)
Q.enqueve(hpy,, v)
Dhm — Dhm U {’U}

Table 3: Algorithm to Instantiate Variable.

Instantiating Variables as depicted in Table 3 ne-
glects preconditions and computes a fixpoint for the
variable domains by considering the numerical effects
7 in the operator set only. Similar to fact space ex-
ploration we utilize a queue @, containing possible
variable-value pairs. First of all, the initial pairs are in-
serted into (). As long as there is one pending element
(r,v) in @ it is extracted and all effects ¢, containing
r as a leaf variables are selected. Now all combinations
of domain values for the other variables are generated
and evaluated. All new pairs that respect the estab-
lished bounds (min, max) are added to the queue. In
D, we maintain the current set of instantiation of vari-
able r. Depending on the number of variable occuring
in the evaluation tree and their corresponding domain
sizes, generate is of exponential nature. However, in
practice the number of occuring variables in the sim-
plified expression tree are bounded by one or two leaf
variables yielding a quick exploration scheme.

In the Tazi-Domain the instantiations for the
streets-variables are: 50, 48, 54, 80, 34, 68, 73, 40,
94, 75, 78, 43, 66, 27, and 24, while the the instantia-
tions for the avenue-variables are: 50, 54, 94, 46, 72, 1,
97, 36, 85, 49, 4, 47, 80, 39, and 3.

Symmetries

The core observation for symmetry reduction in a plan-
ning problem is that the symbolic definition of actions
in the domain description language cannot distinguish
between different objects in problem instances. This
is due to the fact that predicates, functions and ac-
tions are parameterized with objects that only have to
respect the specified type. Therefore, the main restric-
tion to symmetry within a type class are the current
state and the goal state.

Symmetry dedection exploits information on single-
valued invariances that are used by our planner to
build mutually exclusive fact groups. In (Edelkamp
& Helmert 1999) fact groups are defined by balanc-
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ing, merging and instantiating predicates. If we de-
fine #pred;(p1,- -, Pi—1,Pit1,---,Pn) as the number of
objects p; for which the fact (pred p; ... py) is true
than we establish a single-valued invariances at 4 if
#pred;(p1, ..., Pi-1,Pi+1,---,Pn) = 1. Object p; is the
representative of the invariance. More elaborated bal-
ance conditions require predicates mergings.

Comparing all instantiations of (pred p; ... pn)
for object p; and p; now indicates symmetry in
the planning domain. If the set of instantiations
pred;(p1,-..,Pi—1,Pi+1; - - - » Pn) Mmatch for all predicates
pred, a symmetry between p; and p} is found. Based
on this observation in (Edelkamp 2002a) we give an ef-
ficient algorithm for reducing symmetry of objects to
symmetry of fact groups. All pre-compiled symmetries
of groups were tested for the current and goal state. If
the assumed isomorphism between the two group rep-
resentatives is verified all operators that apply changes
to one of objects are pruned.

In Desert-Rats all supply-tanks are found to be sym-
metric, such that in case their fuel level and position
match, any operator will consider just one of them. In
Zeno-Travel all passengers share symmetry. In Tazi at
least all taxis are found to be isomorphic.

Heuristics

For the propositional part we have implemented the
relaxed planning heuristic hy (Hoffmann & Nebel
2001) and the pattern database heuristic h, (Edelkamp
2001c).

Merging Propositional Estimates

One suitable combination of hy and h, heurstics is to
comparing the retrieved result of the pattern database
according to a problem abstraction with the set of op-
erators in the plan graph that respect the pattern. The
intuition is to slice the relaxed plan graph according
to the given problem abstractions. If in the backward
exploration an add-effect is selected the match will be
assigned to its fact group. If the number of matches
in an abstraction is smaller than the retrieved pattern
database value it will be incresed by the lacking amount.

Coarse Numerical Estimate

If the goal state contains numerical information, with
h, we approximate the number of steps necessary to
achieve the numerical goal independent of the proposi-
tional setting. For each variable r» we take the differ-
ence d, of the goal value g, and the current variables
instantiation ¢, as an indicator. Since numbers can be
arbitrary small and large, we normalize the difference
values, deviding the d by their maximal absolute change
.

Once more we propose a relaxed fixpoint exploration
to approximate the vector a of maximal change of the
numerical quantities a,- by neglecting numerical precon-
ditions to keep the exploration polynomial. For each
operator and given a we instantiate the effect lists and

determine if the a, for a quantity r has to be increased
or not. We terminate in case of no further change.

Scheduling Heuristic

Critical-path analysis can also guide the plan finding
phase. We derive a heuristic estimate h, that schedules
relaxed plans. Reacall that for each state FF solves
a relaxed planning problem explicitly, constructing the
relaxed plan as a sequence of grounded operators. Dif-
ferent to the heuristic estimate that only considers the
length of the greedily extracted plan, we also take the
sequence of operators into account. As the success of
the planner has shown, even though relaxed plans pro-
vide neither a lower nor an upper bounds they are very
informative.

However, schedules are not additive. Adding the two
PERT-schedules for the path pg(u) to a state and for the
sequence of actions pp(u) in the relaxed plan is not as
accurate as the PERT-schedule of the combined paths
pg(u) o pp(u). Therefore, the classical merit function of
A*-like search engines f = g 4+ h for generating path
length g and heuristic estimate h is not immediate for
concurrent planning. Therefore, we define the schedule
heurstic h, as the critical path of p, o p;, minus the
critical path of pg.

Combined Relaxed Plan Heuristic

The refined combination of propositional and numeri-
cal information in a unified plan graph heursitic is per-
formed in planning problems, in which at least some
numerical quantities are grounded to finite domains.

If numerical variables are finite, the corresponding
operators can be simplified by grounding the variables
to their respective instantiations. However, to avoid
the extensive blow-up in the number of operators, we
decided to keep numerical values and explicitly excecute
preconditioning and application numerical effect in the
relaxed plan exploration.

In the forward phase only effects were applied to gen-
erate the layered structure of the relaxed plan graph,
while in the backward phase we also apply precondi-
tions for propergation. We restrict to simple variable-
value equalities that fix values and fire further effects
in actions.

In Taxi this combined relaxed plan graph heuristic A,
integrates driving actions to the backward phase that
were not present in the relaxed plan of a purely propo-
sitional estimate.

Refining Relaxed Plan Estimate

The process of refining estimates (Edelkamp 2002a)
criticizes the retrieved relaxed plan with complete solu-
tions to problem abstractions. It generalizes the idea of
mobile analysis in (Long & Fox 2001). From the set of
operators in the relaxed plan a subset is extracted and
all preconditions considering the selected fact groups
are collected. The dependency graph for the operators
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Procedure Any-Time
G0
o «— 00
Open «— S
while Open # ()
S « Open.Extract()
for all S’ € expand(S)
if (8" € §)
cp < Critical-Path()
ifep<a
o —cp
G5
else
Open.Change(S")
return G

Table 4: General Any-Time Search Algorithm.

fulfilling the preconditions based on the dependency re-
lation given above will often contain cycles. An ex-
tended linear time topological sorting algorithm will
include a new operator if a cycle is encountered.

Search Strategies

We have implemented A* (Pearl 1985) with the option
of scaling the influence of the estimate, thus including
the extremes of breadth-first and best-first search. In
pure propositional planning we prefer a dial as the pri-
ority queue implementation, while in general numerical
planning we chose weak-heaps (Edelkamp & Stiegeler
2002). For very large exploration problems we provide
IDA* (Korf 1985) with and without bit-state hashing.
Hoffmann’s Enforced-Hill-Climbing algorithm (Hoff-
mann & Nebel 2001) has also been integrated. For
symbolic exploration MIPS also provides the sym-
bolic breadth-first and symbolic A* search (Edelkamp
2001a). Even if non-deterministic domain are not yet
available in PDDL syntax, weak and strong planning
algorithms (Cimatti, Roveri, & Traverso 1998) are also
part of the portfolio.

Any-Time Search

Short sequential plans do not necessarily imply short
concurrent plans and vice versa. Even scheduling ex-
tended sequential plans with relaxed plan graph approx-
imations will not necessarily yield optimal plans. Nev-
ertheless, as the experiments highlight the quality of
the established schedules is considerably good. Table 4
indicates how to wrap a heuristic search planner for so-
called any-time performance, gradually improving the
plan quality.

For grounded PDDL+ problems with finite state-
spaces the any-time extension for any heuristic search
algorithm that changes the enumeration order in the
tree expansion of the problem graph is complete and

optimal. A more general result is given by Pearl (Pearl
1985): If the cost of every infinite path is unbounded,
A* search fully enumerates state-space and preserves
optimality.  This indicates that any-time heuristic
search algorithms eventually find optimal plans even
in infinite state spaces.

Elimination of Duplicates

One subtle problem arises when eliminating dupli-
cate states to avoid redundant work. Consider the
two sequences (zoom city-a city-c plane), (board
dan plane), (refuel plane), (zoom city-c city-a
plane), (board scott), (debark dan), (refuel
plane), and (board scott), (zoom city-a city-c
plane), (board dan plane), (refuel plane), (zoom
city-c city-a plane), (debark dan), (refuel
plane) in the Zeno-Travel domain. The set of opera-
tors is the same and so is the resulting state. However,
the concurrent plan for the first sequence is shorter than
the schedule for the second one, since in the previous
case the time for boarding scott is compensated by the
remaining two operators.

Therefore, to preserve completeness and optimality
is to compute and store schedules instead of states.

Experiments

We apply Any-Time Weighted A* for hy, h, and the
schedule heuristics hs and h.. To both sequential es-
timates the numerical offset h,, is added. The search
depth of the plan, the number of expanded and the
number of stored states are denoted by d, e and s, re-
spectively. The sequential plan quality is depicted as
Sseq and the corresponding concurrent plan length is
abbreviated by s¢o,. CPU time is denoted by ¢ and
given in seconds on a Sun Ultra Workstation, 248 MHz.

Zeno-Travel

The results for Zeno-1 are as follows.

Sseq | Scom e s | d t
hp + hy, 370 | 290 11 57 | 8 | 0.00s
h¢+ hy 400 | 380 8 41 | 6 | 0.00s

376.667 | 330 24 | 105 | 7 | 0.00s

340 | 290 62 | 270 | 7 | 0.01s
hs 370 | 290 10 51 | 8 | 0.01s
h=0 400 | 380 | 429 | 1799 | 6 | 0.08s

390 | 340 | 1975 | 8191 | 7 | 0.36s

340 | 290 | 1982 | 8223 | 7 | 0.36s

Both h, + h,, and h, find the optimum as the first
established plan, while h; 4 h,, needs some efforts to
consolidate. The optimal plan is:

0: (board scott plane city-a) [30]
30: (zoom plane city-a city-c) [100]
130: (board ernie plane city-c) [30]
130: (refuel plane city-c) [40]

170: (zoom plane city-c city-d) [100]
270: (debark scott plane city-d) [20]
270: (debark ernie plane city-d) [20]
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Different to Zeno-1 Zeno-2 the objective is to min-
imze fuel consumption.

Sseq Scon e S d t
hyp + hy, | 666.66 | 666.66 8 41 | 6 | 0.00s
hy+hy, | 666.66 | 666.66 | 111 520 | 7 | 0.02s
hs - - - - - -
h=0 666.66 | 666.66 | 429 | 1799 | 6 | 0.07s

The search with h, fails, since zero-valued operators
generate large plateaus, so that the search generates
scheduled plans with almost arbitrary number of oper-
ators without eventually reaching the goal. The best
concurrent plan is:

0: (board scott plane city-a) [0]

0: (fly plane city-a city-c) [333.33]
333.33: (board ernie plane city-c) [0]
333.33: (board dan plane city-c) [0]
333.33: (fly plane city-c city-d) [333.33]
666.66: (debark scott plane city-d) [0]
666.66: (debark ernie plane city-d) [0]

For Zeno-3 the sum of time and fuel consumption
has to be minimized with the following outcome.

Sseq Scon e s|d t

hp + hn 1370 1290 11 57 | 8 | 0.00s
1253.33 | 1173.33 30 145 | 8 | 0.01s

1096.67 | 1046.66 | 150 727 | 7 | 0.04s

h¢+ hy | 1066.66 | 1046.66 8 41 | 6 | 0.00s
h 1093.33 | 1046.66 7 45 | 7 1 0.01s
h=0 1066.66 | 1046.66 | 429 | 1799 | 6 | 0.08s

The optimal schedule is:

0: (board scott plane city-a) [30]

30: (fly plane city-a city-c) [483.33]
513.33: (board ernie plane city-c) [30]
513.33: (board dan plane city-c) [30]
543.33: (fly plane city-c city-d) [483.33]
1026.66: (debark scott plane city-d) [20]
1026.66: (debark ernie plane city-d) [20]

Since all problems are solved in less than a second,
the efficiency is difficult to interpret. Therefore, we
evaluate a more involved example of (Edelkamp 2001b),
where the third passenger also has a pre-specified tar-
get location. The objective function is total-time. The
following table depicts the improvement of plan quality
in this extended Zeno-Travel-1 problem.

Sseq Scon e s d t
hy | 803.33 | 733.33 234 1137 | 11 | 0.04s

780 | 713.33 842 3960 | 12 | 0.16s
743.33 | 673.33 876 4082 | 12 | 0.16s
766.66 670 1172 5371 | 12 | 0.22s

730 630 2549 11604 | 12 | 0.49s

730 600 7712 36364 | 12 | 1.57s

670 570 9423 44084 | 13 | 1.93s

670 540 | 36894 | 167593 | 13 | 7.54s
hy 780 | 683.33 9K7 5519 | 12 | 0.40s
+ | 766.66 670 1074 5878 | 12 | 0.42s
h, | 766.66 640 1179 6323 | 12 | 0.45s
730 630 1345 7010 | 12 | 0.50s
730 600 1450 7455 | 12 | 0.53s
670 570 5971 29122 | 13 | 2.10s
670 540 6367 31026 | 13 | 2.23s
hg 710 540 1285 5596 | 14 | 4.31s

=+

Both sequential heuristics lead to fast convergence
in all cases, but the number of expansions grows con-
siderably. The FF heuristic is more effective than the
pattern database heuristic and consumes slightly more
time for each considered state. The schedule heuristic
still yields the optimal plan on the first shot and ex-
pands less states. This is counter-balanced in time con-
sumption. Breadth-first search fails to encounter depth
11.

The best plan of the problem is:

0: (zoom plane city-a city-c) [100]
100: (board dan plane city-c) [30]
100: (refuel plane city-c) [40]

100: (board ernie plane city-c) [30]
140: (zoom plane city-c city-a) [100]
240: (debark dan plane city-a) [20]
240: (board scott plane city-a) [30]
240: (refuel plane city-a) [40]

280: (zoom plane city-a city-c) [100]
380: (refuel plane city-c) [40]

420: (zoom plane city-c city-d) [100]
520: (debark scott plane city-d) [20]
520: (debark ernie plane city-d) [20]

When comparing any-time performance of improving
plans, the interpretation of the experimental outcome
is not immediate. Even if not necessarily optimal and
even if the first plan might be established later than
with sequential plan improvements, the relaxed plan
schedule is favorable, since, with respect to undecid-
ablility result, stopping with the first plan found, is
probably the best termination criterion we can get. On
the other hand, zero-resource operators according to the
objective function call for a cost function dependent on
the path length.

Discretized Desert-Rat

In the discretized Desert-Rat domain sequential plans
cannot be improved by critical-path analysis, since by
our definition all operators in a sequential plan are de-
pendent or instantaneous. Therefore, we evaluate the
time and exploration efforts for finding the first plan
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only. Since no propositional goal is specified the nu-
merically extended FF and pattern database heuristics

collapse to h,.

We have summarized the results in Desert-Rat in the
following table. The application of symmetry reduction
is denoted by +.

d Sseq Scon (& S d t
(300)~ 15 15 20 60 5 0.01s
(300)* 15 15 20 60 5 0.01s
(500)~ 35 35 18,413 47,980 | 13 6.44s
(500)t | 35| 35 358 549 | 13 | 0.47s
(600)~ 60 60 | 436,173 | 577,233 | 24 | 153.14s
(600)+ 60 60 26,723 43,782 | 24 8.46s

A sequential plan to the distance 600 problem is:

0: (load truck f5) [0]

0: (drive-out truck) [5]
5: (unload truck f5) [0]
5: (drive-back truck) [5]
10: (load truck f6) [0]
10: (refuel truck f£2) [0]
10: (drive-out truck) [5]
15: (unload truck £f6) [0]
15: (drive-back truck) [5]
20: (load truck £3) [0]
20: (refuel truck f1) [0]
20: (drive-out truck) [5]
25: (£fill-up truck £5) [0]
25: (drive-out truck) [5]
30: (unload truck £3) [0]
30: (drive-back truck) [5]
35: (load truck f6) [0]
35: (refuel truck f5) [0]
35: (drive-out truck) [5]
40: (refuel truck f£3) [0]
40: (drive-out truck) [10]
50: (unload truck f6) [0]
50: (refuel truck f6) [0]
50: (drive-out truck) [10]

Actually finding a such an involved plan for the chal-
lenging problem is a trademark for our efficient imple-
mentation and the advantage of accelerating sequential
plan-finding first.

Jugs-and-Water

The Jugs-and-Water domain is a Level-2 problem. It
contains no durative action and is inherently sequen-
tial. Unfortunately, the state spaces are very small,
that solving even larger (m,n)-Jug problems is easy.

Sseq | Scon e s d t
(5,3) 0 0 11 13 6 | 0.00s
(1237,1721) 0 0| 216 | 218 | 108 | 0.05s

The established plan for the former case is
(£i11 jug2) [0]
(pour jug2 jugl) [0]
(£i11 jug2) [0]
(pour jug2 jugl) [0]
(empty jugl) [0]
(pour jug2 jugl) [0]

[eNeolNeoNeoNe N

Taxi

The following plan with 35 operators was found with
he, symmetry and transposition cuts in about about
10 seconds CPU time while expanding only 852 states.
Since there is some space for improving the solution
quality, we currently study further refinements to the
heuristic estimate that can server better plans.

0: (schedule taxil arthur) [0]

(drive_to_fare taxil arthur up up) [79]
(schedule taxi2 ratburn) [0]

(drive_to_fare taxi2 ratburn down down) [73]
(schedule taxi3 grandma) [0]

(drive_to_fare taxi3 grandma up up) [46]
(schedule taxi4 prunella) [0]

0: (drive_to_fare taxi4 prunella down down) [34]
34: (load taxi4 prunella) [1]

35: (drive_to_dest taxi4 prunella up up) [104]
46: (load taxi3 grandma) [1]

47: (drive_to_dest taxi3 grandma up down) [81]
73: (load taxi2 ratburn) [1]

74: (drive_to_dest taxi2 ratburn up up) [49]
79: (load taxil arthur) [1]

80: (drive_to_dest taxil arthur down down) [77]
123: (unload taxi2 ratburn) [1]

124: (schedule taxi2 dw) [0]

124: (drive_to_fare taxi2 dw up down) [70]

128: (unload taxi3 grandma) [1]

129: (schedule taxi3 brain) [0]

129: (drive_to_fare taxi3 brain up up) [55]
139: (unload taxi4 prunella) [1]

157: (unload taxil arthur) [1]

158: (schedule taxil francine) [0]

158: (drive_to_fare taxil francine down down) [12]
170: (load taxil francine) [1]

171: (drive_to_dest taxil francine down up) [34]
184: (load taxi3 brain) [1]

185: (drive_to_dest taxi3 brain down up) [66]
194: (load taxi2 dw) [1]

195: (drive_to_dest taxi2 dw up up) [44]

205: (unload taxil francine) [1]

239: (unload taxi2 dw) [1]

251: (unload taxi3 brain) [1]

Conclusions

Essentially planning with numerical quantities and du-
rative actions is planning with time and resources. The
framework of grounded PDDL~+ problems can be seen
as a normal form for resource planning and allows to
certify complexity results. We have proposed a planner
for mixed propositional and numerical planning prob-
lems with finite branching, in which numerical pre- and
postconditions are instantiated on the fly and which
produces concurrent plans for a broad subclass of prob-
lems. The planner parses, pre-compiles, solves, and
schedules PDDL+ problems with time and resources
and different objective functions. Optimization is per-
formed by an any-time extension to the underlying
heuristic search engine.

Some other planners like TP4 (Haslum & Geffner
2001), SAPA (Do & Kambhampati 2001), and TL-
Plan (Baccus & Ady 2001) can cope with different forms



of PDDL+ expressiveness. We expect the international
planning competition to give more insights in current
state-of-the-art in planning technology.

PERT scheduling and critical path analysis for timed
precedence networks is one of the simpler cases for
scheduling (Syslo, Deo, & Kowalik 1983). We have
achieved a simplification by solving the sequential path
problem first. The any-time search algorithm origins
in Localized A* (Edelkamp & Schrédl 2000) and shares
similarities with depth-first branch-and-bound (Zhang
& Korf 1995). Different forms of symmetry reduction
based on the TIM inference module has also been shown
to be effective (Fox & Long 1999; 2002).

The core objective for future research is to enlarge
the problem class to conformant and infinite branching
problems. We will try to suit planning to various appli-
cation domains and to allow user interaction with a hor-
izontal bar or line Ganitt chart that visualizes schedules
and includes the following features: actions are iden-
tified on the left hand side, time scale is depicted on
the top of the chart, a horizontal open oblong is drawn
against each activity indicating estimated duration.
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Abstract

Many planning domains have temporal features that can be
expressed as durations associated with actions. Unfortu-
nately, the conservative model of actions of most temporal
planners is not appropriate for some domains which require
richer models. Level 3 of PDDL2.1 introduces a model of
durative actions which includes local conditions and effects
to be satisfied at different times during the execution of the
actions, thereby giving the planner freedom to plan concur-
rent actions. This paper presents a temporal planning sys-
tem (TPSYS), which combines the ideas Gfraphplan and
TGP, to plan with such durative actions. The approach ne-
cessitates the modification of some aspects of the basic plan-
ning algorithm: the mutex reasoning, the generation of the
temporal graph and the search for an optimal plan. Although
the algorithm becomes more complex, the experimental re-
sults demonstrate it remains feasible as a way to deal with
durative actions.

Introduction

Typically, classical planning systems simplify real prob-
lems by imposing unreal constraints on the problems. Par-
ticularly, planners rely on a model of actions in which all
actions have the same duration. Although this assumption

effect or precondition of the other. Although this makes
it possible to produce reasonable plans in most benchmark
planning domains, there exist some domains which require
a richer model of actions, and in which better quality plans
can be found if a richer model of actions is used.

PDDL2.1 (Fox & Long 2001) is the new version of the
standard language (PDDL) for the encoding of the planning
domains which has been proposed for the the AIPS-2002
Planning Competition. PDDL2.1 provides five levels to de-
fine planning problems. Concretely, the level 3 introduces a
new model of actions, called durative actions, which makes
it possible to allow actions to overlap even when their pre-
conditions or effects refer to the same propositions. This
is possible because traditional preconditions and effects are
now annotated with time points.

This paper presents a Temporal Planning SYStem (from
now on TPSYS) in order to manage the model of dura-
tive actions proposed in level 3 of PDDL2.TIPSYS is
based on a three-stage process, which combines the ideas
of Graphplan (Blum & Furst 1997) andTGP (Smith &
Weld 1999). Hence, the main contributions of this paper
are:

may be adequate for some planning problems, it becomes ® An analysis of how durative actions can be managed in a

inadequate when dealing with temporal planning problems.
For instance, this assumption is not true in real temporal
environments, where different actions take different times
of execution and concurrent actions are required to min-
imise the duration of the plan. Consequently, in temporal
environments the optimisation criterion must be changed
because the interest lies in obtaining a plan of minimal du-
ration rather than a plan of minimal number of actions.
Most temporal planners appeared in the recent literature,
such asparcPLAN, TGP or TP4 (El-Kholy & Richards
1996; Smith & Weld 1999; Haslum & Geffner 2001) have
yielded some success when dealing with temporality on ac-

Graphplan-based approach.

e An explanation of how a compact temporal graph can be
generated.

e The extension of the mutual exclusion reasoning to man-
age PDDL2.1 durative actions, based on the work of
TGP.

e A description of the plan extraction stage and the way it
obtains the plan of optimal duration (in terms of the dura-
tion of the actions) as an acyclic flow of actions through
the temporal graph.

tions. Nevertheless, these temporal planners have adopted

the same conservative model of actions of non-temporal
planners. This means that two actions cannot overlapyn
way if an effect or precondition of one is the negation of an

e Some experimental results showing the importance of the
mutual exclusion reasoning in richer models of actions,
as indicated in (Smith & Weld 1999).
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This paper is organized as follows. In the second sec-
tion, we briefly review the motivations for introducing the
model of durative actions of level 3 of PDDL2.1. The third
section introduces the action model, the components of a
durative action and the terminology used through the paper.
The TPSYS algorithm and its three stages are described in
the fourth section. This section provides the modifications
the planning algorithm necessitates to deal with durative ac-
tions. Some experimental results are shown in the fifth sec-
tion, demonstrating the feasibility of the system proposed.
The sixth section discusses two approximations for dealing
with durative actions in traditional planners. Finally, the
conclusions are presented in the seventh section.

Motivation

PDDL does not allow the definition of actions with dura-
tion, which imposes an important limitation in real tempo-
ral problems. In developing PDDL2.1 to allow the mod-
elling of temporal planning domains it was considered crit-
ical to allow a fuller exploitation of concurrency than can
be captured using the strong mutex relation of the conser-
vative model of actions, as the usedli@P (Smith & Weld
1999). This entails a more precise modelling of the state
transitions undergone by different propositions within the
durative interval of the action. In particular, the precondi-
tions of the starting point of the action do not necessarily
need to be maintained throughout the interval. There may
be preconditions of the final effect of the action that can
be achieved concurrently rather than maintained through-
out the interval. Hence, it becomes necessary to distinguish
invariant from non-invariant conditions because there might
be invariant conditions that cannot be affected during the in-
terval of execution. Moreover, there might be initial effects
of the starting point that can be exploited by concurrent ac-
tions. All these distinctions give rise to quite sophisticated
opportunities for concurrent actions in a PDDL2.1 plan.

We motivate the modelling of the state transitions with
the following example of the classical logistics domain in
the conservative model of actions. Let us consider the ac-
tion fly(plane,origin,destination) This action requires the
propositionat(plane,origin)to be true before executing the
action, and asserts the propositionat(plane,origin)and
at(plane,destinationqit the end of the action. This implies
that the location of th@laneis inaccessible until the end
of the action, preventing concurrent actions (for instance,
those that require th@lanenot to be in the origin) from be-
ing executed in parallel witlly(plane,origin,destination)
However, as presented in (Fox & Long 2001), this may
exclude many valid plans. In PDDL2.1 this can be easily
avoided by assertingat(plane,origin)as an initial effect.

In addition, if we want to know the fact of beirftying
during the actiorfly, it would be enough by asserting the
proposition(flying-plane)as an initial effect of the start-

ing point and—(flying-plane)as a final effect of the end
point. But, in a conservative model of actions, the equiv-
alent action for thidly durative action would not represent
the fact of beindlying due to the impossibility of including
the proposition(flying-plane)and—(flying-plane)as initial
and final effects, respectively. Therefore, it is impossible to
work with actions which require this proposition, such as
the possible actiorefuel-during-flight

Although in real problems instantaneous actions are
never reallyinstantaneousthere are some cases in which
these actions could be useful for modelling purposes. Level
3 of PDDL2.1 also allows the definition of these actions,
i.e. traditional actions with no duration. Since PDDL2.1
intends to provid@hysicdnstead ofadviceof the planning
problem, instantaneous actions could be useful in order to
obtain a valid plan for different executive agents when the
duration of the action is very small (or even unknown) to be
considered by the planning agent. More generally, the do-
main engineer might choose to model the domain at a level
of abstraction at which it is not interesting to capture the
durations of practically instantaneous actions. That is, the
engineer might choose to emphasise the durations of some
actions but not of others.

These modelling choices do not lead to conflict with the
semantics presented in (Fox & Long 2001) because it is
possible, at level 3 of PDDL2.1, to express an instantaneous
action as an action with barely measurable duration. This
duration is epsilon, an amount so small that it makes no
sense to split it. This means that non-interfering actions
that take epsilon time can happen in parallel but they can-
not be interleaved. This epsilon is so small that it never
changes the sequence of actions in the plan. Epsilon has to
be chosen appropriately for a given domain and problem,
because it represents a discretization of the time-line into
indivisible units, the end points of which mark the points at
which actions can be initiated or terminated.

Action Model and Terminology

Unlike traditional actions of PDDL, durative actions
present more conditions to be guaranteed for the success
of the action. Moreover, durative actions do not only have
effects that hold at the end of the actions but also effects to
be asserted immediately after the actions start.

Definition 1 Components of a durative actio(see Figure
1). Leta be a durative action which starts at timeand
ends at timee, being executed through the interval.e].

The components afare the following:

e Conditions. The three types of local conditions of a du-
rative action are: i)SCond,, the set of conditions to be
guaranteed at the start of the action; ifhv,, the set of
invariant conditions to be guaranteed over the execution
of the action; and iii)ECond,, the set of conditions to
be guaranteed at the end of the action.
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Figure 1: Components of a durative action

e Duration. The duration of the action is a positive value
represented by, € R™.

o Effects. The two types of effects of a durative action are:
i) SEff, = {SAdd, U SDel,}, with the positive and

Definition 3 Conditional proposition One propositiorp
is conditional if all the actiong{a;} which achievep are
conditional and they have not ended their execution yet.

Intuitively, if p is only achieved by conditional actions
{a;}, p will be conditional until at least one action ends
successfully, which implies botBCond,, and ECond,,
are satisfied. Once this happepss valid (stopping being
conditional).

As we have seen in the previous section, instantaneous
actions are allowed in level 3 of PDDL2.1. This does not
represent a serious inconvenience because the correspon-
dence rule below can transform an instantaneous action into
a durative action. This way, all the instantaneous actions

negative effects respectively to be asserted at the start present in the planning domain can be managed in the same

of the action; and i)EEff, = {EAdd, U EDel,},
with the positive and negative effects respectively to be
asserted at the end of the action.

Although level 3 allows the modelling of numeric condi-
tions and effects as well as logical transitions, this version
of TPSYS does not manage them yet.

Durative actions entail an important difficulty: there ex-
ist some effects{E f f,) which can be obtained before the
action ends. Hence, it might be possible that an initiated
action could not end because its end conditidi€' ¢nd,,)
are not satisfied in the future. In that case, all the start ef-

way as durative actions.

Definition 4 Correspondence ruleR,,,.,,. The corre-
spondence rule maps an instantaneous actign with
Pres,, Effs., = Add,, U Del,, into a durative action
aq in the following way:
SCond,, = ECond,, = Inv,, = Pre,,
SAdd,, = FAdd,, = Add,,
SDel,, = EDel,, = Del,,
durationg, =0

Figure 2 shows the definition of the simple logistics do-

fects (and the actions which are dependent on them) should mainzeno-travefor durative actions of level 3 of PDDL2.1.

be invalidated. We call these kind of actiasnditional ac-
tionsbecause they are provisional until their end conditions
are guaranteed, and we define them as:

Definition 2 Conditional action One actioru with D, >

0 is a conditional action i{SEf f, # 0) A (ECond,, # ()
holds. This way, the set of propositiofi# f f, of a condi-
tional actiona only becomes valid when all propositions in
ECond, are satisfied.

Conditional actions are motivated by observing that there

The three actions at@ard fly anddebark which have du-
ration, conditions and effects. According to Definition 1,
the actions havat start and over all conditions with the
conditions to be satisfied just at the beginning of the action
and during all its execution, respectively. Analogously, the
at startandat endeffects have the effects to be asserted at
the beginning and the end of the execution of the action.
At first blush the extension of @raphplan-based plan-
ner to deal with durative actions of level 3 would seem quite
easy. However, durative actions imply important changes in

are domains in which durative actions are required precisely the way the temporal graph is generated and in the way the

for some effect achieved through the duration of execution
of an action (it is bounded by that duration). Such initial

effects cannot be exploited as end effects because they do
not persist beyond the end of the action. For example, in a

logistics domain the plane f§ying only during the action
fly, so the initial effect(flying-plane)cannot be exploited
beyond the end of th#ly action. Further, when plans are
validated, the successful termination of a durative action
must be confirmed even if a goal is achieved before the
end of its durative interval. This is because durative ac-
tionspromiseto terminate initiated actions in a stable state.
If anything in the plan prevents this stable termination then
the plan must be considered invalid. Richer goal specifi-
cations might allow one to consider goals that must persist
only over finitely bounded intervals (Do & Kambhampati
2001), but PDDL2.1 does not yet support this.

search for a plan is performed. These modifications are pre-
sented in the next section.

The Temporal Planning SYStem

In TPSYS, a temporal planning problem is specified as the
4-tuple{Z;, A, Fs, Dinaz }, WhereZ, and F, represent the
initial and final situation, respectivelyd represents the set
of durative actions in the planning domain. Time is mod-
elled byR™ and their chronological ordeB,, .. stands for
the maximum duration allowed by the user. Although this
bound is not defined in PDDL2.1 and it could be difficult to
be decided, it allows the user a good way to constrain the
goals deadline and the makespan of the plan as in (Do &
Kambhampati 2001).

TPSYS is executed in three consecutive stages (see Fig-
ure 3). After the first stage, the second and the third stage
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(:durative-action board First S
:parameters (?p - person ?a - aircraft Iret Stage i
?c - city)

:duration (= ?duration (boarding-time ?c))
:condition (and (at start (at ?p ?c))
(at start (free ?a))
(over all (at ?a ?c)))
-effect (and (at start (not (at ?p ?c))) P | | Third Stage

(at start (not (free ?a)))
found?

(at end (in ?p 7?a))))

Second Stage <

(:durative-action fly
parameters (?a - aircraft ?cl ?c2 - city)

:duration (= ?duration (flight-time ?cl ?c2)) v
:condition (and (at start (at ?a ?cl))) Failure  Success
.effect (and (at start (not (at ?a ?cl)))
(at end (at ?a ?c2)))) Figure 3: The three stages DPSYS.

(:durative-action debark
:parameters (?p - person ?a - aircraft

?c - city) interfering propositions they cannot be executed in parallel,
‘duration (= ?duration (debarking-time ?c)) but when dealing with PDDL2.1 durative actions it may be
:condition (and (at start (in ?p ?a)) possible for such actions to co-occur.
(over all (at ?a ?c))) . . . . .
:effect (and (at start (not (in ?p ?a))) There exist four action-action mutex situations, pre-
(at end (free ?a)) sented in Table 1. Case Aht(star) represents the mu-
(at end (at ?p ?c)))) tex in which actions cannot start at the same time because

start effects are contradictory or start effects and start con-
Figure 2: Definition of a simple domain in level 3 of ditions are conflicting. Case atend represents the mutex
PDDL2.1. in which actions cannot end at the same time because end
effects are contradictory or end effects and end conditions
are conflicting. Case 3af end-star} represents the mu-
tex in which two actions cannot end and start at the same
time, i.e. the actions cannot meet, because the end effects

. ] . . of one action are conflicting with the start conditions or
First stage: Preprocessing and Mutex Reasoning effects of the other action. This mutex (which does not

Graphplan approaches define binary mutual exclusion re- @ppear aGraphplan) might seem a stronger requirement
lations between actions and between propositions. As than is really required, but it takes account of the fact that
TGP, TPSYS needs to calculate action-action mutex Simultaneity can never be relied upon in the real world —it
relationships, action-proposition mutex and proposition- cannot be guaranteed that the action requiringahstart
proposition mutex. Since proposition-proposition mutex condition will definitely happen after the achievement of
appears as a consequence of action-action mutex (Blum & that condition at execution time. Furthermore, the compu-
Furst 1997), this stage only calculates the action-action and tationally efficient testing of validity of a plan relies on not
action-propositiorstatic mutex relationships. These mutex having to consider all possible orderings of so-called simul-
relationships are static because they only depend on the def-taneous happenings. This issue is discussed in depth in the
inition of the actions and they always hold. Therefore, there PDDL2.1 semantics. Moreovegraphplan is tailored to

is no reason to postpone their calculus to the next stages, Work with simple propositional formulae and it cannot be
speeding up the second and third stages. The process ofassumed that the positive assertion of a proposition will not
calculating the mutex relationships is complicated by the interact harmfully with more complex precondition formu-
semantics of PDDL2.1, which embodies a more permis- lae. HoweverTPSYS takes the correctness-preserving as-
sive mutual exclusion relation than the languages of other Sumption ofincluding an epsiloa ¢~ 0) between the action
temporal planners. The components of durative actions in Which ends and the action which starts to avoid this mu-
PDDL2.1, presented in Definition 1, have some important €X and to make easier the implementation of the algorithm.
implications for mutex reasoning. In particular, the strong Finally, case 4during) represents the mutex in which one
mutex used by traditional temporal planners, such@p, action cannot start or end during the execution of the other
must be modified to allow durative actions to be applied because the start or end effects of the former are conflicting
in parallel even in cases in which they refer to the same With the invariant conditions of the latter.

propositions. In traditional approaches, if two actions have  In addition to the action-action static mutex, the

are executed in an interleaved way until a plan is found or
the duration exceedB,,, .
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| Case] Condition for the mutex | Typeofmutex | Relation |

(SAdd, N SDel, Z0) v (5Add, N SDel, Z )
1 ((SAddq U SDely) N (SCondy, U Invy) # 0) AAstart—start
((SAddy, U SDely) N (SCondq U Inv,) # B)
(EAdd, nEDel, # 0) v (EAdd, 1 EDel, % 0)
2 ((EAdd, U EDel,) N (ECondy, U Invy) # 0
((EAddy, U EDely) N (ECond, U Invg) # 0
((FAdd, U EDel,) N (SCond, U ITnvy) # 0
3 ((EAddy U EDely) N (SConda U Invg) # 0

(EAdd, N SDely % 0) v (EDel, N SAdd, #
(EAddy N SDel, # 0) V (EDel, N SAdd, #

4 (Invg N SDely, # 0) V (Invy N SDel, # 0) AA. _
(Inv, N EDely # 0) V (Invy, N EDel, # () during—during

AAendfend

n

A

N
n

AAendfstart

1)1

SRR

Table 1: Conditions for the static action-action mutex relationships between two durative actiots.

proposition-action mutex relationships are also calculated into two partsendpart andstart-part, in which the follow-

in the first stage. As demonstrated in (Smith & Weld 1999), ing action-action {L A;) mutex), proposition-actionf{A
when actions have different duration is@aphplan-based mutex) and proposition-propositio#’{?;) mutex relation-
approach, mutex between propositions and actions help de- ships must be calculated. We use the notatlohy,;, PAy,
duce more inconsistencies because they better connect mu-and PP to represent the mutex relationships that hold at
tex between actions to mutex between propositions when time ¢. These mutex relationships are temporary and can

actions are executed in parallel. disappear in time, in contrast with the notatidrl and P A
Definition 5 Static pa-mutex (proposition/action mutex) that represen_t the sta_ltic mutex rela_\tionships which always
One propositiorp is statically mutex with action iff p € hold. The actions which end at action levé}, are stored
{SDel, U EDel,}. in Apyena, Whereas the actions which start at action level
Ay are stored inAys.q,¢. Analogously, the propositions
Second stage: Extension of the Temporal Graph achieved at thend-part are stored i#y;;..,,4, and the propo-

The second stage performs the extension of the temporal Sitions achieved at thetart-part are stored ity s¢q,¢-

graph. The temporal graph consists of a directed, layered On one hand, the mutex relationships to be calculated
graph which alternates temporal levels of propositions and N the endpart are: AAyjcpa-—cna With the actions which
temporal levels of actions, representedBy and Ay re- are mutex ending at; PApjeng—cna With the proposi-
spectively (Garrido, Onaind, & Barber 2001). The lev- tions which are mutex with the actions which end¢at
els are chronologically ordered by their instant of time, by @Nd PPjenq—cna With the propositions which are mutex
means of a label which represents the instant of time in ~ at ¢ after ending all the actions. On the other hand, the
which propositions are present and actions can start, or end, Mutex relationships to be calculated in tsrt-part are:
their execution. The way of extending the temporal graph AA(tjstart—stare With the actions which are mutex starting

is performed in a similar way tGraphplan. Particularly, att; AAend—stare With the mutex between the actions
the process consists of generating all the actigni® ac- which end and start @ P Apjsiar¢—stare With the propo-
tion level Ay of the graph as soon as their start conditions ~ Sitions which are mutex with the actions which startat
are non pairwise mutex in the proposition leveJ;, gen- PPijend—start With the propositions which are mutex at

erating their start and end effects in the proposition levels ¢ and have been achieved by actions which end and
Py and Py p, |, respectively. This process finishes once ~actions which start a, respectively; and®Pyjsiart—start

all the propositions in the final situation are present, non With the propositions which are mutexiaafter starting all
pairwise mutex in a proposition levél,, and the actions the actions. The main reason for breaking down these mu-

which achieved them have already ended. tex relationships intend-part andstart-part lies in making
o ) . their calculus simpler, as can be seen in the following defi-
Modifications in the Extension of the Temporal Graph nitions:

Although the idea of extending the temporal graph is con-
ceptually simple, it contains some subtle details due to
the local conditions and effects of durative actions. In

each temporal level it is necessary to study first the effects

Definition 6 AAjjcnq—enq- TWO actionsa, b are end-end
mutex at timet if one of the following holds: iy, b are
AAcnd—end, 1) ECond,, ECondy, are PPyjend—end, OF

achieved by the actions which end (whasendconditions iii) a,bare AAy—min(D,,Dy))start—start-
hold), and then the effects achieved by the actions which Definition 7 PA{;jcpq—enq- LEtp be a proposition and
start. In consequence, each temporal levéd divided be an action. For each actioly which achievey at ¢, let
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T, be the condition undér; is mutex with the persistence
of p at timet, i.e. T;;;) = [(p,b; are PA) V (p, ECondy,
are PPyjend—end)]- Propositionp and actiona are end-end
mutex at time if the following condition holdsA; [ ;) A
(av b; are AA[t]end—end)]-

Definition 8 PPyjeni—end- L€t p,q be two propositions
and{a;}, {b;} be the sets of actions which achigvand
q at time ¢, respectively. Propositiong, ¢ are end-end
mutex at timet if both of the following conditions hold:
i) Vb; : p,b; are PApend—end, @nd ii) Ya; : q,a; are
PA[t]endfend-

Definition 9 AA(;jstqrt—stare- TWO actionsa, b are start-
start mutex at timet if one of the following holds:
i) a,b are AAgiart—start, OF i) SCond,, SCond, are

PP[t]startfstart .

Definition 10 AAjjend—stare- TWO actionsa (ending at
t) and b (starting att) are end-start mutex at time if
one of the following holds: %, b are AAc,q—start, OF ii)
ECond,, SCondy, are PPyjend—end-

Definition 11 P A{yjqrt—start- L€t b€ @ proposition and
a be an action. For each actioky which achievep att, let
;1) be the condition under; is mutex with the persistence
of p at timet, i.e. ¥,y = [(p,b; are PA) V (p, SCondy,
are PPyjstart—start)]- Propositionp and actiona are
start-start mutex at time if the following condition holds:

/\z[\I/’L[t] A (CL, b; are AA[t]start—start)}'

Definition 12 P Pyjcna—start- LELp be a proposition first
achieved at time by the set of actionga;} which end at
t. Analogously, let; be another proposition first achieved
att¢ by the set of action§b; } which start att. Propositions
p, q are end-start mutex at timeif the following condition
holdS:Vai, bj L ag, bj are AA[t]end—sta,rt-

Definition 13 PPjart—start- L€t p,q be two proposi-
tions and{a;}, {b;} be the sets of actions which achieve
p andq at timet, respectively. Propositions, ¢ are start-
start mutex at timeif both of the following conditions hold:
i) Vb; : p,b; are PAysari—start, @and ii) Ya; : q,a; are
PA[t]startfsta'rt-

Intuitively, AAf;) mutex relationships represent the im-
possibility of two actions ending, starting or abutting to-
gether at the same time P Aj,; mutex represents the im-
possibility of having a proposition and one action starting or
ending at timet. PP, mutex represents the impossibility
of having two propositions together at time These cal-

As can be seen in the previous definitions, the calculus
of the mutex relationships in thendpart andstart-part
are nearly identical, with the only difference of recovering
and storing the information in different structures. Thus,
in some cases the structures could be the same improving
the efficiency. Concretely, the implementation of the sec-
ond stage only keeps one structét@; for P Pyjcna—ecnas
PP[t]endfstart andPP[t]startfstart-

An important point to take into account when dealing
with durative actions in &raphplan-based approach and
which forced us to modify the algorithm is the condition to
finish the extension of the temporal graphQraphplan or
TGP, this condition holds once all the propositions of the fi-
nal situation are non pairwise mutex. However, conditional
actions assedt starteffects which might be included in the
final situatiorbeforethese actions end. This implies that the
temporal graph extension might end in a level in which it is
impossible to find a feasible plan because any of the propo-
sitions in the final situation is still conditional (it has not
been validated yet), losing the benefits of tBaphplan-
based graph extension. Loosely speaking, it means that the
action which achieves that effect has not ended yet and the
effects could be invalid (unavailable) if the end condi-
tions of the action fail. In order to tackle this drawback, it
becomes necessary to propagate some additrmaistic
information about the validity of the propositions achieved
in the temporal graph. In this case, the same disjunctive
reasoning on propositions &raphplan can be applied on
the instants of time at which the propositions stop being
conditional. This propagation mechanism is quite straight-
forward, according to the following definition:

Definition 14 End time of a conditional propositionLetp

be a conditional proposition anfl; } the set of conditional
actions which achieve. In the proposition levePy; (at
time t), the end time in whichy stops being conditional,
max.. (the maximum end time conditional) is calculated
asmin(«; ), whereq; is defined as:

e max(maxet.(SCondg, )+ Dg,, maxet.(ECond,, ), t), if
p is achieved in an end-part of the graph.

o max(maxe..(SCond,,) + D,,,t), if p is achieved in a
start-part of the graph.

Algorithm for the Extension of the Temporal Graph.
After introducing the modifications which are necessary to
extend the temporal graph, we present the algorithm (see
Figure 4) for extending the temporal graph. Starting at time

culus of the mutex relationships obtains the same mutex as ¢t = 0 (with all the mutex structures empty), the algorithm

Graphplan and, thereafter, they provide very useful infor-

mation to improve the process of search by avoiding com-

generates new proposition and action levelsdpart and
start-part), calculating all the mutex relationships. First, the

bination of actions, propositions and propositions/actions endpart of the temporal graph is generated with the actions
which cannot be satisfied simultaneously, thus reducing the which can end (their end conditions are satisfied). Hence,

space search (Blum & Furst 1997).

the algorithm updated ;.4 with the actions which end at
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Algorithm Temporal Graph Extension
t=0
while (¢ < Diax) A (Fs is not satisfied inPy ) A
(Fs has not conditional propositions do
forall < a4, s:,t > which can end atlf;,q do
A[t]end = A[t]end Ua;
P[t]end = P[t]end U EAdd%
Generatestart-part mutex
endforall
forall < bj,t,e; > which can start atlj;)¢q,+ dO
Apstart = Aft)start U bj
[t)start = P[t]sta/rt U SAddb]
Generateendpart mutex
endforall
t = next level in theTemporal Graph
endwhile

Figure 4: Algorithm for the temporal graph extension per-
formed in the second stage.

timet, Py.,q With their end effects, and calculates all the
mutex relationships presented above. Then, the algorithm
generates thstart-part of the graph with the actions which
can start (their start conditions are satisfied). The algorithm
updatesiy¢qrt AN Py 500 With the actions which start at
timet and their start effects, respectively, calculating all the
mutex relationships. Here, new temporal levels are gener-
ated according to the duration of the actions generated. This
way, for eachb; generated i ;)ssq,¢, the temporal levels
P,) and A, are created, where obviously =t + Dy,
No—op actions and delete-edges (which represent the neg-
ative effects) are not stored in the temporal graph during its
extension. This extension continues until the propositions
in the final situation are achieved and they are not condi-
tional, i.e. the actions which achieve them have ended and
those propositions are valid. Moreover, the extension also
finishes if the maximum time allowed by the ugey, ... is
exhausted, returnindrailure’ (see Figure 3).

Lemma 1 The extension of the temporal graph is com-
plete If the temporal graph extension ends at timehe
algorithm generates all the necessary temporal levels (at
which actions can end or start) between tithandt.

Proof 1 The proof is direct by definition of the algo-
rithm. The algorithm generates all the actiofis;} whose
SCond,; hold in each temporal level. Each action level
contains all the actions present in the previous action lev-
els —analogously for the proposition levels. This way, once
one actiorb; appears in an action level, this action will ap-
pear in the next levels, and all the temporal levels in which
b; could end and start are calculated and created.

Third stage: Extraction of a Plan

The third stage performs the extraction of an optimal plan,
as an acyclic flow of actions, through the temporal graph ex-
tended in the second stage. I&eaphplan-based approach

the plan is obtained by moving through the graph in a back-
ward way. The process consists of obtaining the actions
which achieve the propositions to be satisfied. Now, du-
rative actions allow different ways to achieve these propo-
sitions, not only by theiat endeffects but also by their

at start effects. Moreover, in order to plan an action all
its conditions must be satisfied, which with durative actions
entails to satisfy the start, end and invariant conditions. This
breaks the traditional right to leftirectionality of Graph-

plan or TGP as shown in the following example.

Let us suppose an instant of timeluring the extraction
of a plan at which a propositiop must be satisfied. Let
us suppose that actiom achievesp at t as a start effect
(p € SAdd,). If a has end conditionsKCond,), they
will have to be satisfied at tim€ = ¢ + D,, forcing the
algorithm to move again to an already visited instant of time
t' > t. For this reason, the algorithm first selects the set of
actions{a; } which achieve each proposition as end effects
in order to keep the traditional directionality of the search.

Moreover, before planning an actienit is necessary
to study whether is compatible with the actions already
planned, i.e. that the new actiandoes not modify the in-
variant conditions of the other actiond fquring—during
mutex relationships of Table 1), discardiagif it is not
compatible.

The algorithm for the extraction of an optimal plan is
shown in Figure 5. It uses two structures, one queue
GoalsToSatisfy formed by pairs< p,t > with the goal
propositionp to be satisfied at time, and one listPlan
formed by< a;, s;,e; > 3-tuples with the planned action
a; starting ats; and ending at;. GoalsToSatisfy is ini-
tialized with the propositions of the final situation to be sat-
isfied at the instant of time at which the temporal graph ex-
tension has finished?lan is initially empty. The algorithm
proceeds in the following way. While there are (sub)goal
propositions inGoalsToSatis fy, the algorithm dequeues
a pair< p,t > to be satisfied. Note that now,could be
already satisfied at timghecause actions are planned in dif-
ferent points of time and not always in a right to left order.
If p is not already satisfied at timein Plan, actions that
satisfyp at timet are selected in a backtracking point. Al-
though all the set of actior{s:; } which are compatible with
actions inPlan must be considered for completeness, the
actions which achievg as end effects are firstly selected to
keep the traditional right to left directionality. If actian
is not mutex with the actions i?lan, thena; is planned
updating the structure®lan and GoalsToSatisfy with
a; and the start, invariant and end conditions:gfrespec-
tively.

Since the temporal graph extension finishes as soon as
all the propositions in the final situation are present, non
pairwise mutex, and the plan extraction is complete, the al-
gorithm obtains the optimal plan in terms of the duration of
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Algorithm Plan Extraction
GoalsToSatisfy = Fs at the end time of second stage
Plan =0
while (GoalsToSatisfy # () do
Dequeue< p,t > from GoalsToSatis fy
if < p,t > isnotalready satisfied iRlan
Seleci< a4, s;, e; > which satisfiep att and
compatible withPlan
Plan = Plan U < a4, Si,€; >
GoalsToSatisfy = GoalsToSatisfy U SConda,
U Inve; U EConda,
endif
endwhile

Figure 5: Algorithm for the plan extraction performed in

the third stage.

the actions (Garrido, Onaiial & Barber 2001).

Lemma 2 The extraction of a plan is a complete process

Proof 2 The proof is trivial due to the fact that the
algorithm considers all the possible actions (back-

tracking point) which satisfy each proposition from
GoalsToSatisfy.

Theorem 1 Optimality of the algorithm The first plan the
algorithm extracts is the plan of optimal duration.

Proof 3 By contradiction, letP; be the first plan (of dura-

part of the graph is shown because the actions of the do-
main have no positivat start effects —negative effects
are not stored in the temporal graph. For each action level
Ay, both theA(jenq and Aysqrc @re shown with the ac-
tions which end, and start, respectively at each instant of
time. In timet = 0, actionsboard(ernie,plane,city-agnd
fly(plane,city-a,city-bjare generated, but because they are
AAgari—start MuUtex the propositiongi(ernie,plane)and
at(plane,city-b)are mutex until timg = 15, in which the
actiondebark(ernie,plane,city-i¥ generated, thus obtain-
ing the goakt(ernie,city-b)in time¢ = 20. As can be seen,
although the actions have differing duration, the extension
of the temporal graph is equivalent@®aphplan. The pro-
cess of extraction of a plan selects the instances of actions
which obtain the goals, then the start and end conditions of
these actions, and so on. The plan obtained consists of the
following sequence of actions:

0+ ¢€: board(ernie,plane,city-a) [5]
5+ 2¢: fly(plane,city-a,city-b) [10]
15+ 3e: debark(ernie,plane,city-b) [5]

The offsete in the instant of time at which the actions are
executed is a necessary feature for a valid plan of PDDL2.1
(Fox & Long 2001). This is included to avoid the simul-
taneity of the actions when they meet, as presented in the
case 3 of the mutex relationships of Table 1.

Experimental Results

tion t) the algorithm extracts. We assume this plan is not
optimal, so we deduce that there exists a pRlp (of du- Currently, there does not exist an extensive collection of
ration ¢ < t) which has not been found by the algorithm benchmarks for durative actions of PDDL2.1. Conse-
and is optimal. This implies one of the following cases: i) quently, we have adapted some of the traditional domains
the temporal level’ has not been generated during the ex- of PDDL, such adogistics travel-bulldozer ferry, grip-
tension of the temporal graph, or ii) the temporal level per, monkey blocksworldand zeno-travelto the model of
has been generated but the extraction stage has not consid-durative actions of PDDL2.1. Direct comparison between
ered the plarP’y from that levelt’. The first case is false =~ TPSYS and recent temporal planner such $apa (Do
by Lemma 1 which claims the completeness of the tempo- & Kambhampati 2001) offP4 (Haslum & Geffner 2001)
ral graph extension, and the second case is also false by is difficult because they handle resources and even non-
Lemma 2 which claims the completeness of the plan ex- admissible heuristics which cannot guarantee the optimal
traction stage. In consequence, this contradicts the initial solution. Nevertheless, we want to do direct comparison
choice of the existence @';.. Hence,P; is the plan of in the immediate future. Consequently, we compake
optimal duration. SYS with TGP to demonstrate that the algorithm presented
o here remains feasible in dealing with traditional temporal
Application Example planning problems. We use two versionsT&P: TGP,
We present a simple application example, based on the which consists of the original version of (Smith & Weld
logistics domainzeno-travelpresented in Figure 2. This  1999), andTGP-ng, which extendsSTGP to keep minimal
example allows us to illustrate the extension of the tem- nogoods, doing backjumping during the backward search in
poral graph. In order to keep the temporal graph sim- the way proposed in (Kambhampati 2000). The tests were
ple enough, the example to be solved consists of trans- censored after 60 seconds. The results of the tests obtained

porting one persorernie, from city — a to city — b by
using aplane which is initially in city — a. The dura-
tion of the actions is 5 foboard anddebark, and 10 for

in a 64 Mb. memoryCeleron 400 MHz. can be seen in
Table 3.
The results show thalPSYS behaves well enough in

fly. Table 2 shows the proposition levels and the action all the problems. UnlikeTGP, TPSYS calculates more

levels. For each proposition levél,, only the Pjcnq

mutex relationships under the model or durative actions,
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Level

Py
P[t]end

Ap)
A[t]end

A[t]sta'rt

at(plane,city-a)
at(ernie,city-a)

board(ernie,plane,city-a)
fly(plane,city-a,city-b)

at(plane,city-a)
at(ernie,city-a)
in(ernie,plane)

board(ernie,plane,city-a)

board(ernie,plane,city-a)
debark(ernie,plane,city-a)
fly(plane,city-a,city-b)

10

at(plane,city-a)
at(ernie,city-a)
in(ernie,plane)
at(plane,city-b)

board(ernie,plane,city-a)
debark(ernie,plane,city-a)
fly(plane,city-a,city-h)

board(ernie,plane,city-a)
debark(ernie,plane,city-a)
fly(plane,city-a,city-h)
fly(plane,city-b,city-a)

15

at(plane,city-a)
at(ernie,city-a)
in(ernie,plane)
at(plane,city-b)

board(ernie,plane,city-a)
debark(ernie,plane,city-a)
fly(plane,city-a,city-b)

board(ernie,plane,city-a)
debark(ernie,plane,city-a)
debark(ernie,plane,city-b)
fly(plane,city-a,city-h)
fly(plane,city-b,city-a)

20

at(plane,city-a)
at(ernie,city-a)
in(ernie,plane)

board(ernie,plane,city-a)
debark(ernie,plane,city-a)
debark(ernie,plane,city-b)

at(plane,city-b)
at(ernie,city-b)

fly(plane,city-a,city-h)
fly(plane,city-b,city-a)

Table 2: Outline of the temporal graph extension for the application example.

which allows to reduce the search space in the plan extrac-
tion. This allows the complexity ofPSYS to follow the
same order of magnitud @ilGP —and evenTGP-ng. The
most important differences appear in the problettdog3
andbig-bull2, in which TGP is clearly better thafPSYS.

Although the differences betweérGP and TGP-ng are [ Problem [ TPSYS | TGP (TGP-ng) |
not very significant in these tests, the benefits which can att-log0 0.42 0.02 (0.01)
be obtained by exploiting the CSP techniques presented in att-logl 0.44 0.05 (0.01)
/ ol _ att-log2 0.47 0.06 (0.05)
(Kambhampati 2000) are very promising to dramatically att-log3 14.10 2.65 (2.50)
improve the behaviour of the plan extraction stage. bulldozer-prob|| 0.88 0.55 (0.45)
big-bulll 0.58 0.80 (0.75)
Discussion big-bull2 14.31 2.15(2.10)
The temporal planning system described in this paper rep- Ig:g; 8'8% 8'8% Eg'gg
resents an approximation for dealing with durative actions ferry3 030 0.03 (0:02)
of PDDL2.1 in aGraphplan-based approach. Therefore, gripper2 0.03 0.03 (0.02)
most of the extensions used @Graphplan-based planners gripper4 0.17 0.13 (0.16)
could be used here, such as memoization (Blum & Furst gripper6 6.88 4.53 (13.50)
1997) and regression (Kambhampati 2000) to improve the monkeyl-test || 0.20 0.17(0.15)
third stage, propositions in the initial (final) situation being monkey2-test | 0.63 0.75(0.70)
. . . . tower2 0.02 0.03 (0.02)
placed (required) at any time during the execution of the towerd 078 0.45 (0.50)
plan, and exogenous events as presented in (Smith & Weld towers 552 3.60 (3.25)
1999). zeno-travell 0.01 0.01(0.01)
Now, we discuss two alternative methods to tackle with zeno-travel2 0.02 0.01 (0.01)
durative actions wittat start effects andat endconditions zeno-travel3 0.02 0.01 (0.01)

in a temporal planner with ability to manage instantaneous
actions. Both of them consist of splitting each durative ac- Table 3: Comparison oTPSYS and TGP (results are in
tion into a collection of simple actions. seconds).
The first alternative splits each durative action into two
instantaneous actions (which represent the start and end
points of the durative action) and one action with duration
(which represents the process of the action). All these three
new actions will have neithext starteffects nomat endcon-
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ditions. Thus, a durative actianis divided into: (Baioletti, Marcugini, & Milani 2000) in which the direc-

. . tionality of Graphplan is exchanged for a Davis-Putthnam
e al, with no duration.Pre,; = {SCond, U Inv,} and search process.

Effal = {SEffa Uefal}-

o 2, with the duration ofi (D). Pregs = {Tnve Ue o1} Conclusions through Related Work

andEf fuo = €fqo. Last years have seen many attempts of dealing with tem-
poral planning. TheparcPLAN approach (El-Kholy &
e a3, with no duration.Pre,s = { ECond,UInv,Uefaz} Richards 1996) handles a rich set of temporal constraints,
andEf fu3 = EEf fa. instantiating time points in a similar way &PSYS. TGP

(Smith & Weld 1999) introduces a complex mutual exclu-
sion reasoning which is very valuable in temporal environ-
ments. The critical difference betwe@®P andTPSYS is
based on several points. Fir$iPSYS calculates the static
mutex relationships in a preprocessing stage which allows
to speed up the rest of stages. Secor@P uses a more
compact temporal graph in which actions and propositions
are only annotated with the first level at which they appear.
This reduces vastly the space costs but it increases the com-
plexity of the search process, which may traverse cycles in
the planning graph. In oppositiofPSYS uses a much
more informed temporal graph which reduces the overhead
during the search. Third, the mutex reasoning is managed in
TGP by means of inequalities and sophisticated formulae,
wheread PSYS calculates the mutex relationships level by
level in a more similar way t&raphplan. Finally, TPSYS
uses a richer model of actions which implies: i) fewer con-
straints on the execution of the actions, ii) some modifi-
cations in the planning algorithm, and iii) a significantly
larger space of search. More recent temporal planners, such
as Sapa (Do & Kambhampati 2001) ofP4 (Haslum &
Geffner 2001) handle concurrent actions and use heuristic
metrics to deal with resources in plannin§apa uses a
model of actions similar to PDDL2.1, but it does not per-
form mutex propagation as our systerBapa scales up
quite well, but it uses non-admissible heuristics which can-
not guarantee the optimal plan. On the other harie4
uses admissible heuristic search to handle actions with time
and resources, but it assumes a conservative model of ac-
tions.

This paper has presented a temporal planning system

The inclusion of theartificial effectsef,; andef,o of
actionsal anda2 respectively, allows to generate the ac-
tion a2 afteral, anda3 aftera2, simulating the behaviour
of the original actioru. This way, during the plan extrac-
tion, actiona3 only can be planned &2 has been previ-
ously planned, and analogoush? only can be planned
after planningal. The main drawback of this method is
the increment in the number of actions (in a factor of three
per each durative action) and in the number of propositions
(in a factor of two per each durative action) in the domain,
which by itself may be prohibitive. Moreover, if one goal of
the problem is satisfied b¥ f f,,1, i.e. the originalSE f f,,
only the actiona1l would be planned (without needing to
plana2 nor a3), which would imply an unreal situation in
which only a part of the indivisible actiomis executed.

The second alternative is based on the semantic mapping
described in (Fox & Long 2001), and consists of splitting
each durative action into a collection of simple actions. The
collection includes two instantaneous actions (which repre-
sent the start and end points of the durative action) and a
number of identical monitoring actions responsible for con-
firming the maintenance of invariants. The monitoring ac-
tions can be achieved by requiring the— ops correspond-
ing to the invariants of an action to be active in the inter-
val between the start and end points of that action. There-
fore, they do not need to be built explicitly and only two
actions have to be constructed per durative action. Dou-
bling up the number of actions need not present a blow-up
at instantiation time, because the durative actions can be in-
stantiated first and then split, rather than vice versa. During

plan extraction it is necessary to maintain the link between which handles durative actions provided by level 3 of

the actions representing the start and end points of a du- PDDL2.1. Instead of using a conservative model of ac-

rative action because neither one can be exploited without _. ; . "
IR tion, TPSYS manages actions with local conditions and
the other. In addition, it is necessary to manage the tem-

poral constraints implied by the durations of the actions. A effects. Although durative actions make the calculus of the

planner based on this approach has been constructed ancfmjtex relationships, the temporal graph extension and the
R . plan extraction stages more complex, they allow modelling
appears to perform well in initial experiments (Long & Fox

2001). The approach still suffers from the problem caused 8]]: :Lc:e;pgnr?;r\lg ggg]r?ltﬂz dir;i]:?/ ,titgﬁ g]].am contributions
when the start of a durative action is added to the plan for its pap P '

effect (the initial effect of the durative action) necessitating o The new components of level 3 durative actions based on
the addition of the end action to the plan if it has not already (Fox & Long 2001) and the mutual exclusion relation-
been chosen. This in turn can introduce new preconditions, ships they entall.

so there is an iterative structure to the plan extraction algo-
rithm. This is highly reminiscent of thBP-Plan approach e The modifications needed during the temporal graph ex-
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tension. In the temporal graph extension, each temporal
level has been divided into two parts to make easier the
calculus of the mutex relationships.

e The modifications needed during the plan extraction. We
have presented how the plan is found through the tem-
poral graph without following the traditional right to left
directionality.

The algorithm still has some limitations. According to
our experiments, the performance of the algorithm degrades
when there are many actions and propositions in the plan-
ning domain, due to the calculus of the mutual exclusion re-
lationships. Moreover, the performance of the second stage
degrades when the duration of the actions is wildly differ-
ent. Particularly, the worst performance happens when the
greatest common divisor of the durations of the actionsis 1,
which forces the algorithm to consider the maximum num-
ber of temporal levels, thus increasing the complexity of the
third stage. For this reason, the areas of future work are fo-
cused on the inclusion of memoization techniques similar
to the memoization performed @raphplan and the inclu-
sion of some of the CSP techniques presented in (Kamb-
hampati 2000), which have been already tested Gir.

We also want to exten@PSYS to handle additional fea-
tures of level 3 of PDDL2.1, such as numeric conditions
and effects and inequality relations on conditions.
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Introduction and Motivation

In this position paper we propose the model of timed au-
tomata, originating from the verification of real-time sys-
tems, as a model for posing and solving time-dependent
planning and scheduling problems. We believe that in the
same sense as automata are used as the major vehicle for
verification of systems where the model of time is qualita-
tive, timed automata can be the center of a a unifying math-
ematical modeling framework for quantitative time, having
the following attractive features:

1. It is sufficiently expressive to describe the essential as-
pects of time-dependent real-life problemsin a variety of
application domains.

2. It provides for models with well-defined and clear dy-
namic semantics.

3. These models are amenable to computer-aided design
methods such as simulation, testing, verification and au-
tomatic synthesis of (optimal) schedules and plans.

4. These methods are currently supported by tools of vari-
ouslevelsof maturity, that treat the specific computational
problems of time-related reasoning.

The problems of time-dependent behavior in general, and
dynamic resource allocation in particular, pervade many as-
pects of modern life. A computer-aided timing technology
can contribute to domains ranging from the reliability and
efficient use of communication resources in a telecommu-
nication network to the alocation of tracks in a continen-
tal railway network, from scheduling for the computational
resources on a chip for durations of nano-seconds to the
weekly, monthly or longer-range reactive planning in a fac-
tory or a supply chain.

Timed automata provide a key modeling technology for
the controlled design and analysis of al sorts of embed-
ded systems. In particular, the state-of-the-art of applica-
tion of tools for timed automata is very promising, with
notable applications to verification (and debugging) of in-
dustrial real-time communication protocols and control pro-
grams, and applications to sequencing and resource alloca
tion problems. Timed automata al so seems to provide anin-
teresting middle-ground between purely finite-state systems

Copyright (© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

and general hybrid systems: there are at present no tools or
techniquesavailable for the analysis of systemswith genera
continuous dynamics of more than toy size, whereas there
are such tools available if the dynamics are abstracted to
timed automata.

I nnovative Aspects

We sketch bel ow some of theinnovation that timed automata
bring to various approaches to time-dependent system anal-
ysis.

Time-dependent Behaviors: Toward State-Space Mod-
els A lot of the success in discrete verification and in con-
trol theory is due to state-space based models of their un-
derlying dynamical systems. Verification is based on tran-
sition systems models such as automata while control the-
ory is based on continuous dynamical systems where state-
variables evolve according to differential equation. Such
system models where the values of state variables determine
the possible future evolutions have a tremendous, positive
effect on the understanding of system dynamics. However,
the phenomena that we want to treat cannot benefit from
these two classes of models as they are: purely-discrete
models are too poor and continuous models are too detailed
(for the purpose of solving a scheduling problem there is
no use in modeling the process of executing a production
step using differential equations). The timed modelsthat we
want to use are the ideal candidate for filling this model-
ing gap. They enrich discrete models with additional state-
variables, the clocks, which encode into a state exactly the
information necessary to determine the future: each clock
represents the time that has elapsed since the occurrence of
acertain past event upon which the future depends.

In contrast, many approaches to timing problems, such as
those used in operation research or performance modeling,
are not always based on such a rich dynamical model, but
rather on formulating and solving static optimization prob-
lems whose relation with the underlying dynamicsis some-
times obscured. Such an approach is sometimes very suc-
cessful in solving particular problems efficiently, but their
ad-hoc nature can prevent their reusability. We strongly be-
lieve that if computer-aided timing analysis and design isto
become a mature discipline, its approach to problem solving
should be based on modeling problems faithfully by a clean
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semantic model, and not in terms of the specific technique
used to solve them.Such an approach makes the computa-
tional difficulty of the original problem explicit and allows
much more freedom later in choosing the solution method
that gives the best trade-off between its computational com-
plexity and the quality of the solution it provides.

Another advantage of the automaton-based approach is
that it enables the user to formulate, in a very natural fash-
ion, distributed systems comprising of small interacting sub-
systems. In other approaches one does not have such an in-
tuitive notion of communicating sub-systems to solve such
problems, but rather a very large number of equations and
inequalities in which the dynamical and compositional as-
pects are not made explicit.

In the context of Al, our feeling is that the underlying dy-
namic models are sometimes hidden by too much emphasis
on logical and syntactic considerations. Syntax is impor-
tant, especially for the efficient treatment of largeinteracting
sub-systems, but these issues should be considered only af-
ter the problemsarewell understood from a semantical point
of view.

Verification: From Untimed to Timed and from Safety to
Performance Verification methodology had a lot of suc-
cess during the last decade due to verification tools that can
predict the behaviors of complex discrete systems such as
digital circuits and communication protocols. Many models
used in this methodology are purely discrete and their treat-
ment of timeis purely qualitative, that is, behaviors are just
sequences of events appearing one after the other but with-
out any quantitativetiming information about the duration of
actions and the time between events. Timed models provide
for amore detailed level of modeling and incur, because of
this, a considerable computational overhead associated with
the treatment of clocks. Another dimension of innovation
with respect to standard verification is the evaluation of be-
haviors in terms of quantitative properties of (timed) behav-
ior, such astotal elapsed delay time, i.e. ajudgment interms
of performance rather than the traditional classification into
“good” and “bad” behaviors.

Scheduling: Certainty vs. Uncertainty Classical mod-
els for scheduling in manufacturing such as the job-shop
problem, are somewhat detached from industrial practices.
They assume that the duration of every step as well as the
arrival times are fixed and known with certainty. In practice,
it is rarely the case that a schedule is executed as planned.
The problem of coping with uncertainty is identified (by
providers of scheduling tools and by their clients) as one
of the major problemsin the domain. There have been vari-
ous attempts to model and solve such problems, but no uni-
fied approach has emerged. Using non-deterministic timed
automata with controlled and uncontrolled transitions (for
representing the uncertainty coming from the plant) we can
model a large class of such problems, and provide efficient
offline algorithmsfor synthesizing reactive schedulers. Such
algorithms can plan for the best, worst or average case, but
the scheduling strategies they produce are adaptive and can
take advantage, for example, of the fact that a task has ter-
minated before it was expected, and use the empty time slot.

a/b

Y

a/C:=0 C =d?/b

a/C:=0 I1<C<u?/b
-

Figure 1. Refining an untimed system descriptionto atimed
one. In the untimed automaton « is followed by b, while
in the timed automaton the distance between the two events
is d. Uncertainty in the duration is modeled using a non-
deterministic automaton in which a transition can be taken
anywherein theinterva [l, u].

Uncertainty: Quantitativevs. Qualitative Dueto histor-
ical reasons, most uncertain phenomenain system behavior
are treated probabilistically. For example in the theory of
queuing systems, it is often assumed that the inter-arrival
times and service times of clients are random variables. In
this setting, an optimal scheduler is one which optimizes
the expected value of the performance over al possible be-
haviors. Under certain assumptions on the nature of the
probabilistic processes analytical solutions can be found for
such optimization problems. Unfortunately, these assump-
tionsare sometimesvery restrictive, and unrealistic for many
modern applications. Without them numerical solutions can
be devised, but their complexity can be very high, making
them often also unsuitable for the treatment of large sys-
tems. Timed automata suggest an alternative formulation
for temporal uncertainty: instead of specifying a probability
distribution on durations only upper- and lower-bounds are
given (see Figure 1 for a small example). From these mod-
€ls, policies can be derived which are optimal with respect to
optimistic or pessimistic or average estimates, but which are
nevertheless guaranteed to function for all cases. Because
of the less involved model, we hope that the computational
difficulty of deriving such policies can be much smaller than
in the probabilistic framework.

Example: Job-Shop Scheduling

Instead of giving formal definition let us illustrate how our
approach is used to model and solve the classical job-shop
scheduling problem, a generic resource alocation problem
in which common resources (“machines’) are required at
various time points (and for given durations) by different
tasks. The goal is to find a way to alocate the resources
such that all the tasks terminate as soon as possible while
respecting resource constraints.

Consider two machines {my,m»} and two jobs J! =
(m1,4), (m2,5) and J? = (mq,3) meaning that thethe first
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J1

S1 my
J2
9
mq mo
J1
S2 my
J2
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Figure 2: Two schedule S; and Ss.

Figure 3: The automata corresponding to the jobs J! =
(m174)7 (m27 5) and ']2 = (m17 3)

job needsto usem for 4 time unitsand then machinem , for
5 units, while the second job uses machines m, for 3 units.
A machine cannot be used simultaneously by two jobs. Two
possible schedules are depicted in Figure 2. The length of
Sy is9 and it isthe optimal schedule.

Timed automata are automata augmented with continuous
clock variables whose values grow uniformly at every state.
Clocks are reset to zero at certain transitions and tests on
their values are used as pre-conditionsfor transitions. A run
of atimed automaton is an alternating sequence of discrete
transition and time periods in which the automaton stays in
a state. We model the job descriptions using the two timed
automata of Figure 3. Each automaton represents the prece-
dence and duration constraints of a job in isolation. The
resource constraints are capture by a composition of the au-
tomata that does not allow global states that violate them —
in our example state (m1,m,) is forbidden. The automa-
ton of Figure 4 represents the whole system and al its runs
correspond to feasible schedules.

The two schedules appearing in Figure 2 correspond to
the following two runs of the automaton (the 4-tuples corre-
spond to discrete state and clock values and we use notation
1 to indicate inactive clocks):

Figure 4: The global timed automaton for the two jobs.

S1:

(i, i, L, L) -2 (ma, 1,0, L) -2 (my, 7,4, L)
2y (e, i, L, L) -5 (ma, 1,0, L) =25 (m2, m1,0,0)
25 (m2,m1,3,3) — (mo, f,3, L) = (mo, f,5, L)
= (f,f,L,1)

So :

(i, m, L, L) -2 (i, ma, L,0) = (71, ma, L, 3)
2y, f, L, L (m1, £,0, L) == (m1, £,4, 1)
2y (e, f, L, L (m2, £,0, L) = (m2, £,5, L)
5 (f, £, 1, 1)

) —
) -2

The problem of optimal finding optimal schedules can
then be reduced to the problem of finding the shortest (in
terms of elapsed time) path in a timed automaton. In
(AMOL1) an efficient implementation has been reported.

There is much more to be said about the computational
techniques used for analyzing timed automata, on the exist-
ing tools, on abstraction and approximation techniques, etc.
Instead we will giveaalist of related publications by mem-
bers of our group.
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Abstract

A beneficial aspect of the planning competitions has been the
fact that it has forced the planning community to question
and begin standardization of the input and output semantics
of the very problem. A theme that often gets debated dur-
ing the formalization of any new extension to the PDDL rep-
resentation is that dfphysics, not advice) i.e., the model-

ing of the domain should be independent of the intention of
any agent in it. Though this philosophy is perfectly reason-
able from a competition standpoint because it provides no ad-
vantage to any specific type of planner, its adherance should
be balanced with the reality that planners have to solve real
applications where temporal constraints and advice are both
present. Moreover, what constitutes physics of a domain may
not be always clear and when applied alone, it can lead to
very simplistic domain descriptions that are devoid of practi-
cal interest.

In recent extensions to PDDL (PDDL2.1), the semantics of
durative actions and temporal constraints is quite similar to
how advice is used in Hierarchical Task Network (HTN) plan-
ning (i.e., schema reductions). Moreover, planning has in-
creasingly been solved as multi-stage sub-problems, where
each stage refines the problem at a lower level of abstrac-
tion. These characteristics are essentially that of HTN plan-
ners which can incorporate both physics and any available
advice from the domain. The bias against advice in the plan-
ning competitions has had the unintended effect that although
HTN planners are widely used in the industry, their tech-
nigues have not been evaluated in any of the planning compe-
titions. Consequently, when one wants to use a planner from
the competition to solve problems in real applications, itis not
clear which planner would be able to use advice better. We
argue that the distinction between physics and advice is not as
important as the need to conciliate physics with advice in the
interest of competition in challenging problems in emerging
and interesting domains. We investigate temporal constraints
from a practical perspective and make suggestions on how to
incoporate temporal advice.

Introduction
The International Planning Competitions (IPCs)(McDer-

has uniquely contributed to better understanding of the plan-
ning problem and solution methods - AIPS-98 saw the emer-
gence of graphplan-based algorithms on the forefront while
AIPS-00 saw the dominance of heuristic-based algorithms.
Another beneficial aspect of the planning competitions has
been the fact that it has forced the planning community to
guestion and begin standardization of the input and output
semantics of the very problem. A theme that often gets de-
bated during the formalization of any new extension to the
PDDL representation is that ¢physics, not advice) i.e.,

the modeling of the domain should be independent of the
intention of any agent in it. Though this philosophy is per-
fectly reasonable from a competition standpoint because it
provides no advantage to any specific type of planner, it has
had the unintended effect that though Hierarchical Task Net-
work (HTN) planners have been widely used in the indus-
try, their techniques have not been evaluated in any of the
planning competitioris HTN planners can incorporate both
physics and any available advice from the domain. Conse-
quently, when one wants to use a planner from the compe-
tition to solve problems in real applications, it is not clear
which planner would be able to use advice better.

The planning competitions should have domains that
demonstrate the growing reach of the area. However, what
constitutes physics of a domain is not always clear and
can lead to a very simplistic domain description that is
devoid of practical interest. For example, planning has
been considered in data integration to determine the best
way to integrate data from different sources(Knoblock1995;
Knoblock & Ambite1998; Kwok & Weld1996), and mon-
itor the actual execution of source requests. Traditionally,
sources have only been repositories of data but in new do-
mains like bioinformatics(Srivastava 2002), the sources can
be applications as well. Planning for query decomposi-
tion seems to have lost support in favour of cheaper meth-
ods (Levy 1998) like rule inversion(Duschkal996) and view
unfolding(Qian1996) when sources are data stores. The
main reason is that due to the physics of the domain, the
search space is made upioformationstates and there is

mott 2000; Bacchus 2000; Fox & Long 2002) have become no subgoal interaction among actions as they can always

a widely anticipated and significant event in the Al horizon.

Besides the competitive (performance) element, each IPC

Copyright © 2002, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

1SHOP(Nau et al 2000) participated in the hand-coded track of
AIPS-00 competition but it was not evaluated for its ability to use
advice.
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be executed on the sources to gain the information needed.
Hence, the conclusion drawn was that using planning for
just sequencing source-call actions is an over kill. But when

search or as temporal formula(Bacchus & Kabanza 2000).
Temporal formulas can be checked explicitly when the
search strategy directly tracks the progress of world during

sources can also be applications, they may encode advicesearch, e.g., forward chaining, or implicitly through model

(or policy) of their interactions which may prevent an action
from being always applicable. For example, if a user’s au-
thentication request is denied (by a trusted third-party), her
previously available credentials (information like password
or certificate) to access a source may become invalid. A
different kind of advice may come from practicality consid-
erations already known by the users in the domain (domain
“wisdom”). For example, there is such a wide disparity in
the size of data that is accessed in bioinformatics that some
classes of query plans are practically inexecutable. One can
encode them into the physics of the domain without upseting
any actor in the domain.

Another domain where interaction among applications is
key to problem modeling is that of web services composi-
tion(McDermott 2002). The scenario here is that an agent
or a service needs to determine if another service can fulfill

checking techniques(McMillan 1992).

Although advice is usually expected from the user, there
exist automatic pre-processing techniques to detect and
incorporate some types of advice, like invariants, e.g.,
TIM(Fox & Long 1999), DISCOPLAN(Gerevini & Schu-
bert 1998)). These techniques use the domain description
and the particular problem being solved to deduce necessary
conditions. Planners should be credited for taking less ad-
vice from the user.

HTN Schemas

A HTN planning problem(Kambhampati et al 1998) can be
seen as a planning problem where in addition to the prim-
itive actions, the domain contains schemas which represent
non-primitive (abstract and non-executable) actions and ac-
ceptable rules to reduce non-primitive actions to primitive

its requirements based on the operations that it exposes toand other non-primitive actions (hence an hierarchy of ac-

the outside world. There is a tremedous potential for apply-
ing planning techniques to handle interactions in these in-
creasingly important domains characterized by their online
demand for good timely results.

In the recent extensions to PDDL, the semantics of dura-
tive actions and temporal constraints (in PDDL2.1) is quite
similar to how advice is used in HTN planning (i.e., schema
reductions)(Fox & Long 2002). Moreover, planning has in-

tions). All non-primitive actions are eventually reduced to
primitive actions so that the resultant plan is executable. The
acceptable solutions to a HTN problem not only achieve
the top-level goals but can also be parsed in terms of the
non-primitive actions that are provided for the top-level
goals(Barrett & Weld 1994).

Temporal properties like duration of an action have not
been explicitly modeled in HTN. However, a schema reduc-

creasingly been solved as multi-stage problems, where eachtion indirectly encodes temporal ordering/constraints among

stage is solved at a lower level of abstraction. These trends
suggest that the distinction between physics and advice is
not as important as the need to conciliate physics with advice
for effective problem solving. We are specifically interested
in temporal constraints from a practical perspective.

Here is the outline of the paper: we start with a discussion
of how temporal constraints get specified through the two
main approaches to provide advice in planning - search con-
trol knowledge and HTN schemas. Next, we consider the
role of advice for feedback in multi-module planning which

has addressed resources and temporal constraints. We thefT'ravel(source, dest)| < max|

argue for adoption of a formal mechanisms in the competi-
tion to express temporal advice/semantics to planners inde-
pendent of the physical dynamics of time used for solving
the problem.

Advice in Planning

There are two main mechanisms to incorporate advice in
a planning algorithm, namely, as control knowledge or
through HTN schemas.

Control Knowledge

This approach requires declarative rules to be specified
which are used by the search algorithm to prune newly cre-

actions. For example, in Figure 1, an outline of schema re-
duction is shown for travelling from a source to a destination
using either the bus or the train, while hitchhiking is not al-

lowed. The duration of Travel is bounded by:

|GobyBus(source, dest)|, ]

|Travel(source, dest)| > min]| |GobyTrain(source, dest)|

|GobyBus(source, dest)|, ]
|GobyT'rain(source, dest)|

Since GobyBus and GobyTrain are also non-primitive ac-
tions, the duration of Travel can be refined:to

|Travel(source, dest)| >
GetinBus| + |Buyticket| 4+ |Getout Bus|,

min| GetinTrain| + |Buyticket| 4+ |GetoutTrain| ]

|Travel(source, dest)| <
GetinBus| + |Buyticket| + |Getout Bus|, ]
GetinTrain| + |Buyticket| + |GetoutTrain|

mazx|

The semantics of a schema is derived from the set of

ated search nodes based on some matching criteria. Con-primjtive actions that result from the application of reduc-

trol knowledge is closely related with the solution search
strategy and can either be over syntactic/topographical con-
ditions(Penberthy & Weld 1992; Huang et al 1999) during

tions. The relative ordering of actions in a schema can be

2Parameters of actions may be omitted for clarity.
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Travel(source, dest)

N

GObyBUS(Sourcei\ Go'tmym(sourik
GetinBus(souce) GetoutBus(dest) GetinTrain(source) GetoutTrain(dest)
Buyticket(bus) Buyticket(train)

Hitchhike(souce, dest)

Figure 1: Schema reduction in a Travel domain (from (Kambhampati et al 1998)). Travel, GobyBus and GobyTrain are non-
primitive actions.

interpreted as temporal advice. If the ordered monotonic- reasoning and the latter is handled in a separate scheduling
ity property holds during refinement(Erol 1995), the partial phase. The details about resources is omitted during causal
plan and any derived information is sequentially communi- reasoning and an abstract plan is obtained. The scheduling
cated to subsequent refinements until the plan is concretized. phase concretizes the plan by solving the resource allocation
sub-problem with discrete resources as a Constraint Satis-
Multi-Module Planning and Advice faction Problem (CsP) pyoblem. Moreover, the planner and
scheduler can interact either in a master-slave or peer-peer
A growing trend in planning is to solve it as multi-stage sub- manner repeatedly. The LPSAT planner (Wolfman & Weld
problems, where each stage refines the problem at a lower 1999) solves planning problems with goals of achievement
level of abstraction. With the increasingly complex prob- and metric resourcesP). It transformsP into an assign-
lems being posed in planning, usually a probl&éhtan be ment problem for discrete state variables)(and continu-
divided into multiple sub-problems that may differ in their ous state variables{) and solve it by satisfiabilityrf,) and
characterisitics — causal reasoning or different forms of re- a simplex-based linear program (LP) solver,].
source reasoning. For example, the planning problem of  Multi-module planners mainly need advice on how to de-
having courier packages delivered can be divided into arout- tect the sub-problems and how to effectively invoke the nec-
ing problem of finding the path to be taken and a driver allo-  essary modules. In some cases like metric quantities, it is
cation problem. If one were to solVéas awhole, the choice  quite clear from the domain description syntax but identifi-
of technique)M for it may not be the most appropriate tech-  cation of a generic class of sub-problem or resources is diffi-
nique forvp;, € P. Instead, with a multi-stage approach, cult. Durative actions can give early feedback about whether
the most appropriate module; for eachp; is used andthey g subsequent module (processing at a lower level of detail)

collaborate to solveé®. needs to be invoked.
For example, in STAN4(Fox & Long 2001), an enhanced
version of the automatic TIM utility is used to detect if a Temporal Advice in Competition

problem is of a generic transportation problem. In that case,

an abstract planning problem is solved where operators and While extending PDDL to handle temporal constraints in
preconditions of the identified sub-problem are removed, PDDL2.1, a fear has been raised that the semantics of de-
and solution is combined with the result of specialized sub- tailed modeling of time may serve as advice to the plan-
problem solver. In Realplan(Srivastava et al 2001), planning ner(Fox & Long 2002). We saw that the concern is not
is considered to comprise of causal reasoning and resourceunfounded because usage of HTN schema reductions, an
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advice mechanism, can be interpreted to provide duration
bounds for actions. But modeling time is also important
because it provides the much needed expressivity to tackle
richer and more complex problems in planning.

Going forward, we suggest that planning competition
should have:

e Planning domains where only essential temporal advice is
defined as part of the domain specification in a standard
formalism (e.g., temporal logic). This would allow for
richer planning scenarios to be considered in the competi-
tion which is more important than the strict abhorance of
advice.

e The standard formalism for advice be independent of the
nature of the planner. Hence, it could be translated into
control knowledge or reduction schemas based on the
working of the planner. The requirement is in line with
PDDL where the planner decides how it will use the stan-
dard domain description.

e Participants stay free to incorporate any automated do-
main analysis (i.e., automatically generated advice) as be-
fore.

e Continuation of the current theme(McDermott 2000) that

pre-canned programs cannot be embedded to compete in

a plan synthesis competition.

Conclusion

In this paper, we argued that the distinction between physics
and advice in practical planning is not as important as the
need to conciliate physics with advice in the interest of com-

petition in challenging problems in emerging and interesting

domains. We investigated temporal constraints from a prac-
tical perspective and outlined how temporal sematics/advice
could be incorporated in future planning competitions.
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Abstract

In this paper we present a formalism for explicitly
representing time in HTN planning. Actions can have
durations and intermediate effects in this formalism.
Methods can specify qualitative and quantitative temporal
constraints on decompositions. Based on this formalism we
defined a planning algorithm TimeLine that can produce
concurrently executable plans in the presence of numeric
state variables. We state and prove the soundness of the
algorithm. We also present the experimental results of the
TimeLine implementation that shows the feasibility of our
approach.

Introduction

Actions with different durations, simultaneous action
execution and reasoning with metric quantities are three
characteristic of real-world planning problems. Recently
studies on artificial intelligence planning concentrated on
developing formalisms for representing time and creating
temporal plans. The planning domain definition language
(PDDL 2.1) for AIPS 2002 planning competition can
define actions with durations, and address the concurrency
issues in the presence of numeric state variables.

The difficulty aroused with concurrency is to control
the overlapping action executions. The problem gets more
complicated when there are limited number of shared
resources. When resources are identified and resource
needs for every action are explicitly defined, then two
actions with conflicting resource requirements can be
defined as mutually exclusive. In this approach the search
space can be pruned effectively if it's accompanied by
good resource management techniques. The more general
case is when there are numeric state variables that can be
updated concurrently. Numeric state variables can be used
to represent resources but not every numeric variable can
be seen as aresource.

Numeric computations and time can be handled easily by
HTN planners. For this reason HTN planners are
conveniently used for practical applications. In this paper
we present a formalism for explicitly representing time in

Copyright © 2000, American Association for Artificial Intelligence
(Www.aaai .org). All rights reserved.

HTN planning. Actions can have durations and
intermediate effects in this formalism. Methods can specify
qualitative and quantitative temporal constraints on
decompositions. Based on this formalism we defined a
planning agorithm that can produce concurrently
executable plans in the presence of numeric state variables.
We state and prove the soundness of the algorithm. We
also present the experimental results of the implementation
that shows the feasibility of our approach.

Formalism

Performing numerical computations is an important issue
for real-world problems. Some HTN planners like SHOP
have aready incorporated this functionality. Resources
generaly represent some features in the domain that are
limited in number, like space available in a truck. Even
though numeric state variables can be used to represent
these resources, the opposite need not to be true. For
example, let’s say the distance between two cities A and B
is 6 units and there isatruck T that has a speed of 2 units
per unit time. If T isat A and will travel to B thenas T
moves, the distance between A and the current location of
T increases ( see dist(A,T) in Figure 1 ). Similarly travel
time left to B is a numeric variable (see timeTo (T,B) in
Figure 1). We believe these two numeric variables do not
represent any resources. Therefore, instead of identifying
the resources and defining operations on these resource, we
will go with the more general way and define concurrent
update rules for numeric state variables.

A B
@ } } @
C1»

Time 0 1 2 3

Dist(A.T) 0 2 4 6
TimeTo(T,B)| 3 2 1

Figure 1 Dist(A,T) is distance between A and current location of
truck T, TimeTo(T,B) istime |eft to reach B

The value of a numeric variable can be assigned to a
constant, decreased or increased by constant amount. We

75



define assignment operations on the same variable at the
same time, as mutually exclusive updates. Therefore we
don’t allow two assignment operations on the same variable
at the same time, even though the assigned values are same.
Concurrent increase and decrease operations on the same
numeric variable can be permitted as long as the value of
the variable stays in the defined range in al intermediate
states produced by any permutation of these operations.
Since addition and subtraction are commutative operations,
the result of the any permutation will be the same. To
ensure that the value always stays in the range, it is enough
to check pessimistic cases in which al increase or all
decrease operations are performed first.

State, Agenda, Operator

Definition 1. State is a collection of positive ground atoms
of theform (p t;t,..t,) where p isthe predicate name and
t; to t, are argument terms. Vaue of a numeric state
variable is represented by an atom of the form (= variable
value) where variable is the numeric state variable and
value is the value of the variable in this state. A valid state
can not contain both (= variable valuel) and (= variable
value2).

Main elements of HTN planning are simple tasks and
composite tasks. Operators define a set of changes in the
current state in order to achieve simple tasks. Composite
tasks can be achieved by decomposing them into subtasks
and then achieving these subtasks. Methods define
decompositions for composite tasks.

Classical HTN operators have a precondition to hold in
the state just before the operator is applied. Operators have
effects which will be true in the next state of the world. We
extend this definition to represent operators that may have
a duration of more than one unit time. We do not require
the precondition of an operator to hold through out the
execution. Effects of an operator can not change the state
in which it's precondition is evaluated. We eliminated
instant effects because they make it hard to trace the
deleted precondition interactions. This way we aways
evaluate the preconditions in a stable state. We let the
operators have effects at intermediate time points, not only
at the end so the operators may represent gradual changes
in the successor states. Effects are the promises that will be
true in a successor state. Effects may assign a value to a
numeric state variable, increase or decrease the value of a
numeric state variable, add or delete an atom in or from the
State.

Definition 2: An operator has the following form
(:operator head precondition effect-list)

where head is a simple task, precondition is a conjunctive

expression and effect-list is a list of timed effects. Timed

effects can be in one of the following forms:

([time] (e...e))or ([timeytime] (er...6))
where ¢'s are effects and the intended meaning of first
formis ¢’s will be true at (start time of operator + time; ).
The intended meaning of the second form is ¢’s will be
true in the states associated with inclusive time interval
[start time + time,, start time + time; . In this notation

time;, time, and time; should be positive integers or
numeric expressions. If the result of the numeric expression
is not an integer we take the ceiling of the result. More over
time; should be greater than or equal to time,.

(:operator (!drive ?truck ?loc-from ?loc-to)
; ; PRECONDI TI ONS
( (not (noving ?truck ?dest))
(= (truck-user ?truck) Z?user)
(call = ?user 0)
(truck-at ?truck ?loc-from
(di stance ?loc-from?loc-to ?dist)
(assign ?duration (call ceil (call / 2dist 2))

))
;s EFFECTS
(([1]
((=(truck-user ?truck) 1)
(=(truck-arrives ?truck ?loc-to)
(call - ?duration 1))
(nmoving ?truck ?loc-to)
(not (truck-at ?truck ?loc-from)))
([ 2, ?duration]
((-= (truck-arrives ?truck ?loc-to) 1)))
([?duration ]
((= (truck-user ?truck) 0)
(not (nmoving ?truck ?loc-to))

(truck-at ?truck ?loc-to0))))

Figure 2 Drive operator for extended logistic domain

Figure 2 shows drive operator we defined for logistic
domain in which we added some numeric state variables.
The precondition of the operator states that number of users
that are working on this truck should be zero and truck
should not be in motion. Assign statement in the
precondition simply binds the value of its second term to its
first term. In this case ?duration is assigned to travel time
between ?loc-from and ?2loc-to when the truck speed is 2.
One unit time later the state and current location of the
truck is updated also the number of truck users for this
truck is set to 1 and a counter that shows the time left to
arrive ?2loc-to is initialized. After that at every clock tick
this counter is decreased by one. Finaly the state and the
location of the truck is updated . We aso decrease the
number of users for this truck. One thing to notice is we
assign the value of (truck-user ?truck) to one at the
beginning instead of increasing it by one. That is because
we want two overlapping drive operations on same truck to
be mutually exclusive.
Definition 3: Two effects el and e2 are mutually exclusive
if any of the following holds:
« if e and e, arelogica negations of each other
« if ; assigns a value to a numeric state variable v and e
assigns or increases or decreases the value of v
» if e decreases or increases the value of a numeric state
variable vand e, assignsavaluetov.

Since we have delayed effects that may appear sometimein
the future we need a structure that remembers all of the
promises toward future states.

Definition 4: Agendais acollection of pairs(t, e) wheree
is an effect and t is the time when e will be true in the state.
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If in an agenda A every t is grater than T then A is an
agenda after T.

An effect e, that is promised to be true at time T is
consistent with an agenda A iff A does not contain an effect
&, that is promised to be true at time T and e, is mutually
exclusive with e;.

Figure 3 shows the load operator we defined for our
extended logistic domain. There may be a state that
satisfies the preconditions of both load and drive operators.
It is obvious that for a truck these two operators should not
overlap on the timeline. To handle this case we should
extend the definition of applicability for an operator, to
include consistency with the current agenda. Therefore if a
drive operator on a truck is scheduled at time T, load
operator on the same truck should not be applicable. We
should allow concurrent load operators unless the
cumulative numerical effects of these load operators lead to
an out of range value for a numeric state variable in the
future states. It is not always possible to detect these
inconsistencies by looking at the agenda, since there may
be additions to agenda and that can fix what seems to be a
problem. However it is easy to check for the state just after
the current one. Let’s say in the current state truck B has 5
units of space available. If we schedule 6 concurrent
loading into B now, we can immediately see that (given
that all packages have positive sizes) one unit time later we
will ran out of space. No unload operation can fix this
problem because the value should always stay in the range
no matter in what order these effects are carried on.

(: operator
(!load ?0bj ?truck ?loc)
( (not (rmoving ?truck ?dest))
(obj-at ?obj ?loc)
(truck-at ?truck ?loc)
(= (truck-space ?truck) ?space)
(vol ume ?o0bj ?vol)
(call >= ?space ?vol) )
(([1]1((+=(truck-user ?truck) 1)
(-=(truck-space ?truck) ?vol)
(not (obj-at ?obj ?loc))))
1,2] ((truck-at ?truck ?loc)))
2] ((-= (truck-user ?truck) 1)
(in-truck ?obj ?truck)))))

Figure 3 Load operator for extended logistic domain

Definition 5: Let Sbe the state for time T, A be an agenda
after T, t; be a simple task and O be an operator. Let mgu
be the most general unifier that unifies with the head of O
and t;. Then O™ is an applicable operator instance for t;
at time T in state Swith agenda A iff the following holds

» Thereisasatisfier a for the precondition of 0™ in S,

» None of effectsin effect-list of (O™ )* with sametimeis

mutually exclusive with each other.
 All of the effectsof (O™ )" are consistent with A

 All the numeric variables stay in the range at time T+1.

Let Sbe the state at time T and A be the agendain which al
of the effects are after T. A simpletask t; is T-executable if
there exists an applicable operator instance for t; in S with
A.

The purpose of agenda is to keep track of changes that
will be made to future states. Given the current time, state
and the current agenda successor states can be generated by
performing the effectsin the temporal order.

Definition 6: Let S be the state at time T and A be an

agenda after T. Let e;..e, be the effects in A that are

promised for time T' where T' is T+1 then Exec(A,ST')
creates a new state S in and a new agenda A’ with the
following properties:

e Let pbe (= numeric-variable ex-value) and S contains
p. If there is an effect g that assigns value new-value to
numeric-variable then S does not contain p and S
contains (= numeric-variable new-value)

e Let pbe (= numeric-variable ex-value) and S contains
p. Let E"(numeric-variable) be subset of e, to e, such
that every e O E'(numeric-variable) increases the value
of numeric-variable. E (numeric-variable) is defined
similarly for the effects that decrease the value of
numeric variable. Total increase is sum of the increase
amounts of effects in E". Total decrease is sum of the
decrease amounts of the effects in E. Then S does not
contain p and S contains (= numeric-variable new-
value) where new-value is equal to ex-value + total
increase — total decrease. If ex-value + total increase or
ex-value— total decrease is not in the range defined for
numeric-variablethen S’ isan invalid state.

* Let p be an atom of the form (p-name arg; arg, .. argy )
and p-nameisnot +=, -= or =. If pisin Sand thereis an
e such that g is (not p) then S does not contain p, if
there is no such ¢ S contains p. If there is an e such
that e isp then S contains p.

* A issame as A except A’ does not contain effects e, ..
€

Time Constraint, Task network, M ethod

End points of atask t are the start and end times of t which
we represent as (start t) and (end t) respectively. End time
of a simple task is the time of last effect in the operator
instance that is chosen to achieve that task. Therefore once
the operator is chosen, end time of the simple task is
known. End time of a composite task is maximum of the
end times of the subtasks in the decomposition of the
method chosen to achieve this composite task. End time of
a composite task becomes known when all of its subtasks
end times are known. We use the end points of tasks to
define  temporal constraints. We concentrated on
congtraining the start time of tasks explicitly. We can
define both metric and qualitative constraints. For example
if t1 and t2 are two tasks the following are the time
constraints on start time of t1; (start t1) = ((end t2) + 5) or
(start t1) = ((start t2) + 4) or (start t1) = (start t2) While we
are  handling the general  cases, there are some
combinations that we don not alow in our time constraint
definition. For example if t1 and t2 are two tasks we do not
allow the following (start t1) < (end t2) or (start t1) =
((start t2) - 3) or (start t1) = (end t2 - 5). All of these
constraints require t1 to start before some time that we do
not know in advance and by the time these points become
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known these constraints are either satisfied or not and there
is no time point after that that can satisfy these constraints.
We find these constraints hard to trace therefore do not
make use of them. For similar reasons we do not define
congtraints on end time of tasks for example (end t1) >
(end t2).

Definition 7: Given a task t; and another task t, , atime
congtraint on start time of t; is one of the following
expressions:

* (= (dtart t;) bound) where bound can be either (start t,)
or (end tp) or “now”, which means current time, or a
nonnegative integer ¢ or (+ base delay) in which delay
is a nonnegative integer and base is either (start ty) or
(end tp) or “now”.

e (>= (¢tartty) bound) where bound is as defined above

* (>= (dtart t;) (max bound; bound, .. boundk) where
bound; is as defined above. This is a short hand notation
for a list of time constraints of (>= (start t;) bound;)
whereiisin[1,K]

Time constraints of the first type are caled equality

congtraints where as second and third types are called

greater than constraints. The following time constraints are

satisfied at time T

* (= (start t;) bound) where bound is either “now” and
current timeis T or a nonnegative integer ¢ that is equal
toT.

* (>= (start t;) bound) where bound is either “now” and
current time is T or a nonnegative integer ¢ that isless
thanorequal to T.

e (>= (start ty) (max bound; bound, ..boundy) where for
every i, bound, is nonnegative integer that is less than or
equal to T.

Given a set of time constraints U on start time of task t;, U

issatisfied at time T if al of the following holds;

» U contains at most one equality constraint C, and C is
satisfied at T.

* All of the greater than constraintsin U are satisfied at T.

Definition 8: Task Network is a list of tasks ( t;..t, ) and a

list of time constraints on the start time of these tasks such

that end points of atask referenced in atime constraint isin
the list of taskst;..t,.

Definition 9: A method has the following form

(:method head precondition subtasks )

where head is a composite task, precondition is a

conjunctive expression and subtasks is atask network.
Figure 4 includes two, methods we defined for our

extended logistic domain. First method decomposes air-

deliver task into two subtasks which are labeled as t; and t,.

According to the time congtraints t; should start

immediately and t, can start after t; ends. The second

method decomposes the task unload-airplane-at into two
subtasks. There is no time constraint for t; but t, should
start when t; ends.

(airport ?dest)

(= (airplane-space ?pl ane) ?space)

(vol une ?o0bj ?vol)
(call >= ?space ?vol))

;5 SUBTASKS

((:t1 (!l oad-airplane ?obj ?plane ?airport-fromn

:t2 (unl oad-airplane-at ?obj ?plane ?dest))

((= (start tl1l) now) (>= (start t2) (end tl1))))

(: met hod | oad-ai rpl ane ?obj ?plane ?airport)
; ; PRECONDI Tl ON

((not (moving ?pl ane ?dest))

(airplane-at ?pl ane ?sonewhere)

(different ?somewhere ?airport)

(= (airplane-user ?plane) ?user)

(call < ?user 1)

)
;5 SUBTASKS
((:t3 (!'fly-airplane ?plane ?sonewhere ?airport)
:t4 (!l oad-airplane ?obj ?plane ?airport ))
((= (start t4) (end t3) ) ) )

Figure 4 Method for air-deliver task in extended logistic domain

Definition 10: Let S be the dtate at time T, t be a
composite task and M be a method. Let mgu be the most
general unifier that unifies the head of M and t. Then M™
is an applicable method instance for t in state Sat time T if
the precondition of M™" is satisfied in S If a is alist of
bindings for the free variables in precondition of M™"
such that precondition of M™ s satisfied then
(subtasks™")“isareduction of t at time T.

The idea behind reducing a task network is to replace a
task in the network with one of its reductions and update all
the time constraints that refer to the old task to include
references to new tasks. Figure 5 gives an example task
network R which is reduced to R using the method for
load-airplane task defined in Figure 4.

R =((:t1 (Il oad-airplane package plane airportl)
:t2 (unl oad- airpl ane package pl ane airport2))
((= (start tl1l) now)(>= (start t2) (end tl1))))
)

r =((:t3 (!fly-airplane plane airport3 airportl)
:t4 (!l oad-airplane package pl ane airportl))
((= (start t4) (end t3) ) ) )

R =((:t2(unl oad-ai rpl ane package pl ane airport2))
:t3 (!fly-airplane plane airport3 airportl)
:t4 (!l oad-airplane package plane airportl))
((>= (start t2) (max (end t3) (end t4)))
(= (start t4) (end t3) ) ) )

(:method (air-deliver ?0bj ?airport-from?city)
;- PRECONDI TI ON

((obj-at ?0bj ?airport-from
(in-city ?dest ?city)

Figure 5 Example for reducing a task network

Definition: Let R be atask network and t be atask in R.
Let r be atask network with tasks t;..t, then reduce( R, t, r,
timegar, timeyg ) is a new task network R satisfying the
following:

¢ R containsall tasksinr and all tasksin R except t

* R containsall time constraintsinr and in R except the
congtraints that are on start time of t and those refer to
end points of t.
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» If Cisatimeconstraint in R and C refersto (start t), then
R containsa constraint C' such that C' issameasC
except (start t) isreplaced with timeg, -

» If Cisatimeconstraint in R and C refersto (end t1) then
R containsa constraint C' such that C' issameasC
except (end t1) is replaced by timeg,g.

When we are talking about a simple task we can easily
point the start and end time of it. Basically the time when
matching operator is applied is its starting time and the
time for the last effect of that operator is the end time.
However this can not be directly applied to composite
tasks. What happens if at time T a composite task t is
decomposed into n subtasks using an applicable method
and none of its subtasks start at time T. In such acase it is
does not make sense to say that starting time for t is T. On
the other hand if at least one of its subtasks can start at T
then we can safely say that starting time of tis T. Thisleads
to the definition of T-executable reduction.

Definition : Let S be the state at time T and A be an
agenda after T. Let t be a composite task, r be a reduction
of tattime T and t; be atask in r such that time constraints
on start time of t; are satisfied at time T, then T-executable
reduction R for t isdefined as:

o If tj isasimple task and it is T-executable in S with A
then R is equal to r and R has an additiona time
congtraint C (= (start t;) T) if r does not contain C.

» Iftisacompositetask and itisR’ isa T-executable
reduction of t; that with tasks t;;..tj, then Risequal to
reduce(r i, R, timegat, timegg) Where timeg,: is equal to
T and timey is equal to (max (end tj;) (end t;,) .. (end
tin) )

Let T be the time and S be the state at T and A be an

agenda after T. A composite task t is T-executable at time

T in state S with A if there exists a t-executable reduction

for t

Plan and Planning Problem

We now define what is a plan, a planning problem and
what is a solution to the planning problem.

Definition : Let T bethetime, Sbethe stateat T and A is
an agenda after T. The effect of achieving a progress task
attime T is defined as Exec(A,S,T+1)

Definition @ A plan is a list of (task; [timegat, tiMExd])
where task; is aground simple tasks and timegq: and timeyyg
are the start and end times of task;.

Definition : A planning problem P is a tuple (N,A,S,T)
where N is a task network, A is an agenda after T, Sisa
state and T is the current time.

Definition: Let P be a planning problem (N,A,S,T) then a
solution N of problem P is defined as follows:

» Casel: If both N and A are empty then N is an empty
list.

e Case?2: If there existsatask t;in N such that the time
constraints on start time of t; are satisfied at T and there
exists an equality constraint for start time of t; and

» Case2.l:tiisasmpletask. Let O be an applicable
operator instance of ti and timey,q be the time of latest
effectin O. Let A’ and N’ be defined as:

A’ = A O effectsof O

N’ = reduce(N ,ti, empty task network, T, timegy,q)
Let M’ be the solution to the problem (N’,A’, S, T) then
M=(ti[T,timeyg]) + M
e Case 2.2 ti is a composite task. Let R be an T-
executable reduction of ti and til .. tin are the tasksin R.
Let times,g be(max (end ti7) (end tj,) .. (end t;,)) Let N’ be
reduce(N ,ti, R, T, timesg) then I is the solution to the
problem (N',A, S, T).

e Case3: If A isempty and thereisno task t in N such that
the time constraints on start time of ti are satisfied at
T'>T. Then let ti be atask in N such that t;’ stime
congtraints are satisfied at T.

e Case3.l:tiisasimpletask. Then M isdefined asin
Case2.1

» Case 3.2: ti isacompositetask. Then I isdefined as
inCase 2.2

e Case4: Let ti bethe progresstask or atask in N such
that time constraints on its start time are satisfied. Then
e Case4.l:tiisprogresstask. Then let S and A’ be
defined as

(S,A’) = Exec(S, A, T+1)
If S isavalid state then I isa solution to problem
(NLA', S T+1);

e Case4.2: tiisasimpletask. Then N isdefined asin Case
21

e Case 4.3: ti isacomposite task. Then I is defined asin
Case2.2

Algorithm

We now define the TimeLine algorithm that finds a
solution to the planning problem (N,A,S,T) as defined in
pervious section. The pseudo-code for the algorithm is
presented in TimeLine is non-deterministic
straight forward implementation of the solution defined for
aplanning problem in the previous section.

TineLine (N, A, S, T)

1 1f Nand A are enpty

2 return enpty plan;

3 else

4 if there is a task t such that tine constraints
on start time of t is satisfied at T

5 If t is a sinple task

6 Choose applicable operator instance o for t

7 end_time = time of the latest effect in o's
effects

8 A =A 0O effects of o

9 N =reduce(N, t, enpty tasknetwork, T, end_ti me)

10 M = TimeLine(N ,A,ST)
11 return (t [T, end_tinme])+ IT
12 else if ti is a conposite task
13 Choose a T-executable reduction R for t,
R contains subtasks t_1 to t_n
14 end_time=(max(end t_1)(end t_2)..(end t_n))
15 N = reduce(N, t, R T, end-tine)
16 return TineLine(N ,A S T)
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17 end if

18 el se

19 if Ais enpty and there is not a task t
such that time constraints on start tine of t
is satisfiedat T > T

19 Chose a task t such that time constraint on
starting time of t is satisfied at T.

20 Go toline 5

21 el se

22 Choose ti be the progress task or a task in

N such that tine constraints on its start
time are satisfied.

23 if ti is the progress task

24 (S',A) = Exec(S, A T+1)

25 if S isavalid state

25 return TimeLine(N A ,S , T+l)
26 end if

27 el se

28 Go toline 5

29 end if

30 end if

31 End TineLine

We ran the experiments on a Pentium 111-600 machine with
128 memory and Windows 98 operating system running on
it. We compared our results with the published results of
TAL planner and verified the feasibility of our approach.
In fact most of the cases TimeLine performed better than
TAL planner. Considering the configuration differences
between the machines (TAL planner experiments
performed on Pentium 11-333 ) and the problems, this
performance difference may not illustrate a great deal. As
we can see from the preliminary results our approach is
feasible and worth for future study.

Figure 6 Pseudo code of TimeLine algorithm

Theorem 1. If one of the non-deterministic traces of
TimeLine(N,A,S,T) returns a solution M, then M is a
solution to the planning problem (N,A,S,T).

Proof : TimelLinereturns a solution at

e Line 2. This line is executed when both N and A are

empty and returned solution is an empty plan. Thisis Case

1 of the definition for solution planning problem.

e Line1l: If line5isexecuted after line 4 this case
corresponds to Case 2.1 of solution definition. If line5is
executed after line 20 this case corresponds to Case 3.1
of solution definition. If line 5 is executed after line 28
this case corresponds to Case 4.2 of solution definition);

» Line16: If line 12 is executed after line 4 this case
corresponds to Case 2.2 of solution definition. If line 12
is executed after line 20 this case corresponds to Case
3.2 of solution definition. If line 12 is executed after line
28 this case corresponds to Case 4.3 of solution
definition;

« Line 25: The solution returned in this line corresponds to
Case 4.1 of solution definition. [

I mplementation and experiments

We have implemented deterministic version of TimeLine
agorithm. We have tested our implementation on the
Logistic domain which is naturally concurrent and easily
extendible to include numeric state variables.

The problems we used in our experiments were based on
30 problems used in AIPS98 planning competition.
Basically we tried to create same set up that is defined in
(Kvarnstrom, J. and Doherty, P. 2001). We set the space
capacity for trucks to 5 and for airplanes to 25. We
randomly generated the package sizes between 1 and 3. We
aso randomly defined distance between two locations in
the range 1 to 25. We have create 20 random instanced for
each of the 30 problems. We ran TimeLine on 20 problems
instances then take the average and we did this for 30
problems.

No [TaL Planner [TimelLine| [No [TaL Planner [TimelLine
1 [270 591 16 [10004 1455
2 (811 644 17 (2895 1248
3 |2063 1165 18 (21080 5047
4 (5889 1412 19 (18466 4649
5 541 601 20 37815 6317
6 6729 1877 21 (39436 3224
7 |1061 643 22 (71402 20107
8 [5658 1163 23 2434 3354
9 (9594 2303 24 39096 1455
10 5738 3731 25 146921 10559
11 [911 646 26 83960 22369
12 (14871 1084 27 72814 9388
13 |16524 2016 28 670284 24974
14 16800 2218 29 (34550 21261
15 |1512 3850 30 312099 9023

Table 1 Planning time in milliseconds for 30 extended
logistic problems.

Related Work

Allen’s interval algebra defines the relations on two tasks
using their end points. Our approach does not define
explicitly any constraints on end time of a task, so it can
not express al of the relations in Allen’s algebra. On the
other hand we believe our approach is easier to track and
expressive enough for many practical problems.

Dechter and Meiri can reason about metric time
constraints and propose an algorithm that can solve simple
temporal constraint satisfaction problems in polynomial
time.

Bacchus suggested a simplistic approach to generate
plans that include actions with same time stamp but in fact
the plans are sequential because the ordering of the actions
with same time stamp is important. The actions in this
approach can have instant effects that are used to control
concurrency and delayed effects to represent the actions
that have a duration greater than one.

TaL planner is extended to reason about time,
concurrency and resources. It prunes the search space
using control rules written in temporal logic. They define
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two actions as mutually exclusive if the effects of them
conflict at some point that these two actions overlap. Tal
planner can perform concurrent numeric computation only
On resources.

Smith and Weld extends the definition of mutual
exclusion for actions that can have durations. TGP uses a
more generalized planning graph that can handle actions
with durations and employs the extended mutual exclusion
reasoning when searching for a plan. TGP actions have
preconditions that hold through out the execution and
effects that are guarantied to be true at the end of action.
TGP does not alow intermediate effects. One can argue
that preconditions holding during the actions may be too
restricted.

Conclusion

In this paper we have presented a formalism to explicitly
represent time in HTN planning. Based on this formalism
we defined TimeLine a sound and complete HTN planner
that can reason about time. Our experiments concluded
that our approach is feasible and worth future study.

The formalism we present is expressive enough to
represent most of the practical problems and yet still not
complex. We do not require the specification of any
resource usage in any level of the task abstraction. Instead
we define concurrent update rules for numeric state
variables that can represent these recourses.

A future study may concentrate on reducing the
backtracking points in the implementation. Number of
backtracking becomes a real problem as the problem size
and concurrency level increases. A better implementation
may be backtracking to representative time points instead
of backtracking al time points.
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Abstract

In this paperwe presentrecentadvancesin the context of
a framework for planningin temporaldomains,namelythe
IXTeT system.This systemis a lifted partial order planner
relying on a functional and CSP-basedepresentationThe
paperis intendedto constituteboth an introductionto the
specificityof the systemanda moredetailedpresentatiorof
recentresults.Two contritutionsaremorespeciallystressed
out. Thefirst oneis relatedto resourceéhandling: we propose
algorithmsto dealwith allocatedresourcegndthe usageof
variablequantitiesof resourcesThesecondonsistsn aheu-
ristic estimatorto control the exploration of the plan space
througha reachabilityanalysis.

INTRODUCTION

Long confinedto "toy” domains,planningsystemsnow
exhibit impressve performancandcandealwith very large
problemsSuchcapabilitieshave givena new impulseto the
developmentof plannerswhich aim at reasoningon more
realistic descriptions.Several systemshave recentlybeen
proposedwhich handlenumericfeaturessuchastime and
resourcesThey takeadwantageof theideasthatturnedout
to be successfuin the classicalplanning paradigm,such
assearchin the statespaceguidedby heuristics. However
thesesystemsput restrictve assumption®n the domains
they considermndthe plansthey producearesomehav over-
constrained.Thesecriticisms are motivated by the actual
goal pursuedwhen extending the scopeof planning pro-
blems: realworld applicationssuchasrobot control or au-
tonomousspacecrafiwherebothflexibility andconcurreng
arerequired.For instancejet us considera probleminvol-
ving a 2-armsrobot which hasto graspan object. Unless
strictly required aflexible plancouldleave up to the execu-
tion systemthe choiceof which armto useandwhennext
actionsshouldstart.

In this paperwe exposea framewvork for planningin tem-
poraldomainswhich aimsat gettingrid of suchlimiting as-
sumptions Someprinciplesof this framevork arecommon
to several existing systems- seefor instance(Muscettola
1994),(Rabideatetal. 1999),(El-Kholy & Richards1996).
However this paperfocuseson the IXTeT system(Ghallab
& Laruelle1994)thatwe are extendingto matchthe issues
herebydiscussed.

First we discussthe rangeof temporaldomainsthat we
addressndtheformalismonwhichwerely to capturghem.

Themainfeatureof thisrepresentatiors a detaileddescrip-
tion of the distribution of the effects of actionsover time,

whichallowscomple actiongnterleaving. Thenweanalyze
the algorithmsinvolved in the productionof plansin such
domainsThechoiceof thesemethodspamelylifted partial
orderplanningrelying on CSPswasguidedby the needfor

flexibility . However it raisesspecificdifficultieswhenconsi-
deringresourcesvhich arediscusse@ adedicatedsection.
We concludewith alook at the crucial problemof control-
ling the plansearchandwe proposea new heuristicestima-
tor basedon anoriginal structure the Plan SpacePlanning
Graph.

REPRESENTATION IN THE IXTET
FORMALISM

Classicaplanninghasabstracted@way time andresource
in statetransitionsystemsSuchanapproacthasseseredrav-
backsin expressienesswhich limit its usein real appli-
cations.In the real world, actionshave differentdurations,
needsomeresourcetheir startpointsdo notnecessaryneet,
someactionsdo notonly changehe ervironmentbut might
also enforcesomeof its characteristicdo remainconstant
and,lastbut notleast,effectsmightdepencntime.

Fromtheseremarkswe draw the conclusionthattempo-
ral planninginvolvesmoving aheadof global, still pictures
of the entireworld, i.e. states,and their associatedransi-
tions.Actions shouldbe consideredspartial specifications
of evolutionswhich spreadvertime andwhichcanbecom-
bined.The considerediescriptionshouldkeeptrack of the
way thesecomposeaccurrencesffecttheworld, represen-
ting bothlocalchangesndpersistencén orderto provide a
consistenbaseto decidewhatcanandcannotbedone.

Thetemporalrepresentatiomwe areinterestedn herefo-
cuseson local individual evolutions of stateand resource
variables A statevariableis a function of time which des-
cribesthe evolution of a characteristiof the domainover
time. A resourcerepresents substancer a setof objects
whoseavailability inducesconstrainton the actionswhich
useit. Thefollowing paragraphgive detailsaboutthe des-
cription of domainsandtheunderlyinglogic.

Statevariables: attrib utesof the domain

As saidabove, a statevariable,or attributeis a partially
specifiedfunction of time whoseevolution over time is spe-
cified througha setof temporalpropositions.The rangeof
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valuesfor thesefunctionsareeithersetsof symbolicvalues
or disjunctionsof numericintervals. Attributesare parame-
terizedby a vectorof variablesvaluedin finite sets.For ins-
tance,n adomainwhereseveral robotsaremaving around,
we mightdeclarethefollowing statevariable:

attribute Position(?Rb){
?Rb in ROBOT;
value in LOCATION; }

In orderto describahe dynamicof theworld andtheway
actionsaregoingto affectit, we needto specifyevolutions
of attributesbut also persistenceThis is achiezed through
atemporalpropositionalogic whosetwo core propositions
are event, which tips up instantaneoushat a given time-
point the value of an attribute, and hold, which maintains
thevalueof anattributebetweertwo giventime-points(see
Fig.1).

Consideringonly persistenceindinstantaneoushange,
oneis limited to describeonly piece-wiseconstanfunctions
andthusis not ableto catchmuch of the real world dyna-
mic. Thewill to extend the rangeof domainswhich might
be handledwithin IxTeT led usto introducea third propo-
sition: change. It specifiesa linearevolution of anattribute
over atemporalinterval. For instancethe openingof anau-
tomaticgatewhich opensvertically couldberepresentetly
the following propositiornt change(Opening(OurGate) :
(0.0,3.0), (t1,t2)). Thenumericvaluesaretheinitial andfi-
nal heightsof the gateopening.Sucharepresentationffers
the possibility to infer intermediatepositionsof the door.
Consequentlya robotcouldgo throughthe gatealthoughit
is not completelyopen.So far, we consideredonly linear
changesbut in order to be exhaustie, we should extend
the formalism to representll type of functions.For ins-
tance|f thegateis openingwith anaccelerationthechange
mustfollow aquadratidunction.Onemightarguethatmary
domains,including somewhich are closely relatedto real
world applicationscanbe describedwithout sucha repre-
sentationBut it is at the price of a highercompleity of the
searchspaceandthereare someproblemswhich cannotbe
codedwithoutthe notionof continuouschange.

Value —-E———3 -
Lo [X

| hold (att (X1, .., X2) : Value, (i, t_f)

New_value
event (att (X1, .., X2) : (Old_value, New_value), t_chang
old_valu

Tchange

New_value --- ------

|
change (att (X1, .., X2) : (Old_value, New_value), (t_i, t|

Old_value -
ti tf

FIG. 1 - Thethreetypesof tempoal propositions

Resources

Contraryto statevariablesthe evolution of thelevel of a
resourcds not explicitly describedInsteadthe representa-
tion focusesntherelative changeshattheoccurrencef an
actionwill causeon aresourcehatit usesResourceisage

canbe describedhanksto threetypesof temporallyquali-
fied propositions use (borronving over atemporalintenval),
produce and consume (productionand consumptionat a
giventime-point).

First,we focusedon proposingefficienthandlingof para-
meterizedresourcesTheseareresourcesvhich aredefined
asinstancef a sameresourcetype which might be used
indifferently by actions.For instancea satellitemight store
a camergpictureeitheroniits first or seconddisk aslong as
thereis a disk with enoughavailable memory A resource
type R(?X) is definedby its initial capacityanda domain
for its parameter

resource Arm(?Rb){

7Rbin ROBOT;

capacity = 2; }
Anotherimportantnew featureof the formalismis the pos-
sibility to specifythe useof a variablequantity of resource
by an action: onecould expressthat storinga camerapic-
ture might usebetween200 and 300 ko of memorydepen-
ding on the selectedarget. This variablequantity canthen
beconstrainedeitherby othervariablesor action'sduration.
Suchresourceusagesare specifiedthroughpropositionsof
thefollowing forms:

use(R(?X) : 7q, [ts,t.]) (borrowing),
produce(R(?X) : 7¢,t,) (production),
consume(R(?X) : 7¢,1.) (consumption)
where?q is a variablequantitywhosedomainis aninterval
[4min, gmas), ts, te, tp, andt, aretime-points.

Linking partial descriptionsthrough constraints

All thesetemporalpropositionson resourcegindon at-
tributes)canbe linked with eachothersthroughconstraints
ontime-pointsyvariablestateparametersr values.Thedes-
criptionsof both actionsandthe world consistin conjunc-
tionsof suchtemporalpropositionsandconstraints.
Applying an action- ataskin IxTeT’s vocahulary - means
integrating its propositionsand constraintsinto the worl-
d’s conjunctionin a consistenway. Consisteng checking
takesinto accountthe explicit constraintsnetworkbut also
the moreimplicit constraintdinked to the semantioof state
variableswhich arefunctionsof time.

This notionof actionsasconjunctionsf local evolutions
offersasufficientgranularityto expresscomplex actionscon-
curreny (seeFig. 2).

Theextensie useof constraintgo link temporalproposi-
tions also providessupportto one other specificity of tem-
poralplanning: influenceof actions’durationsover their ef-
fects.For instancethe distancecoveredby a robotwill be
proportionalto the durationof its "Move” action. This is
achieved by expressingconstraintsthat mix the valuesof
statevariablesanddurations.

Thislastfeature amongothers hasbeenavoidedby seve-
ral systemdecause straightforwardcodingmight leadto
infinite branchingfactors.On the contraryit fits quite natu-
rally into our representatiorsinceusingungroundedctions
prevent us from consideringindividually all possibledura-
tions.

Thenext subsectionsistson otherspecificaspect®f the
representatiomand providesgroundto efficient encodingof
domains.
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task MOVE(?0bj,?Rb,?From,?To)(start,end) {

start t1 t2 end

event(Position(?0bj):(?From,?Arm1),start);

hold(Position(?0bj):?Arm1,(start,t1)); Position(?Rb) | ?From moving ?To

event(Position(?0bj):(?Arm1,?Rb),t1

use(Available(?Arm1):1,(start,t1)); Position(?0bj) [?From|  ?Arml ?Rb ?Arm2| ?To

hold(Position(?Rb):?From,(start,t1)); Available(?Arm1)

=

o

.|
)
N

event(Position(?Rb):(?From,moving),t1);

hold(Position(?Rb):moving, (t1,t2)); Available(?Arm2) ! ?? 1 0 1

event(Position(?Rb):(moving,?To0),t2);
hold(Position(?Rb):?To,(t2,end));

event(Position(?0bj):(?From,?Arm2),t2);
hold(Position(?0bj):?Arm2,(t2,end));

State Variables Table

event(Position(?0bj):(?Arm2,?To),end);
use(Available(?Arm2):1,(t2,end));

?0bj in Objects;

?From in PLACES; ?To in PLACES;
?From != ?To;

?From in {L1} => ?Arm1 in {A1};
?Toin {L2} => ?Arm2 in {A2}
?distance = dist(?From,?To);

Move(Object1,Robot1,L2) (start, end)
start t1 t2 end
: | ' |
f ; f i
start’  t1’ t2’ end’
Move(Object2,Robot2, L1) (start’, end’)

(t1 - start) in [00:03:00,00:03:30];
?distance = speed*(t2 - t1);
(end - t2) in [00:03:00,00:03:30];

Intertwining Actions For 2 Robots

FIG. 2— A TaskExamplein the IxXTeT Formalism

Efficient useof constraints and attrib utes

Theformalismwe aredealingwith offersinterestingfea-
tures,suchasanexplicit representationf somemutex infor-
mationthroughthe useof functionsof time insteadof predi-
catesHowever, asis true of otherrepresentationg domain
can be describedn mary ways, someof which being by
far harderto solve by the planner The context of the 2002
InternationalPlanningCompetitionlead us to study more
preciselydomainencodingwith thegoalof realizinganau-
tomatictranslationtool from PDDL 2.1 specificationgFox
& Long2002)to IxTeT'sformalism.

Throughthis work we identified two importantprinciples
to obtaindescriptionswvhich canbe efficiently usedby our
planner They couldbesummarizedsfollows:

— donotwrite rigid attributes(i.e. constanpredicates),
— translatepredicatesnto functionsasmuchaspossible.

Thefirstruleis closelyrelatedto thefactthatour planner
is alifted partialorderplannerlt constitutes shift towarda
moreactie handlingof the constraintsnducedby constant
predicatesA constantpredicatewith one argumentis re-
placedby a domainconstraintover a variable.A constant
predicatewith two argumentss translatednto a setof de-
pendenyg constraintdetweerthetwo arguments.

Theseconduleis simply anadviceto hand-codevident
mutualexclusioninformation.For instanceapredicate
Position(?Rb, ?loc) shouldbe translatednto an attribute

Position with oneparameter Rb andvaluedinto thesetof
locationsfor which the predicatés interpretecastrue.Once
againit is of specialinterestin the context of ungrounded
operatorssinceit reduceshedomainsof variables.

Applying as muchaspossiblethe secondrule might in-
volve more than simply translatingone predicateinto one
attribute: thereare caseswherethis is not possiblebut fur-
ther domain analysisdetectsthat meging two predicates
into onestatevariableis valid. Examplesf suchpredicates
canbefoundin (Edelkampl999).Basednthepropositions
of this article,we developeda domainanalyzemwhich auto-
matically performssuchtranslationsandmeging.

HANDLING TIME IN A POP
FRAMEWORK

Aswaspreviouslypointedout, realapplicationgequireto
keepflexibility in planssoasto minimizethe costof adap-
ting to the possiblegapbetweertherealworld andthe avai-
lable model. Searchin the planspacewith only necessary
orderingconstraintsand partially groundedoperatorspro-
videsan elggantsolutionto the needfor flexible planning.
In this sectionwe exposean adaptatiorof the classicalplan
spaceschemao theformalismexposedin thefirst section.

POP in the ClassicalSetting

The purposeof planningis to find a sequenc®f actions
betweenaninitial stateanda final stategiven by the user



The classicPartial Order Planningalgorithm searcheghe
solutionplaninto the partial plan space A partial planis a
tuple (A, O, B, L, 0C,U L) whereA is a setof potentially
ungroundedactions,@ a setof constraintavhich order .4,
B asetof constraintover thevariablediguringin elements
of A and/ is asetof causalinks (i.e.alink betweeranac-
tion which establishe®ne preconditionof anotheraction).
Thedescriptionof apartial planis completedby two setsof
flaws: OC, asetof openconditionsandi/ £, a setof unsafe
links (threats)A partial plan standgor afamily of plans.It
is consideredo be a valid solutionif all of theseplansare
consistentThis impliesthatthe setsOC andi/ £ areempty
An openconditionfiguresa non-eplainedpreconditionof
oneof theactionsbelongingto A. A threatappearsvhenan
actiona; explainsa preconditionp of anactiona, while a
third actionas mightcausahecancellatiorof this precondi-
tion,i.e not(p) is aneffectof a3 andas mightoccurbetween
a, andas withoutviolatingary of theconstraintsn O .

The algorithmstartsits searchfrom a partial planwhich
containsonly two virtual actions.Thefirst actionhasonly
effects: it establishedhe initial state.The secondone has
only preconditionsit initializestheopenconditionswith the
desiredfinal state,thusrequiringthe plannerto refinethis
initial node.

Stepby step,the POPalgorithmis goingto try to resohe
all theflaws of the partialplan.A stepconsistsn selectinga
flaw andchoosingaresohent.In the caseof anopencondi-
tion we have thechoiceto explainit eitherby insertinganew
actionwhoseeffectscontainthis openconditionor by esta-
blishing a new causallink with an actionwhich is already
partof the plan.To resole a threat,it is necessaryo over
constrainactionsso asto ensurenon-overlappingbetween
thethreateningactionandthethreatenedink. Thisis achie-
vedby postingtemporalpromotion/demotiondr atemporal
(inequalities)constraints.

If thesearchreaches nodewhich containsoneflaw with
no possibleresolent,it hasgoneinto a dead-endranch it
hasto backtrackon oneof its previouschoices.

Usingthis shortsummaryasa backgroundye now turn
to thefull contet of IxTeT, consideringdifted actionswith
explicit representationf time andresourceandexplain how
the notionsof flaws andresohentsareextendedto this for-
malism.

Extensionto IxTeT’s Logic

Thefirst stepto ensurethe soundnessf the searchcon-
sistsin transposinghenotionof flaws,includingboththreats
(orunsafdinks) andopenconditionsto theconsideredem-
poralpropositions.

Flaws aresplit into two clearlydisjoint setswith theiras-
sociatedletectiorandresolutiormodules thoseconcerning
statevariablesandthoseconcerningesourcesrThis partfo-
cusesn statevariableswhereaghenext oneis dedicatedo
the”ResourceConflictsDetectionandResolution’module.

Within the IxTeT's frame,the notion of threatsandopen-
conditionson statevariablesencodeghe semantioof attri-
butesasfunctionsof time. The setof propositionson an at-
tribute shoulddescribea consistensequencef transitions
andensurdhatatnotime two differentvaluesareassociated
with the sameattribute.

In orderto build consistensequencesf transitionson an
attribute,two source®f open-conditiongreconsideredas-
sertionsof persistencandeventpropositionsA hold pro-
positionrequiresthe statevariableto reachthe maintained
valuebeforeit comesnto effect. In the sameway, anevent
propositionrequireghestatevariableto beatits initial value
beforeit happens.

Establishersre event propositionswhosefinal valueis
goingto matchtheonerequiredby theopencondition.They
areeitherlookedfor within the currentpartial planor within
new tasksto insert.

The otherkind of flaw on attributes,namelythreatsare
definedsoasto checkthatmappingan attributeto its value
atary timeis deterministicThreatsaredefinedthatinvolve
two hold propositionsor oneevent andone hold proposi-
tions. Two hold shouldnot overlapunlessthey maintainan
attributeto thesamevalueor theattributesthey constraircan
be differentiatedby separatiorconstrainton their parame-
ters.An event shouldnot occurduringa hold proposition
unlessseparatiorconstraintscan be postedto differentiate
their respectie attributes;if an event is boundto meeta
hold at startor end,their valueshouldbeunifiedto obtaina
consistentvolution of the attribute, or onceagainthe attri-
butesshouldbe separatetyy constraint©n parameters.

Throughthe definition of flaws in IxTeT, two specifities
of theconsideredemporalcontet arise.Thefirst oneis the
ambivalenceof theevent propositionswhich canbe consi-
deredaseffects(establishersdr preconditiongopencondi-
tion) atthesamdime. Thesecondneis thatit reliesheaily
onCSPsmostof theresolentsconsistingn eitherordering,
binding or inequalitiesconstraints.The next subsections
dedicatedo themodulein chage of handlingvariablesand
enforcingan importantpart of the consisteng of a partial
plan.

A Framework relying on CSPs: Expressiveness
and Flexibility

CSPsmanagerplay a centralrole in Partial OrderPlan-
ning. It is true evenin the classicalplanningsincea partial
plan canbe seenas a setof constraintsdefining a family
of candidatesolutions.In our temporaframevork, efficient
propagatiorof constraintdo computeaccurateminimal do-
mainsfor variablesis essential First, as explained above,
the notionsof flaws andresohentshave beentransposedh
a quite straightforwardnannerto temporalpropositionsout
at the price of an increasedcompleity pushedon the re-
guestgo the CSPhandlersFurthermoresereral of thefea-
turesdiscussedn the first sectionare handledthroughde-
dicatedconstraintsThe mostrepresentatie exampleis the
expressionof actionswith effects dependingon durations.
Thisinvolvesconstraintsuchas?d = a * (t; — t;) which
mix time-points(¢; and¢;) and variables(?d) - see(Trin-
quart& Ghallab2001)for details.

Initially disregardingsuchcoupling constraintsthe sys-
tem was developedwith two disjoint CSP managers the
Variable-Mapon one hand,which combines2-consisteng
andforwardcheckingto handleatemporavariablesandthe
Time-Map on the other hand, which implementsa Floyd-
Warshall-likepropagatiorschemgDechtey Meiri, & Pearl
1989).Thelink betweerthesetwo moduleds achiezedby a
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supervisomwhich transferdnformationfrom oneCSPto the
otharwhenrequired While this classof CSPis known to be
NP-completepreliminarytestsindicatethatactualplanning
problemdeadto tractableinstances.

RESOURCE CONFLICTS DETECTION
AND RESOLUTION

Theproblemof ensuringconsisteng of thesetof resource
propositionsat eachstepof the searchconsistan ensuring
that thereis no over-consumptiorof a resourceThe diffi-
culty lies in the impossibility to computethe actual level
of aresourcébecausehe orderon propositionds only par
tial andsomevariablesmightbenon-instantiatedThecom-
plexity is evenworserby thefactthatvariablesnightappear
in temporalpropositionson resourcegasparameteraindas
borrovedquantities.

This sectiondetailsthe modulewhich is responsibldor
this aspectof consisteng It is basedon an extension of
an efficient clique-searclalgorithmon a possibleintersec-
tion graph.Resolentsare chosenamongresourceproduc-
tion (taskinsertion)or separatiorftemporalorderingsor va-
riablesinequalities) Thereagainthe desiredexpressieness
entailsa high numberof resohentsandconsequentlya high
branchingfactor. We finish this sectionwith the proposition
of a criterium to discriminateresolhentsleadingto dead-
endsthuspruningoutuselesdranchessearlyaspossible.

Detectionof potential resouice contentions

Theresourcanalysigs dividedinto two phasesfirstfind
for eachresourceattribute over-consumingsetsof poten-
tially overlappingpropositionsandthenproposea disjunc-
tion of resolhentsfor eachconflict.

To detectconflicts, ary potentialintersectionshould be
consideredwhereago besureto solwe a conflict, a produc-
tion shouldnecessarilyprecedeshe setof involved propo-
sitions.

In (Ghallab& Laborie1995),theauthorgeasoronborro-
wing propositionsandthensuggesto translateary produc-
tion produce( AttR : q,t), whereAtt R is anon-parameteri-
zedtypeandy afixedquantity into anincremenbof thecapa-
city of AttR by ¢ andaborrowing propositionuse(AttR :
q,]—o0, 0]). Thusconsideringpotentialintersectionsnly is
still valid. Extendingthis "trick” to parameterizedesources
with variablequantitiesraisesdifficulties. Let us consider
a propositionproduce(AttR(?X) : ?q,t). Thefirst point
is thatif 7X is notinstantiatedit is not possibleto decide
which resources capacityshouldbe increasedSecond,?q
might alsobe non-instantiatedthusit is not possibleto de-
cidehow to incrementdirectly the capacityof aresourceln
orderto solve thesetwo problemsandto keepdetectingre-
sourcecontentiorby searchinghroughpossibléntersection
sets,we proposethe following rewriting rule for a produce
propositionproduce( Att R(?X) : 7q,t) (9 € [q¢min, ¢maz])
is transformednto two propositionsand a capacityincre-
ment:

Upef = usE(AttH(?X) CQmazx, [Oat])'
'Uaft = USC(AttR(?X) : Qmax_?q; [t’ +OOD
andCrrer = ¢mas-

0 t 0

@ (b)

FiG. 3 — Equivalentresouce profile for a produceproposi-
tion (a), andfor its translation< wupe ¢, uate, Crner > (D).

Crner Will betakeninto accountin the detectionof any po-
tential overconsumptiorinvolving us. . Figure 3 presents
thisrulein agraphicaway. consume(AttR(?X) : 7¢,t) is
simply transformednto use (At R(?X) : 7q, [t, +ool).

Onceall produceand consumepropositionshave been
translatednto their equivalentborroning propositionsand
capacityincrementsconflictdetectiorcomesdownto search
for Minimal Critical Sets Actually, asno subsetof a MCS
canleadto a conflict,a MCS canbe completelysolved by
the insertionof oneresolhent. TheseMCS are detectedas
minimal over-consumingcliquesin a Possiblelntersection
Graph

A PIG is associatedo eachresourceype R(?r) (whose
initial capacityis denotedoy Capar belown). The vertices
of the graphare propositionson R in the partial plan, and
its edgesarethe pairsof propositionswhich may intersect
in somelinearizationof theplan.Theresourcegarameterr
is takeninto accounin thecomputatiorof cliques(i) andin
thecriterionto detectover-consumptior(ii) :

— (i) the parametersf all propositionf a cliqueC canbe
unifiedin avariable?rc.

— (i) the capacitycorrespondingo eachcliqueC is calcu-
latedby:

Capa(C(?rc)) = Capar + Z ClIncr(uper(?7))
Upes EC
where?r and?rs canbeunified.

Considera unifiedcliqueC = {u1(?r1),..., ux(?rs)}
with u; aborrowing of aquantity?q; in [gmin (%), ¢maz (Us)]-
C isaMCSif :

quax(u) > Capa(C)

uel

and Y _ gmax (u) = min{gmaz ()} < Capa(C)
u€eC

Resolventscomputation

Thesecondhaseof theanalysids thecomputatiorof all
possibleresohents.A MCS can be solved by postingone
of the following usualresolhents: promotion/demotin and
parameterssepagtion. But aswe are consideringvariable
resourceusagewe needto proposean additionalresohent
to guaranteghe soundnesandcompletenessf the search
process reductionof the resouce usageso as to nullify
the overconsumptionThis resohent is applicablein case
> uec dmin(u) < Capa(C) holds.It consistsin postinga
constraint »-, .7q(u;) < Capa(C). Sucha constraint
respectsheleastcommitmenttratay.

The last possibleresolhent is the insertion of an action
containingapropositionu, (?r,) producingaquantity?q(u,)
suchthat: 7q(u,) > >~ ¢ 7q(ui) — Capa(C).
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DOMAIN

resource R(?x){
?2xin{rl, r2};
Capacity = 2 ;}

task PROD(?x){
produce(R(?x) : ?qP, t);

-}

PARTIAL PLAN
consume(R(?x1) : ?q1, t1){ul)
consume(R(?x2) : 792, t2)(u2)
consume(R(?x5) : ?g5, t5)(u5)
?2x1, ?x2, ..., ?2x51in {rl, r2};
?q1, 792, ..., ?795in [1,2];

FIG. 4 — Resoute contentionrexample

The resultof sucha resourceanalysisis the set of the
smallestMCSandtheir associatedisjunctionof resolhents.
This canleadto a quite importantbranchingfactor Hope-
fully it is possibleo detectanddiscardearlyduringthisana-
lysisphaseesohentswhichwill leadto dead-endbranches.

Consideffor instancethe simplepartial plandescribedn
figure4 andcontainingfive consumeropositionnthere-
sourceattribute R(7z). The resourceanalysisprocesswill
detectandproposeaesohentsfor all conflictsof theminimal
size(i.e. 2 propositions) The MCS u1, us for instancecan
besolvedby (z1 # z2) V (?q14+7¢g2 < 2) V (PROD(?z)).
But the two first resolentsappearo be uselessasthe to-
tal resourcecapacityis 4 whereaghe minimal consumption
in theplanis 5. Therefore sepaationanddomainreduction
canbediscardedrom thedisjunctionof resolentsin certain
cases.

We implementedsucha stratgy by doing a pre-analysis
for eachresourcattribute.Usingthe samealgorithmasfor
MCS detection,but without consideringresourceparame-
ters, we searchfor type-conflictscorrespondingo cliques
suchthatno precedenceonstrainis possibleand:

Z Imin (u) > CGPGR * Nhygce + E CInCT’(Ubef)
ueC Upes €EPlan

Then during the conflict detectionprocesswe testif the
MCSis includedin at leastonetype-conflict In that case,
the setof resolhentsis reducedio a deterministicone: ac-
tioninsertion

Thisnotionof type-conflictss awayto decreaséhebran-
chingfactorby discardingesohents.However it is not suf-
ficient to preventthe searchfrom gettinglostin the search
spaceln thenext sectionwe proposeanew heuristiccontrol
to choosefrom resolhentsandenforcethe efficiengy of the
search.

SEARCH CONTROL: INTRODUCING THE
PLAN SPACE PLANNING GRAPH

In theprevioussectionsye stresseduttheadwantage®f
IxTeT, mainly the expressvenessofferedby the formalism

it canhandleandthe flexibility of theplanit producesHo-
wever oneimportantdravbackof the systemhasalsobeen
raisedat someplaces the importantbranchingfactorit en-
countersat eachstepof thesearchprocess.

To choosefrom the differentways of refinementwhich
aredeterminedy the”Flaws andResohentsAnalysis”mo-
dule,IxTeT reliesondifferentheuristicfunctionswhich mix
means-endanalysisandleastcommitmentevaluation.The
costof insertingan actioninto a partial plan is computed
throughthelimited developmenbf aregressiorgraphto es-
timatethe costof the new subgoalsin addition,the costof
ary orderingor bindingconstrainis estimatedn termof the
portion of the plan spacewhich is prunedout of the candi-
datesfor refinement.This is a measuremendf leastcom-
mitmentwhich is supposedo maximizechancedo find a
plan-solutionaslong asthe distribution of solutionsis uni-
formedoverthe planspace.

Thissetof costfunctionshasprovento beusefulin alarge
set of domains(Laborie 1995). However, additionalhand
control is neededto balancethesedifferentheuristic esti-
matorsin orderto scale-upto larger problemssuchasthe
benchmark$rom IPC 2002.

In this sectionwe discusgecentadvancesve madein de-
fining anappropriatedomain-independetiteuristicfor gui-
ding the searchin the plan space First we will presenthe
inherentdifficultiesof estimatingcostsin a partiallyordered
/ boundecdtontext, basingour discussiorontheideasexplai-
nedin (Nguyen& KambhampatR001).Fromthis analysis,
we will thenproposea new structure derivedfrom the no-
tion of the planninggraph,to estimatedistancewithin the
PlanSpace.

RePOP:Bringing back POP to light

RePORs a partial orderplannerwhich exploresthe plan
spaceusinggroundedactionsto refine partial plans.It inte-
gratessereral ideasto reducethe searchput the onewhich
is mostoften referredto is the useof a heuristicobtained
thanksto a planninggraph: it hasproven that, when effi-
ciently guided,a partialorderplannercould dealwith large
problemsandproduceplansof goodquality. Giventhis sta-
tement,we naturallyturnedto this systemto seehow such
ideascould be adaptedo a temporalcontet. And we met
difficultieswhich preventedusfrom directlytransposinghis
solutionto outframevork, but which alsogave ustheground
to furtherinvestigations.

To understandvhy RePOPS heuristiccannotbe usedin
our framework, one shouldfirst rememberthat the use of
an informative heuristicis only one of the propositionsin
(Nguyen& KambhampatR001).One otherimportantfea-
tureof this systemis theway it handlesorderingconstraints
over actionsin adisjunctve way. Whenconsideringathreat
betweeracausalink andanaction,RePORloesnotchoose
betweerresolvingthethreatby demotionor promotion: ins-
teadit refinestheplanwith adisjunctiveorderingconstraints
ensuringthe non-overlappingof the causalink andthein-
volved action,without committingto oneof the alternatve.
This hasanimportantconsequenceith respecto the heu-
ristic choice:the systemdoesno longerhave to choosebet-
weenthreatresolentsor open-conditiorestablisherdt only
hasto estimatethe costof establishingopen-conditiondy
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causalinks with new actionsor element®f thecurrentpar
tial plan.

Isit possibleto usesuchdisjunctive constraintgo reduce
the branchingfactorin the temporalframewvork of IxTeT?
To answerthis question Jet us detail the constraintsonsi-
deredin RePOPIn the classicalsetting,with groundedac-
tions, a threatinvolvesa causallink of theform A —? B,
which meanghatthe action A establisheshe precondition
p of theactionB, andathird actionC' whoseeffectscontain
not(p) andwith suchorderingconstraintshatA < C < B
is consistentRePOPRsolvessuchathreatby postingthedis-
junctive constraintC' < A or B > C. If we transposghis
for instanceo athreatinvolving two propositions:vent(
Att(?X) ¢ (vi,vg),te) and hold(Att(?X') : wp, (ti,t5)),
theassociatedlisjunctive constraintss of theform¢. < ¢;
or ty > t.. Sucha constraintcannotbe translatednto a
distancebetweentwo time-pointswith a disjunctive range.
Thusencodingit into the Time-Map mentionnedn a pre-
vious sectionactually boils down to handlingtwo matrices
of distancesFurthermore whereasRePOPmakesthe as-
sumptionto useonly groundedoperators|xTeT alsohasto
considemthird alternatie to PromotionandDemotion: pa-
rameterseparationlntegratingthesethreealternatvesinto
onedisjunctive constrainto separatéwo propositionhasa
hugecostin termsof CSPconsisteng checking.Sofar we
preferredto keepthesealternatiesinto separatedbranches
of the searchireeandelaboratea satisfactoryheuristicesti-
matorto choos€rom theserefinements.

The PS-PG: estimatingdistanceswithin the Plan
Space

Our goal is to keepleastcommitmentas a principle to
build plans,for instancethroughthe useof ungroundedc-
tions, but notaspartof the choicecriteria. Thuswe have to
provide aheuristiccontrolto choosdrom a setof variousre-
finementdncludingtaskinsertion,temporalconstraintand
constraintover variablesThisraisesconflictingissues the
computationof the heuristic shouldtake into accountthe
wayorderingconstraintsnightaffectfurtherrefinementsut
it shouldalsobe computedjuickly. Usinga planninggraph
to estimatethe costof the remainingrefinementgo obtain
a solution hasbeenusedsuccessfullyin differentplanning
schemasput the previous subsectiorexposesour reasons
notto useit directly. Moreover, amoresubjectve reasomot
to reuseRePOPS heuristicis thatit doesnotseensonatural
to explore the plan spaceandestimatadistancesn the state
space.

In this lastsection,we proposeto build a structurewhich
is relatedto the planninggraphstructurebut accountsfor
reachabilitywithin the plan space We thenproposea heu-
ristic estimatorderived from this structureto guide IXTeT
within its searchree.

A Plan SpacePlanning Graph structure First introdu-
cedin (Blum & Furst1995),the PlanningGraphis a com-
pactrepresentationf the statespaceportion which canbe
reachedrom agiveninitial node.lt is built asanalternation
of propositionsandactionslayers,which are both disjunc-
tive structuresSeveral heuristicfunctionshave beenpropo-
sedwhich rely on the computatiornof sucha graphin are-
laxed domainto estimatadistancedo reachablesolutions.

Leaving asidesomespecificitief constructiorproposed
by Blum andFurstandconsideringa planninggraphsimply
asacompactepresentatioof the partof anorientedgraph
accessiblérom agivennode it seemsppropriaté¢o adaptt
to aspeciakypeof orientedgraph: PlanSpaceHeuristices-
timatorsderivedfrom the planninggrapharebasedn some
estimation®f thenumberof transitionsn the graphneeded
to reacha solutionnode.In statespacethis correspondso
the numberof actionsto addto the planto reacha solution
state.In the plan spacet will correspondo the numberof
resohentsthatwill leadto asolutionplan.

A key featureof the PlanningGraphstructureis disjunc-
tivity : both propositionsandactionslayersaredisjunctive,
they collapseinto one node potentially mutually exclusive
descriptionf theworld. Compactinghe planspacen the
sameway involveshandlingdisjunctive layersof resohents
andlayerswith disjunctive partialplans.Thisis of particular
concerrsincethecostof maintainingconsisteng in apartial
planwasalreadyconsideredhsa dravbackof partialorder
planning.

Thespecificdifficulty of handlingdisjunctivepartialplans
with ungroundedactionsis to avoid akusive propagations
of constraintgbothtemporalandatemporalacrosdisjoint
componentsinsteadof explicitly putting disjunctionsinto
the CSPs,we proposea "rewriting” rule to transforman
openconditioninto asmary establishegropositionsasconsi-
deredresohents.For instancejf anassertiond = hold(-
Att(?X) @ vy, (t;,tf)) canbeexplainedeitherby event (Att-
(?Y) 1 (L, vn),te) Or by event(Att(a) : (-, vn),tL), wewill
replaceH by 2 propositionshold(Att(?Y) : wvs, (ti,tf))
and hold(Att(a) : vy, (t;,t;)) andaddthe corresponding
causalinks to the partialplan.

The remainingopenissueto transpose planninggraph
structureinto a plan spaceis the way layersare expanded.
Whenbuilding a planninggraphin the statespacegachac-
tions layeris developedby addingapplicableactionswith
respectto the previous propositionslayer. Neglecting mu-
tualexclusionsanactionis consideredo beapplicabldf all
of its preconditionsarecontainecdby the propositiondayer.
Thusanactionslayer containsall the valid transitionsfrom
the setof statesfiguredby the previous propositiondayer.
In the plan spacenodesarepartial plansandtransitionsare
refinementsContraryto whathappensn statespacewhere
the graphis someha built in a blind forwardmannerit is
notnecessaryo keepall possiblerefinement®f aplan:it is
possibleto restrictthegraphexpansiorto refinementsvhich
areresohentsof flaws in the consideregartialplansandto
limit thesizeof theportionof the planspacecapturedy the
planninggraph.Moreover, in the sameway mutexescanbe
ignoredto decidewhich actionsshouldbeincludedin anac-
tionslayer, we only considetresohentsfor open-conditions
duringtheinitial developmentof the graph.

Beforemoving on to the discussiorof the heuristicfunc-
tion we proposeto derive from this structure we will turn
backto oneof theinitial requirementsve puton a heuristic
estimatoiin alifted POPcontet : theability to chooserom
variousresohentssuchas causallink, taskinsertion,tem-
poralconstraintr inequalitiesover variablesThis implies
thatthe Plan SpacePlanningGraph(PS-PG)enablesusto
catchthedifferencebetweertheaccessibl@artsof the plan
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spaceinducedby posting,for instance githerpromotionor
demwtionconstraintslt is achiezed by revising along the
searchwhich refinementsireactuallyapplicableto a given
partialplan.

More preciselytherearetwo differentphasesn the ma-
nagemenbf the PlanSpacePlanningGraphduringthe plan
searchprocessThe searchstartsby developinga complete
PS-PGwhich is built from the initial partial plan. Thenat
eachstep,resohentsareinsertedin the partial planandthe
constraintghatthey bring into the planarealsopropagated
in the PS-PG Having chosena resohentwhich establishes
an open-conditiondiscardsalternatve resohentsand thus
reducesuncertaintydueto disjunctions Postingconstraints
overtime-pointgPromotion/Demotiondr over variablegin-
equalitiesor upperboundariegdo solve resourceconflicts)
might over-constrainthe partial plan in such a way than
someresohentsare now impossibleandthusalsoleadsto
reducethereachablgartof the PlanSpace.

Thanksto this propagationrmechanismit is possibleto
adaptthe PS-PGaccordinglyto the informationcarriedby
eachresolhent.Thusit canbeused ateachstepof thesearch,
asgroundfor the evaluationof the possibledifferentrefine-
mentsof the partial plan. In the next sectionwe proposea
heuristicwhich usesthis structureto estimatethe cost of
a refinementin termsof the numberof resolhentswhich
shouldbefurtherinsertedo reacha solution-phan.

Extracting a heuristic estimation Our main motivation

to usesuchastructureasthePS-PGs to enhancehe search
processn IxTeT throughabettercontrol. We aimatkeeping
themethodof plananalysisandresohentscomputatiorun-

changedandat usinga uniqueestimatorto rankall the pos-
sibleresolhentsof theflawsin thecurrentpartialplanateach
stepof thesearch.

In the context of a. A, searchalgorithm,we wantto rank
resohentsby measuringheminimal distancebetweera so-
lution plan andthe partial plan that would resultfrom the
insertionof aresolerin thecurrentpartialplan.In theplan
spacedistancesirenumbersof refinemensteps Whenre-
fining a partial plan into a solution plan, two typesof re-
finementscan be done: insertionof the establisherof an
open-conditiorandinsertionof a conflict resohent. Using
the PS-PG,we will only countestablishergo approximate
thedistancebetweera partialplanandasolutionplan.

Theformulaspresentedelow, which definethe way the
costsof partial plans(i.e distancedo solution)are compu-
ted, are inducedby the interpretationof the PS-PGas an
AND/OR structure all the open-condition#n a partialplan
should be establishedo reacha solution and eachopen-
conditioncanbe establishedn differentways.In thefollo-
wing equationsP denotesa partialplan, OC(P) the setof
open-conditionsn P, p atemporalproposition,F'st(p) the
setof possibleestablishersf p which appeain the PS-PG,
FE ataskandfinally OC(F) is the setof open-conditiong”
would introducein theplan.

(1) cost(P) = Z cost(p)
pEOC(P)

(2) cost(p) = Eergi?(p) cost(E) if Est(p) # 0,
oo otherwise

(3)cost(E) = 1+ Z cost(p)
peOC(E)

Althoughthesesquationsnight seemguite common a few
commentshouldbe statedwith respecto the PS-PGstruc-
ture. Two relatedissuesshouldbe payedattentionto: the
costsassociatedo establisherdy (2) andthe measurement
of actionsreuse(positiveinteractions).

In thePS-PGtwo kindsof establishersanoccur: simple
causallinks with elementsof the partial plan and causal
links with elementsof new tasksinsertedin the plan. The
first point that shouldbe stressedut is that causalink es-
tablishmentare explicitly measuredthey aretransitionsin
the planspacewhich inducenon-nulldistancebetweemar
tial plans.The secondpoint is that we chooseto associate
the samecostto the two consideredypesof establishers.
Onceagainthis shouldbelinked to theinterpretatiorof es-
tablishersastransitionsn theplanspace.

More over, this secondchoiceis also supportedby some
consideration®n positive interactionsmeasurementince
establishmenthrougha causallink with an elementof the
currentplanis associateavith anon-nullcost,thereuseof a
taskis notcostlessHoweverit shouldbetakeninto account.
Let us consideran examplewheretwo open-conditionscl
andoc2 appearat the samelayer of the PS-PGandcanbe
explainedby thesameaction A. Thecostof establishinge1
andoc2 shouldbeequalto thecostof insertingA in theplan
andlinking it to oc1 plusthe costof linking A to oc2. The
difficulty comedrom theway the PS-PGis expanded both
ocl andoc2 will be explainedin the samelayerandthere-
sultingcostwill betwo timesthatof insertingA andlinking
it to oneof ocl andoc2. This alsoleadsusto associatéhe
samecostto thetwo kinds of establishment.

Finally, equation(2) indirectly raiseghequestiorof when
to stopthe developmentof the planninggraph.Contraryto
what happenavhendevelopinga classicalplanninggraph,
the sizeof the setopen-conditiongloesnot decreasalong
theconstructiorof the PS-PG However equation(2) allows
usto stopdevelopingthe PS-PGas soonasa layeris rea-
chedwhereeachopen-conditiorhasat leastoneestablisher
with a noninfinite cost.In addition,we limit the develop-
mentof the PS-PGo a maximumdepth,consideringhatan
open-conditiorwhich hasnot beenestablishedofar hasan
infinite cost.

Looking at a simpleexample TheFig. 5illustratesa PS-
PG built for a simpleproblem.We considerto actionsFEat
and Bake definedasfollows:

task Eat(?c)(Start, End) {
event(Faten(?c) : (-, true), End);
event(Have(?c) : (true, false), End); }

task Bake(?¢c)(Start, End) {
event(Have(?¢) : (false,true), End); }

The initial situationstatesthat one cookieis available and
the planshouldleadto eatonecookieandhave anotherone.
From this initial situation,the PS-PGis developeduntil it
reaches layerthatsupportsa non-null costfor eachopen-
conditionin the initial layer. Let us describethroughthis
examplehow it is usedto choosewhich resolhentto insert
in thepartialplan.
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El event(Have(Cakel):(false,true),starf) E1 event(Have(Cakel):(false,true),start El event(Have(Cakel):(false,true),st:

E2 event(Have(Cake?2):(true,false),start) E2 event(Have(Cake2):(true,false),start E2 event(Have(Cake2):(true,false),st:

H1 unexplained hold(Eaten(?x):true, (t,end)) E3 event(Eaten(?x):(_true),Ee) E3 event(Eaten(?x):(_,true),Ee)

H2 unexplained hold(Have(?y):true,(t,end)) H1 hold(Eaten(?x):true,(t,end)) H1 hold(Eaten(?x):true,(t,end))

‘ H2 hold(Have(?y):true,(t,end)) H2 hold(Have(?y):true,(t,end))

H2H hold(Have(Cakel):true, (t,end)) H2b hold(Have(Cakel):true, (t,end))
E4 | unexplained event(Have(?x):(true,false),Ee) E4 event(Have(?x):(true,false),Ee)
E5 | unexplained event(Have(?y):(false,true),Eb) | | E6 event(Eaten(?y):(_true),Ee2)

El->E4:1
E2->E5:1

Cost(P) =3
Bake(?x) —>E4 :
Eat(?y) —> E5: 00

E5 event(Have(?y):(false,true),Eb)
E4b event(Have(Cakel):(true,false),Eg

E5b event(Have(Cake2):(false,true),E
E7 | unexplained event(Have(?y):(true,false),Ee2)
E8 | unexplained event(Have(?x):(false,true),Eb2)

FIG. 5—APS-PGin a simpledomain

Onthefirst stepof the searchthe only flaws in the plan
areopen-conditiongndthe resohentsarethethreeestabli-
shersonthefirst layerof the PS-PG.

If thecausalink £1 — H?2 is insertedin the plan,then
the PS-PGwould bemodified: theestablisheBake(?y) on
thefirst layer is no longer consideredH2 and E5 are dis-
cardedfrom the secondayer, the insertionof Eat(?y) and
thecausalink £2 — E5 arealsoremasedfrom thesecond
layer, aswell asthecausalink £1 — F4 sinceF1 already
contritutesto H2. Sothe only establishefor E4 is the in-
sertionof Bake(?y)whichis associateavith aninfinite cost
in thePS-PG.

On the contrary if thetask Bake(?y) is insertedin the
plan,thenthe causallink £1 — H?2 is discardedrom the
first layerandH2b is removed from the PS-PG Therestof
the structureis left unchangeandthe resultingestimation
is4.

CONCLUSION AND FUTURE WORK

In this paperwe presentec formalismfor temporaldo-
mainsandarelatedplanningframevork. We pointedoutthe
greatexpressvenessit provides andthe adequag of plan
spacesearchto solve temporalproblems.Beyond its func-
tionalandCSP-basedepresentationthesystemwedescribe
distinguishestself by a stronginterleaving betweenplan-
ning and schedulingand by greatpossibilitiesin termsof
resourceéhandling.

Suchfeaturesentail a high compleity in solving pro-
blems. This is especiallya critical issuesince Partial Or-
derPlanningin classicaldomainswvasalreadycriticizedfor
looseresultswith respecto searchcontrol. Being aware of
thisweaknes®f mostof the partialorderplannergproposed
sofar but corvincedof the possibilityto guideefficiently a
searctprocessn theplanspacewe focusedontheheuristic
controlandproposedh new methodto computeestimations
of thedistancedetweemartial plansandsolutionplans.

Thisnew heuristicfunctionreliesonanoriginal structure
the Plan SpacePlanningGraph,which is a transpositiorto
PlanSpaceof theplanninggraphinitially proposedy Blum
andFurstandwhich hasbeensuccessfullyisedfor heuristic
purposegver since Implementatioris still anon-goingpro-
cessandwe hopeto validateour propositionin the context
of the2002InternationaPlanningCompetition.
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Abstract

There has been considerable work in Al on decision-
theoretic planning and planning under uncertainty.
Unfortunately, all of this work suffers from one or more of
the following limitations: 1) it relies on very simple models
of actions and time, 2) it assumes that uncertainty is
manifested in discrete action outcomes, and 3) it is only
practical for very small problems. For many real world
problems, these assumptions fail to hold. A case in point is

turned on, initialized, and calibrated. In general, there may
be multiple ways of achieving some of these setup condi-
tions (.g.different travel routes, different choice of cam-
eras).

* The amount of power available varies according to the
time of day, since solar flux is a function of the angle of
the sun.

planning the activities for a Mars rover. For this domain none
of the above assumptions are valid: 1) actions can be
concurrent and have differing durations, 2) there is

uncertainty concerning action durations and consumption of
continuous resources like power, and 3) typical daily plans
involve on the order of a hundred actions. We describe the
rover problem, discuss previous work on planning under

uncertainty, and present a detailed, but very small, example

Given these constraints, the objective is to maximize scien-
tific return for the rover — that is, find the plan with maximal
utility. Unfortunately, for many rover activities, there is in-
herent uncertainty about the duration of tasks, the power re-
quired, the data storage necessary, the position and
orientation of the rover, and environmental factors that influ-
ence operation®.g, soil characteristics, dust on the solar
panels, ambient temperature, etc.

illustrating some of the difficulties of finding good plans. For examp|e, in driving from one location to another, the

amount of time required depends on wheel slippage and

sinkage, which varies depending on slope, terrain rough-

ness, and soil characteristics. All of these factors also influ-

ence the amount of power that is consumed. The amount of
energy collected by the solar panels during this traverse de-
pends on the length of the traverse, but also on the angle of
the solar panels. This is dictated by the slope and roughness
of the terrain.

Similarly, for certain types of instruments, temperature
affects the signal to noise ratio and, hence, affects the
amount of time required to collect useful data. Since the

) .. . temperature varies depending on the time of day and the
* There are time, power, data storage, and positioning weather conditions, this duration is uncertain. The amount
constraints for performing different activities. Time con- o hower used depends upon the duration of the data collec-
straints often result from illumination requirements —that {jon. The amount of data storage required depends on the ef-
is, experiments may require that a target rock or sample befectiveness of the data compression techniques, which

gle. _ N N In short, this domain is rife with uncertainty. Plans that do
* Experiments have setup conditions (preconditions) that not take this uncertainty into account usually fail miserably.
must hold before they can be performed. For example, the |n fact, it has been estimated that the 1997 Mars Pathfinder

rover will usually need to be at a particular location and rover spent between 40% and 75% of its time doing nothing
orientation for each experiment and will need instruments pecause of plan failure.

The Problem

Consider a rover operating on the surface of Mars. On a giv-
en day, there are a number of different scientific observa-
tions or experiments that the rover could perform, and these
are prioritized in some fashion (each observation or experi-
ment is assigned a scientific value). Different observations
and experiments take differing amounts of time and con-
sume differing amounts of power and data storage. There
are, in general, a number of constraints that govern the rov-
er’s activities:

1. Research Institute for Advanced Computer Science (RIACS).
2. QSS Inc.
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One way to attack this problem is to rely on real-time or
reactivereplanning when failures occur. While this capabil- .
ity is certainly desirable, there are several difficulties with
exclusive reliance on this approach:

« Spacecraft and rovers have severely limited computa-
tional resources due to power limitations and radiation
hardening requirements. As a result, it is not always feasi-

ble to do timely onboard replanning.

< Many actions are potentially risky and require pre-ap-
proval by mission operations personnel. Because of the
cost and difficulty of communication, the rover receives
infrequent command uplinks (typically one per day). As a
result, each daily plan must be constructed and checked

currency is often necessary.

Continuous outcomes- most of the uncertainty is as-
sociated with continuous quantities like time and pow-
er. In other words, actions do not have a small number
of discrete outcomes.

Problem size— a typical daily plan for a rover will in-
volve on the order of a hundred actions.

While we have described this scenario for a rover, this kind
of problem is not limited to robotics or even space applica-
tions. For example, in a logistics problem, travel durations
are influenced by both traffic and weather considerations.
Fuel use is likewise influenced by these “environmental”
for safety well in advance. factors..There are temporal constraints on .the. _availability

) ) ) o ) and delivery of cargo, as well as on the availability of both
+ Some contingencies require anticipatierg, switch- facilities and crew. There are also constraints on fuel loading

ing to a backup system may require that the backup sys- gnq availability, and on maintenance operations.
tem be warmed up in advance. For time critical operations

such as orbit insertions or landing operations there is in-
sufficient time to perform these setup operations once the
contingency has occurred, no matter how fast the planning There has been considerable work in Al on planning under
can be done. uncertainty. Table 1 classifies much of this work along the

For these reasons, it is sometimes necessary to plan in adfollowing two dimensions:

vance for potential contingencies — that is, anticipate unex- ¢ Representation of uncertainty— whether uncertainty

pected outcomes and events and plan for them in advance. is modeled stric_tly Iogic_ally, using_ _d_isjunctions, oris
The problem that we have just described is essentially a modeled numerically, with probabilities.

decision-theoretic planning problem. More precisely, the e« Observability assumptions— whether the uncertain

problem is to produce a (concurrent) plan with maximal ex- outcomes of actions are not observable, partially ob-

pected utility, given the following domain information: servable, or fully observable.

Previous Work

* A set of possible goals that may be achievable, each of — —
. . - Disjunction Probability
which has a value or reward associated with it.
A set of initial conditions, which may involve uncer- c%/lc;g [‘;1]1 Buridan 17
tainty about continuous quantities like temperature, en- | Non-Observable C-PLAN [1’3 ]8 Ug%gg 2;)
ergy available, solar flux, and position. This F | [ 1’6] [23]
uncertainty is characterized by probability distribu- ragplan [16]
tions over the possible values. SENSp [12] C-Buridan [10]
A set of possible actions, each of which is character- gasgg?Ndlral[f] DTPOP [23]
ized by: Partially- sap [3‘[1] 1 | C-MAXPLAN [19]
— a set of conditions that must be true before the Observable OBF-Plan[27] | ZANDER[19]
action can be performed. (These may include metric GPT [6] Mahinur [22]
temporal constraints as well as constraints on MBP [2] POMDP [7]
r r vailability.
esource availability.) IC 1]
— an uncertain duration characterized by a probability Plinth [15]
distribution. Fully-Observable WAFé':\ltﬁ'\'['zi]m] Weaver [4]
— a set of certain and uncertain effects that describe PGP [3]
the world following the action. Uncertain effects on MDP [7]

continuous variables are characterized by probabil- Taple 1: A classification of planners that deal with uncertainty.

ity distributions. Planers in the top row are often referred to camformant
Decision-theoretic planning is already known to be quite plan_ners, while those in the other two rows are often referred to as
hard both in theory [18] and in practice. However, there are contingencyplanners.
some characteristics of this domain, which, when taken to- we do not discuss this work in detail here. A survey of some
gether, make this planning problem both difficult and differ- of this work can be found in Blythe [5]. A more detailed sur-
ent from the kinds of problems that have been studied in the vey of work on MDPs and POMDPs can be found in Boutil-
past: ier, Dean and Hanks [7]. Instead we will focus on why this

e Time — actions take differing amounts of time and con-
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work is generally not applicable to the rover problem and characterize power usage. For most spacecraft and rover ac-
what can be done about this. tivities this kind of discrete representation is impractical —
There are a number of difficulties in attempting to apply Mmost of the uncertainty involves continuous quantities, such
existing work on planning under uncertainty to spacecraft or as the amount of time and power an activity requires. Action
rovers. First of all, the work listed in Table 1 assumes a very outcomes are distributions over these continuous quantities.
simple model of action in which concurrent actions are not There is some recent work using models with continuous ac-
permitted, explicit time constraints are not allowed, and ac- tion outcomes in both the MDP [29, 21] and POMDP [32]
tions are considered to be instantaneous. As we said aboveliterature, but this has not yet been applied to SMDPs and
none of these assumptions hold for typical spacecraft or rov- has primarily been applied to reinforcement learning rather
er operations. These characteristics are not as much of an obthan planning problems.
stacle for Partial-Order Planning frameworks such as  Ultimately, the state that results from performing an
SENSp 2], PUCCINI [14], WARPLAN-C [33], CNLP [24], action determines the future actions that will be taken, so in
Buridan fL7], UDTPOP R3], C-Buridan [L0], DTPOP p3], this sense an action's outcomes are discretized. However,
Mahinur 2] and Weaver4]. In theory, these systems could this discretization is not a static property of the actions—
represent plans with concurrent actions and complex tempo-instead, it depends on what goals or subgoals the planner is
ral constraints. The requirements for a rich model of time trying to accomplish. For example, suppose that the rover is
and action are more problematic for planning techniques trying to move to a certain location. If the objective is to
that are based on the MDP or POMDP representations, sat-place an instrument on a particular rock feature, then the
isfiability encodings, the graphplan representation, or state- tolerance in position is quite small. In contrast, if the objec-
space encodings. These techniques rely heavily on a discretaive is to take a picture from a different vantage point, then
model of time and action. (See [30] for a more detailed dis- the tolerance can be significantly larger.
cussion of this issue.) Although semi-Markov decision pro- A third problem with conventional contingency planning
cesses (SMDPs) [26] can be used to represent actions withtechnology is that it does not scale to larger problems. Part
uncertain durations, they cannot model concurrent actions of the problem is that most of the algorithms attempt to ac-
with complex temporal dependencies. The factorial MDP count for all possible contingencies. In effect, they try to
model has recently been developed to allow concurrent ac-producepolicies For spacecraft and rover operations, this is
tions in an MDP framework. However, this model is limited  not realistic or tractable — a daily plan can involve on the or-
to discrete time and state representations. Moreover, existingder of a hundred operations, many of which have uncertain
solution techniques are either too general to be efficient on gutcomes that can impact downstream actions. The resulting
real-world problemse.g. Singh and Cohn [28]), or too do-  plans must also be simple enough that they can be under-
main-specific to be applicable to the rover problew.(  stood by mission operators, and it must be feasible to do de-
Meuleauet al.[20]). tailed simulation and validation on them in a limited time
A second, and equally serious, problem with existing period. This means that a planner can only afford to plan in
contingency planning techniques is that they all assume thatadvance for the “important” contingencies and must leave
uncertain actions have a small number of discrete outcomes.the rest to run-time replanning. Of the planning systems dis-
For example, in the representation popularized by Buridan cussed above, onlust-In-Cas€JIC) contingency schedul-
and C-Buridan, a rover movement action might be character-ing [11] and Mahinur [22] exhibit a principled approach to
ized as shown in Figure 1. In this representation, each arrowchoosing what contingencies to focus on. We will discuss
this approach in more detail later.

AY([3,3])
A(BA]) A Detailed Example
Move([1,1].[4.4]) AL4.3]) In order to illustrate the problem further, in this section we
give a detailed example of a very small rover problem. Fig-
At([4,4]) ure 2 shows a “primary” plan and two potential branches.

The primary plan consists of approaching a target point (Vi-
sualServo), digging the soil (Dig), backing up (Drive), and
Figure 1: A C-Buridan action for movement. taking spectral images of the area (NIR). One potential alter-
nate branch consists of replacing the spectral image with a
high-resolution camera image of the target (Hi res). A sec-
ond potential branch consists of taking a low-resolution pan-

to a propositions on the right indicates a possible outcome of
the action, along with the associated probability of that tran-
sition To characterize where a rover could end up after a orama of the area (Lo res), performing on-board image
move opergition, we have to list all the different_poss_ibl_e dis- analysis to find rocks in the,panorama (Rock finder), and
crete locations. We would need to do something similar to o taking spectral images of the rocks found (NIR). For
this example, we assume that energy is only being depleted.
(More generally, a rover would also be receiving energy in-
put from charging.

3. We have omitted some details here. For each transition, there is
a condition that the rover must be at location [1,1] to start with,
and that the rover is no longer at [1,1] for each outcome.
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E> .02 Ah Approaches
H = .01 Ah

G =0Ah There are several possible ways of attacking this problem of
energy ‘ p_Iannmg w_lth continuous uncertain variables. In_thls sec-
tion, we briefly discuss some of these, and the issues that
t 0[9:00, 14:30] arise.
. MH=5s
time o= 1_5‘_ Computing the Optimal Value Function
v =10 Figure 3 shows the optimal value function for the problem in

Figure 2. The figure was computed by working backwards
E > 10 Ah E>.1Ah E > .6 Ah
M =5Ah UL=.05Ah [=.2Ah
0 =25Ah 0=.02Ah 0 =.2Ah

>3 Ah
U =2Ah
0 =.5Ah

energy‘ ‘ ‘
t 0 [10:00, 14:00]
H=1000s H=60s H=40s| H=600s
0 =500s O=1s 0=20s| O=60s

A L A A

[Visualservo(27 13)|[ Dig(60) |[ Drive(-2) |[ NIR | v =100
| ———

E>.02Ah E>.12Ah E>3Ah
H=.01Ah H=.1Ah W =2 Ah
0=0Ah 0 =.0LAh 0=5Ah

eneroy I A A

t 0[10:00, 13:50]
H=120s | =600s Figure 3: Optimal value function for the example in Figure 2.The
tO[9:00,16:000  G=20s ©G=60s left axis is increasing energy from 0 to 20. The right axis is start

. H=5s time from 14:30 down to 13:20. Vertical axis is expected utility.
time O=1s ‘ ‘ ‘

_ , _ from all possible activities that have positive reward and us-
V=5 | Lo @Rjocmmder " NIR | v=50 ing dynamic programming to construct the optimal plan.

The curved hump where there is lots of power and time
Figure 2: A detailed rover problem. A “main” plan, and two  available corresponds to the primary plan, while the rectan-
PSS lnatie banch, planeare stout, 21902l glarbock orresponds o branching 1o he Rock fider plar
Time and energy constraints for actions are shown in bold. and completing th_e NIR'_The tail of _the curved hump is a
) ) ~branch after the drive action to the HiRes plan. The flat sur-
Precedence constraints are denoted by arrows in the fig-face with value 5 is again an immediate branch to the Rock-
ure; for example, since HiRes can only be performed after Finder plan, but in this area there is not enough power or
I_Dnve, there is an arrow fror_n_ Drive to HlRe_s. For each ac- time to complete the plan, and only the LoRes reward is re-
tion, there may be preconditions, expectations, and a local cejved. Figure 5 shows a cross-section through this surface
preconditions specify under what conditions execution of contripute to the overall plan. Note that the utility of the
the action may start. The expectations describe the expectechyerall plan is higher in some places than the value of any
resource consumption of the actions (in terms of mean andgriginal branch. This is because future branch points allow
lustrated graphically as well. The local utility is the reward it t is unlikely to succeed, we can take an alternative branch.
received when the action terminates successfully: in this ex- ;0 4 detailed contingent plan and the distributions for
ample, this will be when the preconditions are metand when .0 "2 n 4 resource usage, it is relatively straightforward to
the energy resource is non-negative at the end of execution. ¢ a1yate the expected utility of the plan. If the distributions

In the example, consider the HiRes action. It has an ener-gre very simple, it may be possible to compute this quantity
gy precondition E > 0.02 Ah and a time precondition of 9:00 exactly; more generally, this will have to be done with sto-
< t< 16:00. The expected energy usage is 0.01 Amp-hours chastic simulation. Thus, if we could generate all possible
(Ah) with a standard deviation of 0 Ah (so in this case there contingent plans for a problem, we could evaluate each of
is no uncertainty in the model). The expected duration is 5 them and choose the one with highest utility. Of course this
seconds with a standard deviation of 1 second. The localjg completely impractical for problems of any size, partly

utility of the action is v=10. because it is impossible to enumerate the conditions for con-
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Figure 4: Slice of the optimal value function for energy = 11 Ah,

Start time
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utility over time of the possible plans with a single branch,
for a fixed starting energy of 11. Note that at earlier start
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along with the component curves that contribute to the overall
utility.

Time

" . . Figure 5: Utility for a single branch at different possible branch
ditional branches. The dynamic programming approach we pg’iﬁ{s with elnle¥gyr= ﬁ!ng rane Herent possi ran

took above is an alternative, but it too is computationally ex-
pensive, and it fails completely when resource availability is
not monotonically decreasing (because optimization can no
longer be performed through a single backward pass).

times, the plans with the highest expected utility are those
that postpone the decision to later in the primary plan, where
the possibility of receiving the 100 reward for the NIR action
can be more accurately assessed. In a small region, the ex-
pected utility of the full RockFinder plan makes that plan
more valuable. As time advances, the probability of succeed-

Heuristic Approaches

One possibility is to try to plan for the worst case scenario.
Thus, in the example from the last section, we could assumeing in either the primary plan or the full RockFinder plan di-

that the drive operation requires time and power that is one inishes and the HiRes branch becomes the dominant plan.

_CI’_L perhapt;ls even h‘YVO standarr? _deV|at|(|)ns above the me"’(‘jnWithoutthe HiRes branch, the early branch to the RockFind-
e trouble Is, this approach is overly conservative and g plan (slightly) dominates the other branches late in the

leads to plans with less science gain than is typically possi- a window, since delaying that branch may, with small

ble. In the example from the previous section, if plan execu- o ; P ;
X . SR robability, cause a failure due to energy, resulting in no util-
tion was expected to begin at 13:45, this approach would P Y 9y g

: “ i ity.
lead us to build a “safe” primary plan that replaces NIR
with the HiRes action, with expected utility of 10 in all Finding the Branch Conditions

cases, instead of the more ambitious current primary plan, Once we've decided to add a branch to a plan, there is still a

with expected utility of 0 in the worst case, but 32 in the problem of deciding under what conditions to take the

average case a.n.d 100 in the best case. branch. Once again, we could use dynamic programming to
A more ambitious approach to the problem would be t0 compyte the optimal conditions, but this suffers from the

build an initial plan based on the expected behavior of vari- ,roplems we described above. In addition, as Figure 3 illus-
ous activities and then attempt to improve that plan by aug- yrates; the optimal conditions can be extremely complex and
menting it with contingent branches. This is the approach parq to represent. The flat surfaces of utility 5 and 55 corre-
taken by Drummond, Bresina and Swanson with their Just- spond to branching to the RockFinder plan before the first
in-Case (JIC) telescope scheduling [11]. This approach is in- step of the primary plan. The primary plan (along with the
tuitively simple and appealing, but extending it to problems  |ater possible branch to the HiRes plan) is of higher expected
like the one we have outlined is non-trivial. The primary dif- jjity where the surface is curved. The conditions for the
ficulty is to decide where contingent branches should be pranch point at the beginning of the primary plan are thus the
added to a plan. In JIC scheduling, branches were added apoyndaries between the curved surfaces and the flat surfac-

the points with the greatest probability of plan failure. Given g The houndaries are in this case discontinuous, corre-
the distributions for time and resource usage this is relatively sponding to a disjunctive condition

easy to calculate by statistical simulation of the plan. Unfor-
tunately, the points most likely to fail are not necessarily the
points where useful alternatives are available. The points o
maximal failure probability may be too late in the plan to

It is important to bear in mind that the boundaries are
fgenerally places where the values of two different branches
are equal, which means that approximate solutions will usu-

. . ally be acceptable here. One possibility is to treat the contin-
have enough time or power left for any PSefff' .alternqt_lv?. uous dimensions of the problem as independent, which
Unfortunately, the problem of finding *high utility” regyits in rectangular regions. This works well in most cases,
branch points is non-trivial. Figure 5 shows the expected pyt the boundaries must be chosen with care where there are
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abrupt edges in the value function. This approximation may 9
also fail if there are dependencies between the dimensions,
for example when the energy used for driving is dependent 10
on the actual time spent, rather than being treated indepen-
dently as in our example.
11
Conclusions

12
For a Mars rover, uncertainty is absolutely pervasive in the

domain. There is uncertainty in the duration of many activi-
ties, in the amount of power that will be used, in the amount

of data storage that will be required, and in the location and 13
orientation of the rover. Unfortunately, current techniques
for planning under uncertainty are limited to simple models

of time, and actions with discrete outcomes. In the rover do- 14
main there is concurrent action, actions of differing dura-
tion, and most of the uncertainty is associated with
continuous quantities like time, power, position and orienta-
tion.

For any non-trivial problem, it seems unlikely that exact
or optimal solutions will be possible. Nor do we have good
heuristic techniques for generating effective contingent
plans. It seems that new and dramatically different ap-
proaches are needed to deal with this kind of problem.

15
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