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Temporal Planning has recently become a major focus of research ac-
tivity in AI Planning. There are now a number of different approaches to
handling domains in which time is an important, and sometimes scarce,
resource. These approaches, which include Graphplan extensions, model
checking techiques, hierarchical decomposition, heuristic strategies and rea-
soning about temporal networks, are capable of planning with durative ac-
tions, temporally extended goals, temporal windows and other features of
time-critical planning domains.

This workshop considers a range of these approaches and some of the
important technical problems addressed in their implementation. These
include:

1. Modelling time – how are temporal aspects of a domain best modelled?

2. Handling concurrency – what semantic constraints are imposed, on
exploitation of concurrent activity?

3. Validating plans – automated verification of plan correctness is poten-
tially much harder in temporal domains.

4. Managing continuous change.

The workshop complements the Third International Planning Competi-
tion, which is reaching its conclusion at AIPS in parallel with the workshop.
Temporal planning has been the key theme of the competition this year, and
several of the presenters at the workshop are also participants in the com-
petition. We hope that the workshop will help to focus attention on what
has been achieved so far as well as on some of the unresolved challenges of
temporal planning.
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Abstract

Temporalplanningis an importantproblem,asin many real
world planningdomainsactionshave differentdurationsand
the goalsshouldbe achieved by a specifieddeadline,or as
soonas possible. This paperpresentsa novel approachto
temporalplanningthat is basedon Mixed Integer Program-
ming. In thenew framework, a temporalplanningdomainis
modeledby two setsof linear inequalities. The first set in-
volvesintegervariablesandis a Graphplan-like encodingof
asimplificationof theoriginalproblemwherethedurationof
the actionsis ignored. The secondset involvesboth integer
and real valuedvariables,and modelsthe temporalaspects
of the problem. The two setsinteractthroughthe common
integervariables,andtheir combinationcanbesolvedby us-
ing known MixedIntegerProgrammingtechniques.Thenew
methodaimsat generatinggoodsolutionsquickly, underdif-
ferentminimizationobjectives.Preliminaryexperimentalre-
sultsillustratetheeffectivenessof ourapproach.

Intr oduction
Over the lastyearstherehasbeena remarkableprogressin
solvingSTRIPSplanningproblems(Weld 1999).However,
for many interestingapplicationsthe STRIPSlanguageis
inadequate.We needto solve problemsthat involveactions
that have differentdurations,consumeresourcesandmust
beexecutedby certaindeadlines.We needto generateplans
thatoptimizecomplex combinationsof differentcriteria,in-
cluding completiontime, resourceutilization, actioncosts
andothers.

Suchadvancedapplicationdomainsinvolvenumericvari-
ables,constraints,andcomplex objective functions. Mixed
Integer Programming(MIP), and its languageof linear in-
equalities,caneasilyaccommodatethesekey featuresand
thereforeseemstoprovidearich representationalframework
for such applications. However, there are relatively few
worksthatapplyIP to planningproblemswith numericcon-
straints(Wolfman& Weld 1999),(Kautz& Walser1999).

In the original STRIPS languageactions are instanta-
neousand time is implicitly represented.Several domain-
independentsystemshave beenproposedto handlea richer
notionof time (e.g.,(Allen 1991;Tsang1986;Penberthy&
Weld 1994)). However, theseapproachesscaleup poorly,
and can deal with only very simple problems. The suc-
cessof recentapproachesto STRIPSplanning,suchasplan-

ning graphsandheuristicsearch,hasmotivatedtheapplica-
tion of thesetechniquesto temporalplanning.For instance,
TGP (Smith& Weld 1999)usesa generalizationof Graph-
planmutualexclusionreasoningto handleactionswith dura-
tions,while TP4 (Haslum& Geffner 2001)appliesheuris-
tic searchto solve problemswith actiondurationsand re-
sources.

In this paperwe applyMIP to temporalplanning,by de-
velopingmodelsfor domainsthat containactionswith dif-
ferentdurations.Our approachdecomposesa planningdo-
main into two interactingsetsof linear inequalitiesreferred
to asthe logical andthetemporal partrespectively.

The logical part is an encodingof the planninggraphof
theSTRIPSproblemthatis obtainedfrom theoriginalprob-
lem by ignoringactiondurations.For this encodingwe use
themethoddevelopedby (Vossenetal. 1999)andimproved
by (Dimopoulos2001). This approachformulatestheplan-
ninggraphof a STRIPSplanningdomainasanIntegerPro-
grammingproblemandthenusesbranch-and-boundfor so-
lution extraction.

The temporalpart associateswith every action a real-
valuedvariablethat representsthe start time of the action.
Thelinear inequalitiesof this partensurethecorrectnessof
the start times that are assignedto the actionstaking into
accounttheir durations.

Thecombinationof thelogical andtemporalpartscanbe
solved in a uniform, integratedway by using well-known
MIP techniqueslike CPLEX. Since the two setsof con-
straintsinteract, this is much more effective than a naive
approachin which first we iteratively solve thelogical part,
andthenwe checkwhetherthis potentialsolutionsatisfies
theconstraintsof thetemporalpart,until wefind avalid tem-
poralplan(i.e.,a solutionfor boththesetsof constraints).

In order to increasethe efficiency of the representation,
the structureof the domainis exploited. In particular, we
proposesometechniquesthat useideasfrom domainanal-
ysis tools (Fox & Long 1998; Gerevini & Schubert1998;
2000)to reducethe numberof constraintsandvariablesof
thetemporalpartof a planningproblem,leadingto stronger
MIP formulations.

In contrastto TGP andTP4 that generateplansof mini-
mumduration,thenew approachdoesnot provide optimal-
ity guarantees.However, apartfrom theoverall durationof
the plan, the MIP modelscan easily accommodatediffer-
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ent optimizationcriteria andany constraintthat canbe ex-
pressed� aslinearinequalities.

The rest of the paperis organizedas follows. First we
briefly give the necessarybackground;thenwe presentour
basictemporalmodel,i.e.,thesetof inequalitiesformingthe
temporalpartof theproblemencoding(while for thelogical
part we will usesomeknown encoding);thenwe describe
how planningproblemscanbesolvedin thenew approach;
thenwegivesomepreliminaryexperimentalresults;finally,
we giveourconclusionsandmentionfuturework.

Preliminaries
Theplanninglanguageweconsideris propositionalSTRIPS
extendedwith time. Actions have (positive) preconditions,
(add and delete)effects and constantdurationthat can be
any real number. Our assumptionsfor the executionof ac-
tionsarethesameasthoseusedin (Smith& Weld1999)and
(Haslum& Geffner2001):� Thepreconditionsof anactionmusthold in thebeginning

andduringtheexecutionof theaction.� Add anddeleteeffectstakeplaceatsomepointduringthe
executionof an actionandcanonly be usedonly at the
endof theexecutionof theaction.

The above assumptionsrequirethat the preconditionsand
effects of an actionsare protectedduring their execution.
Therefore,thelinear inequalitiesof theMIP modelswe de-
velop,enforcethatactionswith contradictoryeffectsor with
contradictionsbetweentheir effects and preconditionsdo
not overlapin time.

A MIP problem(Wolsey 1998)comprisesof amixtureof
real-valuedandintegervariables,a setof linear inequalities
on thesevariables,andan objective function. The models
developedin thepaperare0/1MIP modelsi.e., integervari-
ablescanonly assumethe values0 and1. We assumethat
thereaderis familiarwith thebasicsof MIP.

Our modeling techniquesutilize someideasdeveloped
in the context of the domain analysis tool DISCOPLAN
(Gerevini & Schubert 2000). In particular, they ex-
ploit single-valuedness(sv) constraintsand binary XOR-
constraints, which are automatically inferred by DIS-
COPLAN. An sv-constraintstatesthat the value of a cer-
tain predicateargumentis uniquefor any given valuesof
the remainingarguments.An exampleof an sv-constraint
in blocks-world is ��� ���	��
���
 , statingthatany objectis on at
mostonething (“



” indicatesthe single-valuedargument).

An exampleof XOR-constraintis (XOR ��� ��������
���������������
 )
statingthatany objectis eitherclearor hassomethingon it.

The BasicTemporal Model
Let � be a temporalplanningproblemand let ��� be its
STRIPSsimplification(i.e., actionsareinstantaneous).As-
sumethat ��� is solved by an algorithm that builds and
searchesits planninggraph.Foreachaction(instantiatedop-
erator)� of theproblemandeachlevel

�
of thegraph,there

is a correspondingnodein the planninggraph,denotedby� � , thatcanbeunderstoodasabinaryvariable.Assumethat
plansaregeneratedin theform of valueassignmentsto the

actionvariablessuchthatthevalue1 is assignedto variable� � if f action � at level
�
is includedin theplan.

Ourgoalnow is to findasetof linearinequalitiesfor prob-
lem � that, given a plan for ��� , assignstart times to the
actionsin the plan. The inequalitiesthatmodelthe tempo-
ral partof � involve,apartfrom thebinaryactionvariables� � , a setof real valuedvariablesasfollows. For every ac-
tion � andlevel

�
of thegraph,we introducea variable �!�"$#

that representsthe starttime of action � at level
�
, i.e., the

time whenthe executionof the actionstarts.Similarly, for
everyfluent % of thedomain,andevery level

�
of thegraph,

we introduceavariable%&�"$# thatrepresentsthetimeatwhich
fluent % becomestrue. In thefollowing, ')( �*� � 
 denotesthe
durationof action � , which is a realnumber.

Thefirst setof inequalitiesof thetemporalmodelis used
to enforcethe constraintthat actionscan not start before
their preconditionsbecometrue. If % is a preconditionof� , thefollowing setof inequalitiesis includedin themodel,
for eachlevel

�
of theplanninggraph

(1) � �"+#-,.%&�"$#
Thenext setof inequalitiesrepresentsthecontraintthata

fluentcanbecometrueafter theexecutionof anactionthat
addsit. Therefore,if % is anaddeffectof action � themodel
includes( � � is a 0/1 variable)

(2) % �0/�1"$#2,3� �"+#546')( �*��78
:9 �!�
Notethatif fluent % wastrueatlevel

�
beforetheexecution

of action � , theaboveconstraintcauses% �0/;1"+# to takeavalue
thatcannot besmallerthantheendtime of � . In combina-
tion with the previous constraint(1) this causesall actions
thathave % astheirprecondition,andappearin levelshigher
than

�
, to startafter the end time of � . Although thereis

a way to overcomethis restriction,in this paperwe assume
that thereis no reachablestate< suchthata fluent % is true
in < , andan action that adds % canbe executedin < (the
blocksworld andRocketareexamplesof suchdomains).

The temporalmodelpreventscontradictoryactionsfrom
overlapingin time. For every pair of actions� and

7
such

that � deletesthe preconditionsof
7

, the following con-
straintsareaddedto themodel

(3) � �=/�1"+# , 7 �"$# 46')( �*��7>
:9?7 �
For everypairof actions� and

7
suchthat � deletesanadd

effectof
7

, themodelincludesthefollowing inequalities

(4.1) � �0/�1"$# , 7 �"$#546'@( �*��78
:9�7 �
(4.2)

7 �0/�1"$# ,3� �"+# 46')( �*��78
:9 �!�
For every fluent % , the following constraintspropagatethe
starttime of % throughthelevelsof theplanninggraph

(5) % �0/�1"$# ,.%&�"$#
Similarly, for eachaction � , its start time is propagated

throughthefollowing constraints

(6) � �=/�1"+#A,3� �"$#
Finally, plansstartat time 1, which is statedby

(7) %B1"$#-,DC
The following theoremstatesthat any valid Graphplan-

styleplansatisfyingconstraints(1)–(7)is temporallysound.
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Theorem1 (Soundness)For every action � that is in a
planandsatisfiestheconstraintsabove, thefollowingholds:
If E is preconditionof � , thenthereexistsanaction �GF such
that E is anaddeffectof �GF , and
a) H�I � � F 
 46')( �*� � F 
KJ H?I � � 
 ;
b) if

7
is an action that has E as a deleteeffect, H?I �L7>
 4')( �*��7>
GJ H?I � � F 
 or H?I � � 
 46')( �*� � 
GJ H?I ��78
 .

Furthermore, if M is an addeffectof � , then
c) for every action N in the plan that deletesM , H?I � N 
 4')( �*� N 
OJ H?I � � 
 or H?I � � 
 4P'@( ��� � 
 J H?I � N 
 .
Proof: The correctnessof the underlying non-temporal
planningalgorithmguaranteesthat if � is an action in the
planand E is a preconditionof � , therewill beanotherac-
tion �GF in theplanthathasE asanaddeffect. Moreover, if�

is the level of � and
�LQ

the level of � F , it mustbethecase
that

� QSR �
, andthereis noactionthatdeletesE andoccursin

any level
� Q Q

with
� Q Q , � Q and

� Q Q JT�
.

In orderto prove(a),observe thatbecauseof inequality(2),
H?I � EU�0V=/;1 
 ,WH�I � � �0VF 
 4X'@( �*� �OF 
 . Moreover, the setof in-

equalities(5) will enforceH�I � EY� 
 ,3H?I � �!�0VF 
 4P'@( ��� � F 
 (be-
cause

� QZR �
). Finally, becauseof inequality (1), we haveH?I � �!� 
 ,3H?I � EY� 
 , whichtogetherwith thepreviousconstraint

give H?I � �!� 
 ,[H?I � � � VF 
 4P'@( ��� �OF 
 .
In order to prove (b), let

7
be any action that has E as

delete effect, and let
� Q Q

be its level. As noted earlier,
thecorrectnessof thenon-temporalplan implies thateither� Q Q\R � Q

or
� Q Q^] �

must hold. Assume
� Q Q_R � Q

. Since7
deletesan add effect of � F , inequality (4.2) will en-

force theconstraintH?I � � �=V V`/�1F 
 ,aH?I ��7 �0V V 
 43')( �*��78
 . This
constraint,togetherwith the setof inequalities(6), impose
H?I � �!�0VF 
 ,bH�I �L7 �0V V 
 4c')( �*��78
 . Assumethat

� Q QO] �
. Since7

deletesa preconditionof � , inequality (3) will enforceH?I ��7 �0/�1 
 ,cH?I � � � 
 4T')( �*� � 
 which togetherwith inequal-
ities (6) ensurethat H?I ��7 �0V V 
 ,dH?I � � � 
 4a')( �*� � 
 . Thus
it is indeedthe casethat H?I ��78
 4a')( �*��78
cJ H?I � �OF 
 orH?I � � 
 4P'@( ��� � 
 J H?I ��78
 is true.
In order to prove (c), assumethat an action Ne�=V in the
plan deletesM , and that M is an add effect of � � . Clearly� QfR �

or
� Qg] �

(becauseof the correctnessof the non-
temporalplan). If

� Q-R �
, sinceconstraints(4) will enforce

H?I � �!�0V=/;1 
 ,hH�I � Ne�0V 
 4T')( �*� N 
 , by constraints(6) we have
H?I � �!� 
 ,iH?I � Ne�=V 
 46'@( �*� N 
 . Similarly, if

� Q�] �
, sincecon-

straints(4) ensurethat H?I � Ne�0/;1 
 ,jH?I � �!� 
 4X')( �*� � 
 , by
constraints(6) wehave H�I � Ne�0V 
 ,.H?I � �!� 
 4k')( �*� � 
 . There-
fore, it is indeedthecasethat H�I � N 
 4['@( ��� N 
ZJ H?I � � 
 orH?I � � 
 4P'@( ��� � 
 J H?I � N 
 is true. l

Impr ovedTemporal Modeling
When we model a problemin termsof a set of linear in-
equalities,the numberof constraintsandvariablesthat are
presentin thesetis a practicallyimportantissue,sincethis
cansignificantlyaffect the performanceof the solver. The
above modelof temporalplanningproblemscangeneratea
largenumberof constraintsandvariables,but it canbesub-
stantially improved if certainfeaturesof the domainstruc-
turearetakeninto account.Theimprovementsthatwe will

discussaim at reducingthenumberof temporalconstraints,
aswell asthenumberof temporalvariablesthatarerequired
to correctlymodela planningdomain.Thereductionof the
numberof temporalconstraintsis basedon the notionsof
argumentpersistence, persistentpair of fluentsandstrong
interferencethatwegive for binaryfluents.1

Definition 2 (Ar gumentpersistence)Let % be a binary
fluentsuch that % �����m
n�*
 holds,and every action (instanti-
atedoperator) that hasan instanceof % in its add effects
hasanotherinstanceof % with the samefirst argumentbut
differentsecondargumentin its preconditions.We saythat% is persistenton its firstargument.

Persistenceon thesecondargumentof a fluent is defined
similarly. We now defineargumentpersistenceon the first
argumentfor a pair of binary fluents. Persistenceon other
arguments,or betweena binary anda unaryfluent canbe
definedin a similar way. In the following, o , p , q andr

indicateany constant,
�
,
�

and s universallyquantified
variables,x, y andz operatorparameters.Moreover, we
assumethat no actionhasany literal asboth precondition
andaddeffect.

Definition 3 (Persistentpair of fluents) Let %;C and %5t be
two binary fluentssuch that %;C �����m
���
 , %5t ���	��
 s 
 and

�
XOR%;C ��������
�� %5t ����� s 
�
 hold. We saythat %;C and %5t is a per-

sistentpair of fluentson their first argument,if everyaction
that has %;C � o � p 
 or %5t � o � q 
 as an add effect, also has%;C � o � r 
 or %5t � o � r Q 
 as a precondition,where

r uv
p � q and

r Q uv p � q .

Now we candefinethe notion of strong interferencebe-
tween actionsthat will be usedto improve the temporal
model.2

Definition 4 (Strong interfer ence) A pair of actions� and7
stronglyinterfereif� % is a fluentsuch that % ���	��
���
 holds, � hasa precondi-
tion % � o � p 
 , 7 hasa precondition% � o � q 
 , andeitherp uv q , or p v q and � and

7
havean instanceof % as

addeffectwith o asthesamefirstargumentanddifferent
secondargument;or� %;C � %5t is a persistentpair of fluentson their first argu-
ment,and � hasa precondition %;C � o � p 
 and

7
a pre-

condition %5t � o � q 
 , or (a) they havea commonprecon-
dition %;C � o � p 
 or %5t � o � p 
 which they bothdeleteand
(b) they havean instanceof %;C or %5t as addeffect witho asthefirst argumentanddifferentsecondargument(if
they are instancesof thesamefluent).

For instance,undertheassumptionsof thepreviousdefi-
nition, � and

7
stronglyinterferewhen� %;C ���&�xwy
 is a preconditionof � and %5t ���&�z�?
 is a precon-

dition of
7

, or
1We restrictour analysisto binary fluents,which arethe most

commonin many existing domainformalizations.Work on anex-
tensionto fluentsof higherarity is in progress.

2For the sake of clarity, the definition is given for the caseof
persistenceon the first argumentof binary fluents,but it can be
easilygeneralizedto thecaseswherepersistenceis on thesecond
argument,and { , {U| , {*} areunaryfluents.
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� when %;C ���&�mwy
 is a preconditionof � and
7

, ~:%;C �L�&�xwy

is an effect of � and

7
, %5t ���&�xw�
 is an effect of � , and%;C ���&�x��
 aneffectof

7
.

It turnsout thatfor pairsof actionsthatstronglyinterfere,
all constraintsof the form (3) and(4) canbe omittedfrom
the temporalmodel,becauseactionsthat stronglyinterfere
cannot overlapin time. We call suchmodelsreducedtem-
poral models. An exampleof reducedmodelis givenafter
thefollowing theoremstatingsoundnessof reducedtempo-
ral models.

Theorem5 For any two actions � and
7

that strongly in-
terfere and are both included in a plan, a reducedtem-
poral modelsatisfieseither H?I � � 
 ,AH?I ��78
 4e')( �*��78
 orH?I ��78
 ,[H?I � � 
 4T')( �*� � 
 .
Proof (sketch): Assumethat both actions � and

7
arein-

cludedin a plan generatedby the underlyingnon-temporal
planningalgorithm, and let

�
be the level of � and

� Q
the

level of
7

. Sinceby Definition 4 thetwo actionshave mu-
tually exclusive preconditionsor mutuallyexclusive effects
thesoundnessof thenon-temporalalgorithmimplies

� Q uv � .
We first considerthecasein which

� R � Q
, and % � o �z�*
 is a

preconditionof � and % � o �mwy
 a preconditionof
7

, where% is a persistentfluent on its first argument,and
�
,
w

any
pair of different constants.3 Assumethat � has % � o �xwy

asan addeffect. Consequently, becauseof constraint(2),H?I � % � o �xwy
 �0/�1 
 ,�H?I � � � 
 4�')( �*� � 
 will hold. Then the
set of constraints(5) will enforce that H?I � % � o �xwy
 �0V 
 ,� �"+# 43'@( �*� � 
 . Since % � o �mwy
 is a preconditionof

7
, con-

straints(1) will enforce H�I �L7 �0V 
 ,�H?I � % � o �xw�
 �0V 
 andthere-
fore H?I ��7 �=V 
 ,.H?I � � � 
 4P'@( �*� � 
 .
Assumenow that either � doesnot have any add effect
of the form % � o � p 
 , or it hasan addeffect % � o � p 
 withp uv w . Thentherewill bea sequenceof actions� 1

�?�=�`�`� �!�
in the plan, at levels

�
1
���`�`�=�x� � respectively, with � ] C ,��� ] �

and
��� R � Q

, suchthat % � o �xwy�L
 is an addeffect of� � anda preconditionof � � /�1 for someconstant
wy�

,
w � v w

and
� �
/;1

] � �
. Since % persistson its first argument,if% � o �xw � 
 is an addeffect of � � , then, for some ' , % � o � ' 


mustbeapreconditionof � � . Hence,it mustbethecasethat' v w���� 1 , where
wy���
1 is anaddeffectof action � ��� 1 . There-

fore, thecombinationof constraints(1), (2) and(5) implies,
alongthesequenceof actions� 1

���`�=� � � , a setof constraints
H?I � � �0��/�1�

/�1

 ,3H?I � � �0�� 
 4�')( �*� � � 
 , for every ��,DC , which im-

plies that H�I � � �0�� 
 ,3H?I � � �`�1

 4.� 1��

�
� �
�
1 '@(

��� � � 
 . Then,

by constraints(6) H?I ��7 �=V 
 ,.H?I � � ���1

 4 � 1��

�
� �
�
1 '@(

��� � �$
 .
Wenow considerthetemporalrelationbetweenactions�

and � 1 . Assumefirst thataction � hasanaddeffect % � o �z��

for someconstant

� uv w . Then, % � o �z�?
 mustbeaprecondi-
tion of � 1 . ThereforeH�I � � �`�1


 ,3H?I � � � 
 4�'@( �*� � 
 . Assume
now thataction � doesnot have any instanceof fluent % in
its addeffectswith o asits first argument. Then,by Def-
inition 2 and the assumedsoundnessof the non-temporal
plan, % � o �x��
 must be a preconditionof � 1 , and � , � 1

3For clarity theproof is given consideringonly persistenceon
first arguments;generalizationto persistenceon different argu-
mentsis straightforward.

do not strongly interfere, provided that they do not have
other preconditionsor effects that could causestrong in-
terference. Moreover, note that % � o �z�*
 must be a delete
effect of � 1 . Since � 1 deletesa preconditionof � , con-
straint (4) applies,and H?I � � � �1


 ,�H?I � � � 
 4X'@( �*� � 
 must
hold. Hence,it is againthe casethat H?I � � �`�1


 ,�H?I � �!� 
 4
')( �*� � 
 . Thisconstraint,togetherwith H?I ��7 �=V 
 ,.H?I � � ���1


 4
� 1��

�
� �
�
1 '@(

�*� � � 
 , giveus H?I ��7 �0V 
 ,[H?I � � � 
 46')( �*� � 
 .
Assume now that actions � and

7
, have both pre-

condition % � o �z��
 and that � adds % � o �x��
 and
7

adds% � o �mwy
 , for somedifferent constants
�
,
w

and
�
. Then

againtherewill be a sequenceof actions � 1
���`�=�`� � � in the

plan, suchthat �!� adds % � o �x��
 , andby an analogousar-
gument the constraintsH?I � � 1


 ,2H?I � � � 
 4b'@( �*� � 
 and
H�I �L7 �0V 
 ,3H?I � � � �1


 4 � 1��
�
� �
�
1 '@(

�*� � �+
 will hold,enforc-

ing H?I ��7 �=V 
 ,.H?I � � � 
 4P'@( �*� � 
 .
Now let again

� R � Q
, andassumethat � hasa precon-

dition %;C � o �x�*
 and
7

hasa precondition%5t � o �xw�
 , where%;C and %5t is a persistentpair on the first argument,and
�

and
w

is any pairof differentconstants.If � has %5t � o �mwy
 as
anaddeffect, thenusingargumentssimilar to theonegiven
abovewe canprove that H?I ��7 �0V 
 ,DH?I � � � 
 4[')( �*� � 
 . Oth-
erwise,therewill bea sequenceof actions� 1

�?�=�`�=� � � in the
plan,at levels

�
1
���`�=�`�z� � respectively, with � ] C , ��� ] � and� �OR �LQ

, suchthat %;C � o �xw � 
 or %5t � o �mw � 
 is anaddeffect of� � for someconstant
w��

, and %n� � o �mwy
 is anaddeffectof � � .
By argumentssimilar to thoseusedabove,wecanprovethat
H�I �L7 �0V 
 ,�H?I � � �`�1


 4 � 1m�
�
� �
�
1 ')(

�*� � �$
 and H?I � � �`�1

 ,

H�I � � � 
 4�'@( �*� � 
 will hold. Thus H?I ��7 �0V 
 ,.H?I � � � 
 4�'@( ��� � 

will alsohold.

Finally, if
� ] � Q

, we can usesymmetricargumentsto
thoseaboveto prove H�I � � � 
 ,.H?I ��7 �0V 
 46'@( �*��78
 . l

We now discussanimprovementthatreducesthenumber
of temporalvariablesin themodelof a problem.More im-
portantly, it achievesmoreeffective propagationof thestart
timesof actionsandfluents.

Let % be a binary fluent for which the sv-constraint% ���	��
���
 holds. We can replacein the modelall temporal
variablesH?I � % � o � p 
 � 
 that refer to the differentvaluesofp andsamevalueof o with onenew variable H?I � %&� � o 
 � 
 ,
for eachlevel

�
. Similarly, if % ��
�������
 holds. Moreover, if%;C ��������
 and %5t ���	� s 
 are two fluentsrelatedwith a XOR

constraint(XOR %;C ���	����
 %5t ����� s 
�
 , wecanreplacetheircor-
respondingtemporalvariablesreferringto thedifferentval-
uesof

�
and s by, but samevalue o for

�
, with a single

variableH?I � %;C�t � o 
 � 
 . Similarly, if (XOR %;C ���S�z�&
 %5t � s �z�&
z

or (XOR %;C ��������
 %5t ���&
z
 holds.Wecall thisnew setof vari-
ablesabstract temporal fluentvariables. Notethat it canbe
thecasethatseveraldifferentsvor XOR constraintsholdfor
thesamefluent,giving riseto differentmodelsdependingon
theparticularabstractvariablesthatarechoosen.We handle
suchcasesin anad-hocmanner, but herewe do not discuss
this issuefurther.

In domainsthat involveoperatorswith morethantwo ar-
gumentsthatcanbe instantiatedby many objects,thetech-
nique of splitting action start time variablescan be used.
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Let � ���S���S�z�*
 be an operatorsuchthat, for every possible
value� of parameter

�
, all actionsthat have differentvalues

for the pair of parametersy andz aremutually exclusive.
We denotesuchanoperatorby � ���S��
��&�m
n��
 . Moreover, as-
sumethat all preconditionsandeffectsof � ���S��
��&�m
n��
 are
unaryor binary fluents,noneof which hasthe pair

�S�z�
in

its parameters.If this is the case,we can split eachvari-
able H?I � � � o � p � q 
 � 
 into two variablesH�I � � 1

� o � p 
 � 
 andH?I � ��� � o � q 
 � 
 , and add the constraint H?I � � 1
� o � p 
 � 
 vH?I � ��� � o � q 
 � 
 to the model. In the constraints(1) and(2)

of the temporalmodel, in which H�I � � � o � p � q 
 � 
 occurs
along with a start time variable that refers to a fluent of
theform % � o 
 , % � p 
 or % � o � p 
 , variableH?I � � � o � p � q 
 � 

is replacedby H?I � � 1

� o � p 
 � 
 . Similarly, if the start time
fluent variablesthat occurs in such a constraint is on a
fluent of the form % � o � q 
 , variable H?I � � � o � p � q 
 � 
 is
replacedby H?I � �!� � o � q 
 � 
 . In constraints(3) and (4)
oneof H?I � � 1

� o � p 
 � 
 and H?I � � � � o � q 
 � 
 replacesvariableH?I � � � o � p � q 
 � 
 , dependingon the fluent that givesrise to
theconflict.

Let again � ���S�m
n�U��
n��
 be an operatorasdefinedabove.
It may be the casethat the duration of the instancesof� ���S�m
��&�m
���
 doesnot dependon all its parameters,but only
on a subsetof them. In the blocksworld for example,it is
possiblethat the durationof the move actionsdependson
the block that movesand the destinationof the block, but
not the origin of the block. Assumethat the durationof
a given operator� ���&��
��&�m
���
 doesnot dependon the val-
uesof parameter


��
. Then,we canreplaceall occurences

of '@( �*� � � o � p � q 
z
K9 � � o � p � q 
 � in constraints(1)–(4)of
the temporalmodelby '@( ��� � � o � p � q 
�
K9 �i�	� � o � p � s 
 � ,
where � � denotedthe sumover all possiblevaluesof pa-
rameter

�
. If the durationof � ���S�m
n�U��
n��
 dependsonly on

thevaluesof parameter
�

wecanreplace'@( ��� � � o � p � q 
�
	9� � o � p � q 
 � by '@( �*� � � o � p � q 
z
59 �c�:�i�	� � o ���S� s 
 � . We
call this technique,compactdurationmodeling. In somedo-
mainsthis techniquecombinedwith starttimevariablesplit-
ting mayleadto tight MIP formulations.

Example: Considerthe Rocket domain with the usual� ' (load) and ( � (unload) actions for packagesand % �
(fly) for airplanes. Assumethat theseactions have dif-
ferent durations. The basic temporalmodel for this do-
main includesall constraintsthat have beendescribedin
the previoussection. Considerfor example

� ' � E	C � E � C �x� C 
 ,
which representsthe action of loading package E	C to
plane E � C at location

� C . The constraintsof type (1)
for this action are H?I �L� ' � E	C � E � C �x� C 
 � 
 ,�H?I �L� I � E	C �z� C 
 � 

and H?I �L� ' � E	C � E � C �x� C 
�
 �T,�H?I �L� I � E � C �z� C 
 � 
 for eachlevel�
. There is one constraint of type (2) for each

level
�
, namely H�I �L� I � E	C �z� C 
 �=/�1 
 ,jH?I ��� ' � E	C � E � C �z� C 
z
 ��4'@( �*��� ' � E	C � E � C �x� C 
z
O9�� ��=  , where

� ��=  is a 0/1 variablethat
takesthevalue1 if theaction

� ' � E�C � E � C �z� � � C 
 is includedin
theplan,and0 otherwise.

The temporal overlap of actions deleting precon-
ditions of

� ' � E	C � E � C �x� C 
 is prohibited by constraints
(3), namely, H?I ��� ' � E�C � o �z� C 
 �=/�1 
 ,¡H?I ��� ' � E	C � E � C �z� C 
z
 �4¢'@( �*��� ' � E	C � E � C �x� C 
z
�9Y� ��`  and H?I � % ���5� E � C �x� C � p 
 �0/;1 
 ,H?I ��� ' � E	C � E � C �z� C 
z
 ��4£'@( �*��� ' � E	C � E � C �x� C 
z
>9�� ��=  , where o

standsfor any planedifferent from E � C and p for any lo-
cationdifferentfrom

� C . Since
� I � E	C �z� C 
 and �$� � E	C � q 
 is a

persistentpair for any plane q , andthetwo load-actionsof
thefirst inequalitystronglyinterfere(they sharetheprecon-
dition

� I � E	C �z� C 
 , but adddifferent instancesof �$� with E�C
asfirst argument),by Theorem5 the first constraintis not
includedin the reducedmodel. However, the secondcon-
straintis included,sincetheloadandfly actionsthatarein-
volveddonotstronglyinterfere.Theonly actionthatdeletes
theaddeffect of

� ' � E�C � E � C �z� C 
 is “blocked” througha pair
of constraintsof type(4),whichare H?I � ( ��� E	C � E � C �x� C 
 �0/�1 
 ,H�I �L� ' � E�C � E � C �z� C 
�
 � 
 4['@( ���L� ' � E�C � E � C �z� C 
�
&9¤� ��=  andits sym-
metric.Notethatby Theorem5 theseconstraintsarenot in-
cludedin the reducedmodel,becauseof thepersistentpair��� � E	C � E � C 
 , � I � E	C �z� C 
 appearingin thepreconditionsof the
two interferingactions.

Since
� I �����m
���
 holdsfor any plane

�
andlocation

�
, all

occurrencesof H?I ��� I � E�C �z� C 
 � 
 canbe replacedby the vari-
able H�I�C ��� I � E�C 
 � 
 . Moreover, since

�
XOR

� I ���	�z�*
 �$� ���	����
z

holds, H?I �L� I � E	C � o 
 � 
 and H�I �L� I � E	C � p 
 � 
 canbereplacedbyH�I �L� I+��� � E	C 
 � 
 .

Solving Planning Problems
When consideredalone,the temporalmodel that we have
describedcould find feasiblestart times for the actionsof
a plan that is producedby any algorithmsolving planning
graphs.This STRIPSplannerwould ignorecompletelythe
durationof theactions,andthetemporalpartwouldnotneed
to know how theplannergeneratestheplans.Thetwo parts
would be “glued” togetherthroughthe 0/1 actionvariables
thataresharedby thetwo parts.

This seperationof the logical andthe temporalpart of a
planningproblemfacilitatestheuseof a differentalgorithm
for eachof theseparts,e.g.,propositionalsatisfiability for
the first and linear programmingfor the second,in an ar-
chitecuresimilar to LPSAT (Wolfman& Weld1999).How-
ever, in theapproachtakenherewerepresentbothpartsby a
setof linearinequailitiesandusestandardbranch-and-bound
ontheunionof thetwo parts.Thepotentialbenefitof sucha
unifiedalgorithmicframework is the possibility of exploit-
ing thestronginteractionbetweenthetwo parts,which may
leadto extensivevaluepropagation.

For the formulationof a logical part of a temporalplan-
ning problem as a set of linear inequalities,we use the
methoddevelopedby (Vossenet al. 1999) and improved
by (Dimopoulos2001).This approachessentiallytranslates
theplanninggraphof aSTRIPSprobleminto anIntegerPro-
grammingmodel,andthenusesbranch-and-boundfor solu-
tion extraction.

Theoveralldurationof theplanis representedby thevari-
able ¥_¦YH (for makespan)andasetof constraintsof theform��� � "$# 4c')( �*���*
-9�� � J ¥\¦�H 
 , for every action

�
andlevel

�
.

Theobjective function that is usedin theproblemformula-
tion dependson theoptimizationobjective. If theobjective
is theminimizationof themakespanof theplantheobjective
functionis ¥g�$� � ¥\¦�H 
 . If thereis a deadlinefor theoverall
executionof theplan,variable ¥\¦�H takesthis value,andin
theobjectivefunctionany otherquantitycanbeused.For in-
stance,if eachaction

���
hasanassociatedcost

�y�
theoverall
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TP4 TGP MIP
Pr. t/d/a t/d/a t/d/a/l tt
bw1 3/11/11 -/10/- 37/11/11/5 817
bw2 51/11/14 -/9/- 32/11/12/5 653
bw3 423/8/10 1231/8/9 9/8/9/4 276
bw4 -/13/- -/12/- 65/14/13/6 -
r1 288/14/30 140/14/24 54/14/24/7 1083
r2 -/14/- 3306/15/28 79/15/28/7 949
r3 6252/9/36 5692/9/29 432/10/29/6 -
r4 -/9/- -/9/- 263/11/34/6 -

Table 1: TP4, TGP and MIP on makespanminimization
problems.

costof theplanis minimizedthroughtheobjective function¥g��� � �c§y¨�
���59�� �� 
 .

The algorithm startswith the encodingof the planning
graphof length1 (i.e, with onelevel), andthen it extends
the encodingby increasingthe numberof levels in the un-
derlyinggraph,until a feasiblesolutionfor both the logical
and the temporalpartsof the encodingis found. Let

�
be

the level of the first solution,andlet �mEYI � denotethe value
of theoptimalsolutionfor thatlevel, undertheoptimization
objective. After theproblemfor the

�
levelsis solvedto op-

timality, the encodingis extendedby consideringan extra
level of theunderlyinggraph,anda new searchstartsfor a
solutionwith anobjective functionvaluelessthan �mEUI+� .4 If
anew, improved,solutionis found,theprocedurerepeatsby
extendingagainthe encoding(i.e, by consideringan extra
level for theunderlyingplanninggraph).If at somelevel no
bettersolutionis found,thealgorithmterminates.Of course,
thesolutionsfoundarenot guaranteedto beoptimal,asit is
possiblethatbettersolutionscanbeextractedif theunderly-
ing planninggraphis extendedfurther.

Experimental Results
Weransomeinitial experimentswith thenew temporalplan-
ning approach. The modelswere generatedby hand,us-
ing the algebraicmodelingsystemPLAM (ProLogandAl-
gebraicModeling) (Barth & Bockmayr1998), and solved
with CPLEX 7.1. In order to gain someinsight aboutthe
difficulty of the problems,and the quality of the solution
that aregeneratedby the new method,the makespanmini-
mizationproblemwerealsosolvedwith TP4 andTGP. TP4
andCPLEX wererun on a SunUltra-250with 1 GB RAM,
and an UltraSparcII400MHz processor. TGP was run on
a Pentium500MHzmachinerunningunderLinux. Table1
presentssomeof theexperimentalresults.Thebw rowsrefer
to blocksworld problems,andther rows refer to Rocket
problems.All blocksworld problemsareinstanceswith 8
blocks,while therocket problemsinvolve 4 locations,2
or 3 planes,and9 to 11packages.All runtimesreportedare
in seconds.A time limit of 7200secondswasusedfor all
systems.

For TP4 andTGP, theentriest/d/a in thetablearere-
spectively therun time(t), planduration(d) andnumberof
actions(a) of thegeneratedplan. A -/d/- entry indicates

4Whenweextendtheencoding,boththelogicalandthetempo-
ral partsof encodingareextended.

that the systemwassearchingfor a solutionof durationd,
whenthetimelimit wasreached,andexecutionwasaborted.

The data for the MIP method are presentedin the
t/d/a/l format,with thefollowing meaning.Thenumber
in positionl is thefirst level at which a feasiblesolutionis
found. Thedatat/d/a refer to theoptimalsolutionof the
problemthat correspondsto graphlengthl. The duration
of this optimal solution is presentedin d, and the number
of actionsin thesolutionin a. Thenumberin positiont is
therun time, andincludesboththetime neededfor proving
the infeasibility of the problemsassociatedwith planning
graphsof lengthlessthanl, aswell asfinding theoptimal
solutionfor the graphof lengthl. The last columnin the
table,labelledwith tt, presentstheoverall run timeneeded
for solvingtheproblemonall differentlevels,upto thelevel
wherethesolutiondoesnot improve further. A dashin this
columndenotesthat CPLEX reachedthe time limit before
completingthesearchof thelastlevel.

We notethat in all problems,exceptbw4, the bestsolu-
tion thatwasfoundby themethod,wasat thesameplanning
graphlevel with thefirst feasiblesolution.In problembw4,
thefirst solutionwasfoundat level 6. Theoptimalsolution
for this level is 14, the graphwas expanded,and a better
solutionwith duration13wasfoundafter3032secs.

It seemsthatthenew MIP temporalplanningmethodper-
formswell in providinggoodsolutionsearlyin thecomputa-
tion. Wehaveobtainedsimilar resultsfor otheroptimization
criteria, including minimizationthat combinesactionscost
andmakespanwith differentweights,that will be reported
in anextendedversionof this paper. Of coursetherecanbe
cases,asproblemr3, wherethemethodfails to find theop-
timal solutionwithin a reasonabletime. Nevertheless,in all
problemsconsideredit quickly foundhighqualitysolutions.

Conclusionsand Future Work

We have presenteda novel approachto temporalplanning
thatrelieson anexplicit representationof thetemporalcon-
straintspresentin aplanningproblem.Wehaveshowedhow
thestructureof adomaincanbeexploitedin theMIP formu-
lations,andpresenedsomeencourangingpreliminaryresults
from anexperimentalanalysisof thenew method.

We arecurrentlyextendingour experimentsandinvesti-
gating ways of improving the new method. One promis-
ing directionis to exploit further the separationof the log-
ical and temporalpart of a planningproblemby relaxing
theformerandtighteningthe latter. Anotherdirectioncon-
cernshandlinga moreexpressive planninglanguagecapa-
ble, for instance,of dealingwith level 3 of PDDL 2.1, the
official languageof the AIPS-2002planningcompetition.
Suchfeaturesincludeactionswith preconditions/effectsin-
volving numericalquantities,resources,andtemporalcon-
ditions that are requiredto hold at somepoint during the
executionof an action,at its beginningor at its end. It ap-
pearsthatall suchfeaturescanbeaccomodatedby a simple
extensionof ourmodel.Finally, weareinvestigatingtheuse
of our techniquesfor generatingplansof goodqualityunder
different(possiblycompeting)criteria.

7      



References
Allen, J. 1991.Temporalreasoningandplanning.In Rea-
soningaboutPlans. MorganKaufmann.
Barth,P., andBockmayr, A. 1998.Modelling discreteop-
timisationproblemsin constraintlogic programming.An-
nalsof OperationsResearch 81.
Dimopoulos,Y. 2001. Improved integer programming
modelsandheuristicsearchfor AI planning. In Proceed-
ingsof ECP-01(to appear).
Fox, M., andLong, D. 1998. Theautomaticinferenceof
stateinvariantsin TIM. JAIR 9:367–421.
Gerevini, A., andSchubert,L. 1998. Inferring StateCon-
straintsfor Domain-IndependentPlanning.In Proceedings
of AAAI-98.
Gerevini, A., and Schubert,L. 2000. Discovering state
constraintsin DISCOPLAN: Somenew results. In Pro-
ceedingsof AAAI-00.
Haslum,P., andGeffner, H. 2001.Heuristicplanningwith
timeandresources.In Proceedingsof ECP-01(to appear).
Kautz, H., andWalser, J. 1999. State-spaceplanningby
integeroptimization.In Proceedingsof AAAI-99.
Penberthy, J.,andWeld,D. 1994.Temporalplanningwith
continuouschange.In Proceedingsof AAAI-94.
Smith, D., andWeld, D. 1999. Temporalplanningwith
mutualexclusivereasoning.In Proceedingsof IJCAI-99.
Tsang,E. 1986.Plangenerationin a temporalframework.
In Proceedingsof ECAI-96, 479–493.
Vossen,T.; Ball, M.; Lotem, A.; andNau, D. 1999. On
theuseof integerprogrammingmodelsin ai planning. In
Proceedingsof IJCAI-99.
Weld,D. 1999. Recentadvancesin AI planning.AI Mag-
azine20(2).
Wolfman,S.,andWeld, D. 1999. TheLPSAT engineand
its applicationto resourceplanning.In Proc.of IJCAI-99.
Wolsey, L. 1998. Integer Programming. JohnWiley and
Sons.

8      



Fast Temporal Planning in a Graphplan Framework

Maria Fox and Derek Long
University of Durham, UK

D.P.Long@dur.ac.uk,Maria.Fox@dur.ac.uk

Abstract

Graphplan (Blum & Furst 1995) has been successfully ex-
tended to plan with actions with durations (Smith & Weld
1999) (Garrido, Onaind́ıa, & Barber 2001; Garrido, Fox, &
Long 2001). Existing approaches treat durative actions as
spanning several layers in the plan graph, with fact layers
corresponding to points in the flow of time. A simple model
of time is used which prohibits much of the concurrency
available for exploitation in an interesting problem. In this
paper we describe an alternative approach, in which the fact
layers of a plan graph are used to represent periods of time
elapsing between the instantaneous start and end points of
actions. The extents of these periods of time in a successful
plan are determined using a linear constraint solver to en-
sure that actions can be temporally arranged in a way that
avoids logical conflicts between them. The model of time
used, embodied in the language PDDL2.1, is more expres-
sive than that of earlier systems, enabling the exploitation of
increased concurrency. We describe the planning algorithm,
LPGP (Linear Programming GraphPlan), the model of time
used and some of the results obtained for LPGP in temporal
planning domains. We also present some indicative compar-
isons with other temporal planners.

Introduction

Graphplan (Blum & Furst 1995) has proved an influential
planning system providing a clean foundation for the de-
velopment of a number of scaling extensions. One of the
most interesting developments of Graphplan is the TGP
system (Smith & Weld 1999) - one of the first domain-
independent planners to manage temporal planning without
the aid of heuristic control rules.

The approach taken in TGP is to associate real-valued du-
rations with the action schemas and then to allow action lay-
ers to span several fact layers in the graph construction pro-
cess. TGP does not build an explicit representation of the
graph. Instead TGP uses a highly optimised representation
that exploits the monotonicities available in the Graphplan
plan graph. However, the implicit graph can be understood
in terms of the Graphplan plan graph with an extended bi-
nary mutex relation enabling mutexes between actions and

propositions to be inferred from interactions between ac-
tions. The extra mutex relation is necessary because ac-
tions can overlap the time points at which facts appear and
there can be interference between them. TGP implements
the strong mutex requirement that prevents any pairs of ac-
tions, or actions and propositions, from overlappingin any
way if there is any potential for interaction between them.
This strong requirement prohibits much of the interesting
concurrency in planning problems.

However, it is often reasonable for actions that refer to
the same facts to be executed concurrently. For example,
two durative actions which interact only at their end points
can be successfully overlapped, provided that they do not
end at the same moment. This is the observation exploited
by LPGP (Linear Programming GraphPlan). The language
used by LPGP represents actions with durations in terms
of the local pre- and post-conditions of their end points, as
well as invariant conditions that must hold over the inter-
val of execution. The language corresponds to level 3 of
the durative actions component of PDDL2.1 (Fox & Long
2001).

The key idea implemented in LPGP is that, although it
might make sense to view an action as having adelayed
effect (Bacchus & Ady 2001), logical change must be in-
stantantaneous at the end of the delay. This is because log-
ical change is by nature discrete (actions might have other,
continuous, effects in addition). An action might also have
immediate logical effects which are available as soon as
the action starts executing. This view makes it natural to
treat an action with a delayed effect in terms of its two end-
points separated by a period of time over which invariant
conditions might be required to hold. As we describe in
this paper, invariant conditions can be maintained across
the part of a plan graph between the start and end points of
actions using a mechanism by which invariant conditions
are checked at every fact layer that occurs between these
two points.

This paper describes the temporal planning approach of
LPGP and presents some preliminary results suggesting
that its performance can be comparable to that of other non-
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heuristic temporal planning systems in the literature. Be-
cause LPGP uniquely interprets fact layers as having dura-
tion some of the guarantees that Graphplan offers cease to
apply in LPGP. In particular, LPGP does not guarantee par-
allel optimality because it is possible for plans that are long
in terms of action duration, but short in terms of the number
of fact layers visited, to be found before plans with shorter
temporal makespan but a larger number of visited fact lay-
ers. In order for LPGP to find parallel optimal plans it is
necessary for it to search beyond the layer at which the first
successful plan is extracted. This necessity is explained in
the following sections.

LPGP currently plans with the simple durative actions
level of PDDL2.1. In order to enable a Graphplan strat-
egy to exploit the view of durative actions as two con-
nected instantaneous end points it is necessary to transform
PDDL2.1 actions into a particular format which can be seen
as an intermediate domain description language. We first
describe the way in which a PDDL2.1 domain is converted
into such a form. We then go on to describe the modifica-
tions to the Graphplan algorithm that allow correct temporal
planning behaviour to be achieved and the mechanisms by
which the temporal durations of states are introduced into
the planning structure. Finally, we present some results and
discuss our plans for future development.

Treatment of PDDL2.1 domains

PDDL2.1 extends PDDL in several important ways. In this
paper we consider only the temporal extension, and only
a restricted part of that. The treatment of numeric values
has been explored in the Graphplan framework (Koehler
1998), but we have not considered it further in this work.
PDDL2.1 offers the opportunity to use different kinds of
durative actions: the simplest are those in which the du-
rations are fixed, possibly as a function of the parameters
of the action. PDDL2.1 represents durative actions by de-
scribing the transitions that occur at the end points of the
interval of activity, using an essentially classical pre- and
post-condition model of these transitions, together with a
collection of invariant conditions that must hold over the
duration of the action.

A straightforward conversion of PDDL2.1 actions into
actions that can be used by a standard Graphplan planner is
to create the simple actions representing the end points of
the durative actions. This is a good starting point, although
we shall see that there are some complications that must be
addressed. The first of these is that we want to ensure that
the start and end point actions are always managed as a pair.
To achieve this, we add a new effect to the start action that
is required by, and deleted by, the end action. Thus, the end
action cannot be executed without also executing the start
action.

To implement the requirement that invariant conditions

hold between the end points of a durative action it is nec-
essary to ensure that they are maintained between each pair
of happenings executed in the plan within the interval of
the durative action. A happening is a collection of (instan-
taneous) actions (or end points of durative actions) executed
at the same time. If we model durative actions with only the
pair of end point actions then the invariant is effectively ig-
nored. To correctly account for the invariant we introduce
a new action with the invariant as its precondition. In order
to force this action to sit between the end points of the du-
rative action from which it is derived, we give the action a
precondition achieved by the start action and an effect re-
quired as precondition by the end action. We want it to be
possible for multiple happenings to occur in the interval be-
tween the end points, and in that case the invariant should
be rechecked following each such happening. This means
that we must force the invariant checking action to be reap-
plied at each layer in the graph between the layer contain-
ing the start action and the layer containing the correspond-
ing end action. Left to its own devices Graphplan will at-
tempt to exploitnoopsto make the effect of the invariant
action persist until the end point at which it is required, or
the effect of the start action persist until the invariant ac-
tion requires it, placing a single instance of the invariant
checking action at whichever intermediate layer is least in-
convenient. To prevent this we require two mechanisms,
one being a modification of the Graphplan machinery itself
and the other being an addition to the domain encoding.
The latter is the requirement to add an additional effect to
the invariant checking action, which is the special proposi-
tion achieved by the start action and used as a precondition
of the invariant-checking action itself. It can be seen that
this action then behaves like anoop with additional pre-
conditions — the invariant conditions of the durative action
to which it corresponds. The modification in the Graph-
plan engine is not to generate the standardnoopfor either
the special effect of the invariant-checking action or for the
effect of the start action that acts as precondition for the
invariant-checking action and the end action.

The way in which this collection of actions now fits to-
gether to model the enactment of a durative action can be
seen in Figure 1. An example of the actions generated for a
durative action from PDDL2.1 can be seen in Figure 2.

Because the operators that result from the translation pro-
cess are instantaneous the standard Graphplan mutex rela-
tion is used. There is no need to extend the mutex relation
to take account of intervals containing points, because no
intervals arise in the graph construction process. The trans-
formation can be performed automatically from a PDDL2.1
input, so should not be seen as introducing a new language,
but simply as a compilation into an internal representation
format.
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A-start A-endA-invariant
check

A-invariant
check

 

Pre: start

+initial effects
Add: As

Pre: As, inv

Add: As, Ai

Pre: As, inv

Add: As, Ai
+ final effects

Pre: As, Ai

Del: As, Ai

with invariant: invDurative action, A,

Figure 1: Modelling a durative action with a collection of
simple instantaneous actions.

(:durative-action debark
:parameters (?p - person ?a - aircraft ?c - city)
:duration (= ?duration debarking-time)
:condition (and (at start (in ?p ?a))

(over all (at ?a ?c)))
:effect (and (at start (not (in ?p ?a)))

(at end (at ?p ?c))))

(:action debark-start
:parameters (?p -person ?a -aircraft ?c -city)
:duration (debarking-time)
:precondition (in ?p ?a)
:effect (and (not (in ?p ?a))

(debarking-inv ?p ?a ?c)))

(:action debark-inv
:parameters (?p -person ?a -aircraft ?c -city)
:precondition (and (debarking-inv ?p ?a ?c)

(at ?a ?c))
:effect (and (idebarking-inv ?p ?a ?c)

(debarking-inv ?p ?a ?c)))

(:action debark-end
:parameters (?p -person ?a -aircraft ?c -city)
:duration (debarking-time)
:precondition (idebarking-inv ?p ?a ?c)
:effect (and (not (idebarking-inv ?p ?a ?c))

(not (debarking-inv ?p ?a ?c))
(at ?p ?c)))

Figure 2: The result of converting a PDDL2.1 durative ac-
tion (at the top) into linked instantaneous actions. Note the
introduction of the duration field in both the start and end
actions.

Modification to Graphplan
The main differences in the approach to introducing time
into Graphplan that we describe in this paper, and the ap-
proach used in TGP, are that we invert the way in which
time is attached to states and actions, we do not use the
graph layers to measure time in uniform increments and we
do not require an extended mutex relation. In TGP states
are instantaneous, while time flow is attached to the actions.
Actions can span several layers of the graph between the
point at which their preconditions must be achieved and the
end point at which they have their effects. TGP actions do
not have initial effects and actions are mutex with any other
actions that might attempt to access the propositions used or
changed by them. This is a strong mutex relationship, and
prevents any attempt to model, for example, executing an
action to wash ones hands while a sink is being filled — the
sink-filling action must end before the water is accessible.

TGP models the flow of time in uniform increments as-
sociated with the graph layers, each of length equal to the
GCD of the action durations. This has an important advan-
tage which is that the optimality of the plan length in terms
of graph layers is equivalent to the optimality in terms of
execution time. However, the price is very high: any plan
that has a long execution time relative to the lengths of any
of its actions will require a large number of fact layers to be
considered at plan extraction time, even if the plan requires
relatively few actions.

In our planner we attach duration to states, so each fact
layer is associated with a duration. The layers are used only
to capture the points at which events occur within the execu-
tion trace of the plan, rather than uniform passage of time.
By separating the graph structure from the flow of time in
this way we gain the benefit that plans with few events only
require short graph structures. However, it is not always
true that a plan that requires fewest distinct points of ac-
tivity will be the shortest in duration. For example, if two
goals can be achieved by the parallel execution of actions
A andB, with durations3 and5 time units respectively, or
by the single actionC with duration100 units, the plan in
which A andB are used will require more distinct levels
of activity (the simultaneous start ofA andB, the end of
A and then the end ofB) than the plan usingC alone. In
fact, this example is slightly simplified because of the need
to insert the special actions to check invariants. The com-
plete plan structure is illustrated in Figure 3. We discuss
this issue further, below.

The implementation of the machinery in the Graphplan
algorithm is achieved by modifying the basic algorithm as
follows.

Graph construction

The graph construction phase is modified so that nonoops
are constructed for the facts that have an-inv suffix. This
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A-inv

B-inv

A-end

B-inv

A-start

B-start B-end

Constraints: d1 + d2 + d3 = B-duration = 5

d1 + d2 = A-duration = 3

C-endC-invC-start d’1 d’2

d’1 + d’2 = 100Constraints:

d1 d2 d3

Plan 1

Plan 2

Figure 3: Two alternative plan structures showing how a
temporally longer plan can have a simpler activity structure,
being represented in fewer plan graph layers.

forces the invariant checking actions to be used to propagate
these facts between layers, ensuring that the invariants are
checked as the propagation is carried out. Apart from this
minor change no modifications are needed to the standard
Grpahplan graph construction process.

Graph search
This phase of the Graphplan algorithm is the one most af-
fected. When an end action is selected to act as the achiever
for a goal fact we introduce a temporal constraint. This
constraint will assert that the total duration of the fact lay-
ers between the start and end actions of the durative action
must equal the duration of the action. However, when the
end action is first introduced we cannot yet know when the
start action will appear. Therefore, the constraint is initially
an assertion that the layers between the current layer and
the layer containing the end action must have total dura-
tion less than the duration of the associated action. The
two forms of constraints, then, are simply linear constraints
on the durations of the fact layers and the equations must
be solved for these durations, minimizing the total duration
of the plan. This means that it is possible to use a linear
programming algorithm (such as the simplex algorithm) to
solve the equations. The form of the constraints for such a
solver is best given as a matrix of the coefficients for the lin-
ear combinations of the variables (which are the durations
attached to the fact layers). The matrix contains as many
columns as there are fact layers in the graph and as many
rows as there are durative actions in the (current) plan. New
columns are added to the matrix as the graph is extended,
prior to searching from each new layer. As an end action is
introduced into the plan a new row is added to the matrix.
When an invariant-checking action is added, the column de-
noting the fact layer succeeding the action layer containing
the invariant check is set to1 in the row corresponding to
the end action coupled to this invariant check. When a start

action is introduced, the correct entry is set to1, just as
for the invariant check, but also the constraint is switched
from an inequality to an equality. Backtracking through the
choice of any of these action types causes the exact reversal
of these activities, resetting matrix entries to0 where they
were set to1. The matrix associated with a simple example
developing plan structure is shown in Figure 4.

The result of these activities is that the plan, as it is
constructed, always has an associated linear programming
problem. If the problem is ever unsolvable then the plan is
invalid and search must backtrack. An important decision
is when to check the equations. One possibility would be
to check them whenever the matrix is modified. However,
the inequality constraints are typically less difficult to sat-
isfy than the equality constraints, so we choose to carry out
checks only when start actions are added to the plan, which
convert inequality constraints to equality constraints. This
has the benefit of reducing the number of calls to the lin-
ear constraint solver, but the cost of not always discovering
that the equations are unsolvable until several choices after
the point of failure. Other schemes would be possible, such
as checking the constraints at each layer in order to avoid
developing bad choices into the next layer.

This approach is very similar to that taken in Zeno (Pen-
berthy 1993; Penberthy & Weld 1994), but in that planner
the underlying architecture was a partial order planner. In
the Graphplan framework we gain all of the benefits that
have been associated with Graphplan in comparison with
partial order planners (and all of the weaknesses), and we
are able to construct a complete collection of constraints
at all points in the planning process. In contrast, Zeno was
unable to invoke the numeric constraint solver until the con-
straints were properly instantiated, preventing it from iden-
tifying flawed plans as early as might be hoped. Of course,
Zeno was handling a richer language, including numeric
effects, presenting a harder problem than a treatment of du-
ration constraints alone.

A very important question arises in determining the treat-
ment of start actions as possible achievers. When anendac-
tion is used to achieve a goal the corresponding start action
will be forced into the plan in order to satisfy the precon-
ditions of the end action. On the other hand, if astart ac-
tion could satisfy a goal then the corresponding end action
should already have been placed in the plan. This organisa-
tion follows from the backward sweep search that is used to
construct a plan in Graphplan. Unfortunately, it is very dif-
ficult to return to a previously visited layer in the search and
insert additional actions, so using a start action to achieve
a goal is very problematic. This problem does not arise in
TGP because the action representation precludes durative
actions achieving anything at the start of their execution.

To handle this problem we allow start actions to achieve
effects, but neverintroducethem into the plan as achievers
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k+5 columns

As it progresses to layer k-1 these
matrix entries will be set to 1 when the
appropriate invariant-checking or start
action is introduced into that layer.

Assume search has reached action layer k. 

Constraint becomes equality
when start action is added to 
plan.

Action kFact k Fact k+1 Action k+1 Action  k+2 Fact k+3 Action k+3Fact k+2 Action k+4Fact k+4

A-start A-inv A-end

B-start B-inv B-inv B-end

C-start C-inv C-end

D-inv D-inv D-inv D-inv D-end

E-end

d1 d2 d3 d4 d5

Figure 4: The matrix of constraints associated with an example partially complete graph search.

unless the corresponding end action is already in the plan.
This means that if a start action is introduced into a plan
because its end effect has been exploited then we can make
use of any of the fortuitous side effects of the start action.
This is not a complete solution to the problem, since it is
possible to construct examples of durative actions in which
it is the initial effects that are sought, rather than final ef-
fects. For example, the durative action of burning a match
is useful for the existence of the heat and light created at the
start of the action, rather than for the creation of the burnt
stub at the end of the action. LPGP cannot currently han-
dle such actions properly, but we are working on extensions
that will enable exploitation of such start effects.

An interesting additional factor in our treatment is con-
nected to an important consequence of the mutex rela-
tionships that we use to govern the validity of plans in
PDDL2.1. The semantics of PDDL2.1 forbids actions from
being executed simultaneously if they could possibly inter-
fere with one another’s pre- or post-conditions. Therefore,
actions that do interact must be separated by a small, but
non-zero, interval. Typically, the only constraint we have
to satisfy is that the duration of separation must be posi-
tive. This gives rise to the need to introduce very small
values into a plan. In the validation of plans (Long & Fox
2001) we introduce a small constant that dictates the min-
imum degree of separation allowed between actions, in or-
der to avoid the problem that one plan might be judged
better than another simply because it used smaller separa-
tions than the second, possibly otherwise identical, plan.
This bound must be introduced into the equations we con-
struct as a lower bound on the values of the variables (the
fact layer durations). It will be observed that the first fact

layer can never be constrained by any constraint other than
this lower bound, since it can never appearbetweena start
and end action. This leads the constraint solver to assign
the minimum duration to the first fact layer in every case,
which is a direct reflection of the decision in the semantics
of PDDL2.1 to begin the initial state at time0, while in-
sisting that states are always associated with intervals that
are half-open on the right. That decision prevents the first
actions in a plan from being executed at0 and forces them
to begin at a small, non-zero time after0. The value of the
small, non-zero time that is used is selected by the program-
mer in the current implementation (we set it at 0.001), but
it would be easy to set if from the command line, or, as we
discuss in (Long & Fox 2001), from a value communicated
in a problem description.

Results
We implemented the system in several stages: the first stage
is a simple translator, transforming PDDL2.1 domains into
the action sets described above. This is a stand-alone pro-
gram, built using the tool-kit associated with the PDDL2.1
parser we have released, and represents one of a collection
of translation tools for conversion of PDDL2.1 domain and
problem descriptions. The second stage is the adaptation
of a Graphplan implementation, to create a system we call
LPGP (Linear-Programming GraphPlan).

To solve the linear constraints we used thelp solve
library originally developed by Michel Berkelaar (Berke-
laar 2000). This we connected as a library to the LPGP
code, and used its API to manage the constraint matrix.
This solver attempts to solve modified problems from the
same basis that solved the problem before the modification,
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Figure 5: Plot showing relative performance of TGP, TP4
and Temporal LPGP on temporal logistics problems. The
collection is the same as used in (Haslum & Geffner 2001):
problems range from 4 packages in 3 cities to 5 packages in
4 cities. Note that the time axis is log-scaled. The TGP per-
formance data was taken from (Haslum & Geffner 2001).

which is an excellent strategy in the context of our exploita-
tion: most often new constraints do not have a dramatic im-
pact on the constraint solution, since most durative actions
span few fact layers.

The results depicted in Figure 5 show performance
of LPGP compared with that of TGP and TP4 (Haslum
& Geffner 2001). TP4 is a temporal planner that uses
the HSP architecture (Bonet, Loerincs, & Geffner 1997;
Bonet & Geffner 1997) and follows the same route as TGP
in adopting a model of durative actions in which concur-
rent activity is constrained to avoid consulting proposi-
tions that are in use within another action. The data set
is taken from (Haslum & Geffner 2001) and was gener-
ated on a 900MHz PC. The TGP data is for the version
with EBL/DDB. It should be noted that LPGP does not use
EBL/DDB (the reasons for this are discussed further, be-
low). The domain is a simple extension of the Logistics
benchmark, allowing an additional action by which trucks
can drive between locations in different cities, but at the
cost of a longer action. TP4 and TGP are generating (tem-
poral makespan) optimal plans. In contrast, LPGP is gener-
ating plans that minimize theactivity makespan, by which
we mean the number of distinct time points at which ac-
tivity occurs within the plan. Activity can include simulta-
neous initiation or termination of durative actions, and the
special invariant checking actions. Minimizing the activ-
ity makespan can lead to plans with sub-optimal temporal
makespan in the temporal logistics domain, so it should be
noted that TGP and TP4 are solving a harder problem than
is LPGP.

Figures 6 and 7 show LPGP’s performance in a temporal
planning domain called Mars Rover. This domain features a
network of locations and a collection of rover vehicles each
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Figure 6: Plot showing effect of plan graph length on LPGP
performance for small sample of Mars Rover problems.
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able to access different portions of the network (for exam-
ple, rough-terrain vehicles can navigate mountainous areas,
whilst other rovers can only navigate relatively flat areas).
At different locations on the network there are tasks to be
completed, such as collecting and analysing soil and rock
samples and recording photographic images. The rovers
are equipped with different capabilities – some have cam-
eras on board and some have spectrometers and other equip-
ment. The planner’s task is to allocate suitable rovers to the
different tasks so that required data can be communicated
to a lander accessible to the rovers. The figures indicate the
strong effect of graph construction and search on the time
to plan and the weaker effect of number of activities in the
plan on the performance of the planner. It should be re-
membered that each activity in the plan is represented by at
least three steps in the graphplan plan (the start, the end and
at least one invariant step).

A feature of the domain encoding is that whilst it is nec-
essary to remain located at a single spot whilst communicat-
ing image and geological data, the nature of the communi-
cation link between the lander and rovers equipped for soil
analysis means that soil analysis data can be communicated
while the rover is on the move. However, a restriction on
this is that, due to spikes generated when the motors start,
communication is not allowed over an interval that includes
the start of navigation. Thus, navigation and communica-
tion can overlap, once navigation has started. This means
that rovers carrying soil analysis data can communicate and
navigate, or collect other samples, concurrently. The plan
shown in figure 8 contains concurrency that it would not be
possible to exploit using TGP.

Although activity makespan is different from temporal
makespan it remains to be demonstrated how much longer
than optimal the makespans of activity-optimal plans are
likely to be. We have observed that in pathological cases
(where there are both sequences of very short duration ac-
tions and sequences of very long duration actions available
in the domain for achieving the same goal collections) there
can be wide variation. However, this domain structure does
not seem to be arise commonly and we have observed that
LPGP typically constructs plans about twice the length of
those constructed by TP4. On the basis of our experiments
to date LPGP seems to be comparable to Sapa (Kambham-
pati 2001) in terms of plan lengths.

A very interesting possibility for an improvement in the
behaviour of LPGP, which we are currently exploring, ex-
ploits the fact that LPGP can continue searching for better
plans after it has found the first plan. We can use the tem-
poral duration of the first plan as a bound for other possi-
ble plans, and continue to search for alternatives up to that
bound. This would give a form ofanytimebehaviour, in
which LPGP, after generating its first plan, could always
return the best plan it has available at any time. Such an ap-

proach can still have termination properties (since the best
plan so far acts as a bound on the duration for any other
plans), but it could also be able to find the plan with opti-
mal temporal makespan if given enough time.

Conclusions and further work

This paper has described a successful attempt to exploit the
Graphplan architecture to construct temporal plans, but us-
ing a different approach to that used in TGP or TPSys (in
either of its versions (Garrido, Onaindı́a, & Barber 2001;
Garrido, Fox, & Long 2001)). Where those systems use the
graph itself to represent the flow of time, and to solve the
associated constraints on the ways in which the durations of
actions must interlock in a successful plan, we use the graph
to capture only the distinct points of activity and the logi-
cal relationships between them, while handling the duration
constraints in a separate linear constraint solver. This offers
the significant benefit of reducing the necessary graph size
for most problems. It has the disadvantage that optimisa-
tion of temporal duration is then separated from the opti-
misation of graph length and this prevents the planner from
claiming temporal-optimality. However, an important bene-
fit of our treatment is that it provides an acceptably accurate
representation of the PDDL2.1 semantics, enabling the ex-
ploitation of interesting concurrency in temporal planning
domains.

Many extensions and modifications to Graphplan-based
planners have been explored in the past, including exten-
sions to the language to include ADL features (Nebel, Di-
mopoulos, & Koehler 1997), filtering to remove irrelevant
information (Koehleret al. 1997), an efficient search be-
yond the fix-point (Long & Fox 1999), exploitation of
symmetry (Fox & Long 1999) and handling sensory ac-
tions (Anderson & Weld 1998). The modifications we
have explored in this version of temporal Graphplan plan-
ning seem to be orthogonal to many of those extensions,
since the underlying Graphplan behaviour is largely un-
changed. It remains a possible direction for future work to
explore which of these extensions could be successfully in-
tegrated with the mechanisms discussed in this paper. The
EBL/DDB modification proposed in (Kambhampati 1999)
is an obvious integration to try, as this yields interesting
performance improvements for Graphplan-based planners.
The key problem to be addressed is in constructing a con-
flict set at a layer. In the extended algorithm we have de-
scribed it can happen that an action will fail because it
causes a violation of the temporal constraints, but this does
not lead to identification of a single point of blame in the
current layer. If the temporal constraints cannot be solved
it is potentially expensive to go back through them, deter-
mining which is the most recent constraint that could be
modified to make the temporal constraints satisfiable. This
is an interesting search problem that we have not yet ad-

15      



0.001: (sample_rock rover2 rover2store waypoint1) [8]
2.002: (navigate rover3 waypoint1 waypoint0) [6]
2.002: (navigate rover1 waypoint2 waypoint5) [6]
8.002: (navigate rover2 waypoint1 waypoint7) [6]
9.003: (calibrate rover3 camera2 objective1 waypoint0) [5]
14.002: (sample_soil rover1 rover1store waypoint5) [8]
14.003: (communicate_rock_data rover2 general waypoint1 waypoint7 waypoint1) [10]
22.002: (take_image rover3 waypoint0 objective2 camera2 high_res) [7]
24.003: (navigate rover1 waypoint5 waypoint4) [6]
29.002: (communicate_soil_data rover1 general waypoint5 waypoint4 waypoint1) [10]
39.003: (communicate_image_data rover3 general objective2 high_res

waypoint0 waypoint1) [12]

Figure 8: Sample plan for Rover domain. The labels at the start of each action show when the action starts execution, and the
bracketed values following each action shows its duration. Note the concurrent transmission of soil data with navigation at
time 29.002-30.003.

dressed.
A critical extension to the PDDL language introduced in

PDDL2.1 is the ability to express plan metrics. Most real
planning problems require solutions to be judged by qual-
ities other than simply the number of steps or even their
temporal makespan. One of the most significant challenges
for the Graphplan architecture, if it is to remain relevant to
future developments of planning, is to find ways to mod-
ify the search to take into account such plan metric infor-
mation. The first step in addressing this challenge is to
find a convincing means by which to combine efficient be-
haviour with, at least heuristically, minimising the temporal
makespan of the plan. The idea we discuss above, in which
we continue generating plans after the first has been gener-
ated using the best plan so far as a bound on the continued
search, is a particularly interesting one and we intend to
make this a priority in our future work on LPGP.
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Abstract

Recent advances in constraint satisfaction and heuristic
search have made it possible to solve classical planning
problems significantly faster. There is an increasing amount
of work on extending these advances to solving more expres-
sive planning problems which contain metric time, quanti-
fiers and resource quantities. One can broadly classify clas-
sical planners into two categories: (i) planners doing refine-
ment search and (ii) planners iteratively processing a rep-
resentation of finite size like a SAT encoding or planning
graph or a constraint satisfaction problem (CSP). One key
challenge in the development of planners casting planning
as SAT or CSP is the identification of constraints which
are satisfied if and only if there is a plan ofk steps. This
task is even more complex for planners handling metric time
and/or resource quantities and/or quantifiers. In this paper
we show how such a SAT encoding can be synthesized for
temporal planning. This encoding contains twenty kinds of
constraints. We show how this encoding can be simplified.
Though solving a SAT encoding may not be the best ap-
proach to temporal planning (especially when there are too
many actions and/or too much variation in durations of ac-
tions), the set of constraints we identify makes it easier to
develop temporal planners casting planning as a constraint
satisfaction problem other than SAT, like integer linear pro-
gramming (ILP). The SAT encoding we present can be easily
adapted to more complex cases of temporal planning like the
one in which different pre-conditions and effects of an action
may be true at different times during its execution.

1 Introduction
Recent advances in classical planning have made it possi-
ble to solve larger planning problems than before. Many
of the recently developed planners cast planning as a con-
straint satisfaction problem. The planner in [Do & Kamb-
hampati 2000] solves a planning problem by solving a CSP
generated based on the planning graph built by Graphplan
[Blum & Furst 1997]. The CPlan planner [van Beek &
Chen 1999] solves planning as a constraint programming
problem. Graphplan [Blum & Furst 1997] builds a repre-
sentation called planning graph and identifies mutual ex-
clusion constraints (mutexes) between actions. Graphplan
propagates these mutexes to identify more mutexes. These

inferred mutexes significantly improve the backward search
over planning graph for solution extraction. SAT is a spe-
cific kind of CSP in which all variables are boolean and
the constraints involve variables connected with operators
from boolean logic. Some of the recently developed effi-
cient planners cast planning as propositional satisfiability.
These include SAT-plan [Kautz & Selman 1996], [Kautz
et al 1996], MEDIC [Ernst et al 1997] and the planner
which casts hierarchical task network planning as satisfi-
ability [Mali 1999],[Mali 2000]. SAT encodings of a large
number of planning problems in benchmark domains con-
tain a significant number of binary clauses. Simplification
techniques for binary clauses have been shown to improve
the performance of planning as SAT [Brafman 2001]. Ad-
vances in SAT solving like better branching heuristics [Li
& Anbulagan 1997] can be exploited to further improve the
performance of SAT-based planners. Some of the recently
developed efficient planners cast planning as 0-1 integer lin-
ear programming (ILP) in which all variables are boolean
and all constraints are linear. These planners include the
planner from [Vossen et al 2000].

More expressive planning problems contain quantifiers,
conditional effects, metric time and resource quantities. Ex-
amples of such problems include many NASA planning ap-
plications [Smith & Weld 1999]. In these applications, both
spacecraft and planetary rovers use heaters to warm up var-
ious components and these actions may span several other
actions or experiments [Smith & Weld 1999]. There is an
increasing interest in extending/adapting advances in classi-
cal planning to solving more expressive planning problems.
Temporal Graphplan (TGP) is an extension of Graphplan
[Blum & Furst 1997] to handle time durations of actions.
The LPSAT planner [Wolfman & Weld 1999] solves plan-
ning problems involving resource quantities by transform-
ing them into problems containing linear constraints and
propositional clauses. Some of the constraints solved by
LPSAT have a logical and a mathematical part, e.g. the
constraint((a > 3) ⇒ (x ∨ y)). Other more expressive
planners include [Tsamardinos et al 2000].

Development of more expressive planners involves sev-
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eral challenges. These include verification of soundness
and completeness, besides getting optimal plans in a shorter
time. The tasks of ensuring soundness and completeness
are trivial for refinement planners. This is because refine-
ment planners maintain a different representation for dif-
ferent partial plans in the form of nodes in a search tree.
In progression, an action sequence is executed starting at
initial state and it is checked whether goal is true at the
end of its execution. A partial plan is a set of constraints
which may or may not be a plan. Partial plans generated
by forward state-space planners and backward state-space
planners are sequences of actions whose goal achieving ca-
pability can be verified by simple methods like progression.
A partial plan generated by partial order planner contains a
set of constraints like step-action bindings and partial or-
derings over steps. The goal achieving capability of such a
partial plan can be verified simply by finding if there exists
a total order over the steps which is consistent with the par-
tial order constraints in the partial plan such that the goal is
achieved when the steps are executed in the order specified
by the total order. The verification of soundness and com-
pleteness of more expressive planners which cast planning
as CSP is non-trivial since a set of constraints needs to be
identified such that these are solved if and only if there is a
plan ofk steps. This set needs to be loose enough to allow
generation of all action sequences that are plans and tight
enough to exclude generation of any action sequence that
is not a plan. The correctness of the temporal planner TGP
[Smith & Weld 1999] is difficult to verify.

The adaptation of SAT-plan to handle metric time is chal-
lenging because of task of identifying all constraints that
must be satisfied if and only if there is a plan of bounded
length. Temporal planning problem is the problem of find-
ing a set of< actioni, start timei > tuples for achiev-
ing a given goal, starting with a given completely de-
scribed initial state using actions that have time durations.
start timei is the start time of actionactioni. This is the
time at which the execution ofactioni starts. We use the
following assumptions in temporal planning from [Smith
& Weld 1999] when setting up the SAT encoding. Effects
of actions are undefined during their execution. Action du-
rations are integers. Pre-conditions of an action in a plan
should all be true at its start time. The effects of an action
hold only at the end of its execution. The SAT encoding
is such that it has a solution if and only if there is a plan
of k time steps. In particular, we identify twenty kinds of
constraints which together form the encoding when trans-
lated into clauses. We also show how the encoding can be
simplified so that the number of clauses and variables are
reduced without losing soundness and completeness. We
show how the encoding can be adapted to more complex
case of temporal planning in which it is not necessary for
different pre-conditions of an action to be true at same time

and it is not necessary for different effects to hold at the
same time. We show how temporal planning can be cast as
a CSP other than SAT.

2 Background
In this section, we explain how SAT-based planners work
and describe the state-space SAT encoding from [Kautz et
al 1996] for classical planning where all actions have unit
duration. An action is a ground instance of an operator. For
example, ifmove(x, y, z) is an operator for moving block
x from top of blocky or table to top of blockz or table,
x 6= y, y 6= z, x 6= z, x 6= Table, then there areO(n3)
actions when there aren blocks.

SAT-plan [Kautz & Selman 1996] works in the following
manner. Based on initial state, number of steps assumed to
exist in plan (k), goal state and action description, it gener-
ates an encoding (SAT instance) such that the instance has
a model if and only if there is a plan of k steps. The steps
range from 0 to(k−1). The encoding is simplified by rules
of inference of boolean logic, e.g.a∧ (¬a∨ b) can be sim-
plified to(a∧b) (this simplification step is optional but most
SAT planners carry this out). The encoding is then passed to
a SAT solver. If it is solved, the solution (truth assignment)
is interpreted and plan is output by reading the truth values
assigned to step-action binding and step ordering variables.
If it cannot be solved, then value of k is increased and the
process of encoding generation, simplification and solving
is repeated. Variables representing an occurrence of actions
at various steps are step-action binding variables.

The explanatory frame axiom-based state-space encod-
ing [Kautz et al 1996] contains the following constraints:
(i) All propositions true in true in initial state are true at
time 0 and all propositions false in the initial state are false
at time 0. (ii) If an action occurs at timet, its pre-conditions
are true at timet and its effects are true at time(t+ 1). (iii)
If an actionoi needs propositionp true and actionoj deletes
p, thenoi andoj cannot occur at same time. (iv) All propo-
sitions from goal are true at timek. (v) If a propositionp is
true at timet and false at time(t+ 1), some action deleting
p must occur at timet. If a propositionp is false at timet
and true at time(t + 1), some action makingp true must
occur at timet. These constraints are included to ensure
that truth of a proposition cannot change unless an action
causing the change occurs. These constraints are known as
explanatory frame axioms.

3 SAT Encoding for Temporal Planning
To generate a SAT encoding, we first need to bound
the number of steps in plan at which actions occur. We
denote this bound byk. O denotes the set of all actions
in domain andU denotes the set of all ground fluents
in domain. A fluent is a proposition whose truth can
change. Propositions that are not made true or false by any
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action are considered to be invariants whose truth remains
unchanged. Before explaining the constraints appear in the
propositional encoding of a temporal planning problem,
we explain some relevant notation for various boolean
variables in the encoding.pt(t) is a boolean variable which
denotes the truth of true state of fluentp at timet. If pt(t)
is assigned true, it means that fluentp is true at timet. If
pt(t) is assigned false, it means that the fluentp is not true
at timet (so it is either false or undefined/unknown).pu(t)
denotes that the truth of the undefined state of fluentp at
time t. If pu(t) is assigned true, it means that the fluentp
is undefined at timet. If pu(t) is assigned false, it means
that the fluentp is not undefined at timet. In this casep
is either true or false at timet. pf(t) denotes that the truth
of the false state of fluentp at timet. If pf(t) is assigned
true, it means that the fluentp is false at timet. If pf(t)
is assigned false, it means that the fluentp is not false at
time t. In this casep is either true or undefined at time
t. oi(t) denotes the occurrence of the ground actionoi at
time t. oi(t) is an action variable.pf(t), pt(t) andpu(t)
are fluent variables. Ifoi(t) is assigned true, it means that
oi occurs at timet. If oi(t) is assigned false, it means
that oi does not occur at timet. di denotes the duration
of the ground actionoi. The time steps in the encoding at
which actions may occur range from 0 to(k − 1). dmax
is the maximum of durations of all actions. The following
constraints appear in the state space encoding of a temporal
planning problem. The encoding is a state-space encoding
since it refers to states of all fluents at all time steps. We
assume that actions do not have negated pre-conditions.

1. The constraints of this kind state that each fluent is either
false or true or undefined at every time step. For all fluents
p, for all timest ∈ [0, k], (pt(t)∨pf(t)∨pu(t)). There are
(k+1). | U | clauses of this kind. These contain3.(k+1). |
U | variables.
2. The constraints of this kind state that at a time, a fluent
cannot be in more than one of the following states: true,
false and undefined. For all fluentsp, for all timest ∈ [0, k],
(pt(t) ⇒ ¬pf(t)), (pt(t) ⇒ ¬pu(t)), (pf(t) ⇒ ¬pu(t)).
There are3.(k + 1). | U | clauses of this kind.
3. Fluents true in initial state are true at time 0. Fluents
false in initial state are false at time 0. These constraints
contribute| U | unit clauses to the encoding. If the initial
state is(a ∧ b ∧ ¬c ∧ ¬d), the encoding contains(at(0) ∧
bt(0) ∧ cf(0) ∧ df(0)).
4. Fluents from goal are true at timek. If goal is a conjunc-
tion of s fluents, these constraints contributes unit clauses
to the encoding.
5. If an actionoi occurs (starts) at timet, 0 ≤ t ≤ (k −
di), its pre-conditions are true att and its effects are true at
time (t + di). These constraints contributeO(k. | O | .m)
clauses to the encoding,m being the maximum sum of the

number of pre-conditions and the number of effects of an
action. These constraints contributek. | O | variables to
the encoding. For example, ifx andy are pre-conditions
of actiono3, and¬x and z are its effects, this constraint
generates(o3(j)⇒ (xt(j) ∧ yt(j) ∧ xf(j + d3) ∧ zt(j +
d3))), wherej ∈ [0, k − d3]. Note that we requiret ≤
(k − di) because ifoi starts att > (k − di), it will finish
at time(k + 1) or later and the encoding has only(k + 1)
time steps ranging from0 to k.
6. If an actionoi does not delete any of its pre-conditions,
then if oi starts at timet, where0 ≤ t ≤ (k − di), then
oi cannot start at any timet′ ∈ [t + 1, (t + di − 1)], di
being duration ofoi. These constraints prevent an occur-
rence of an action during its execution, when the action
does not delete any of its pre-conditions. These can be con-
sidered as mutual exclusion relationships of actions with
themselves. These constraints contributeO(k.q.d′) clauses
to the encoding, whereq is the number of actions which
do not delete any of their own pre-conditions andd′ is the
maximum of the durations of these actions.
7. If an actionoi does not delete its pre-conditionx, then
if oi starts at timet, x remains true over the closed interval
[t + 1, t + di] whendi > 1. If there arem actions that do
not delete any of their own pre-conditions, these constraints
contributeO(m.dmax.k.m′) clauses to the encoding, where
m′ is the maximum number of pre-conditions of an action
not deleted by the action.
8. The pre-conditions of an actionoi which are deleted by
oi are undefined over the closed interval[t+ 1, t+ di − 1]
if oi starts att. If there arem1 actions that delete some
of their own pre-conditions, these constraints contribute
O(m1.dmax.k.m

′′) clauses to the encoding, wherem′′ is
the maximum number of pre-conditions of an action deleted
by the action. For example, if effects of actiono4 are
¬p and q, such thatp is one of its pre-conditions, and
duration ofo4 is 3, then this constraint yields(o4(j) ⇒
(pu(j + 1) ∧ pu(j + 2))).
9. Effects of an actionoi (except pre-conditions ofoi which
oi deletes) are undefined from time(t + 1) until time (t +
di − 1), including both these times, ifoi starts att. These
constraints contributeO(| O | .dmax.k.m′′′) clauses to the
encoding, wherem′′′ is the maximum number of effects of
an action, excluding the pre-conditions deleted by it. For
example, if effects of actiono4 are¬p andq, such thatp is
one of its pre-conditions, and duration ofo4 is 3, then this
constraint yields(o4(j)⇒ (qu(j + 1) ∧ qu(j + 2)).

Constraints 10, 11, 12, 13, 14 and 15 are all explanatory
frame axioms. These contributeO(k. | U |) clauses to
the encoding. These constraints prevent changes in states
of fluents without occurrences of actions causing these
changes.
10. If fluent p is true at timet and false at time(t + 1),
some action of duration 1 which deletespmust occur (start)
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at timet. For example, if actionso4, o6 ando9 are the only
actions of duration 1 which delete fluentx, this constraint
generates((xt(t)∧ xf(t+ 1))⇒ (o4(t)∨ o6(t)∨ o9(t))).
11. If fluent p is false at timet and true at time(t+1), some
action of duration 1 which makesp true must occur (start)
at timet.
12. If fluent p is true at timet and undefined at time(t+1),
some action of duration greater than 1 which deletespmust
occur (start) at timet. For example, ifk = 20 and the only
actions of duration more than 1 which delete fluentx are
o7, o8 ando11 such thatd7 = 4, d8 = 12 andd11 = 7, then
we have((xt(t)∧xu(t+1))⇒ (o7(t)∨o8(t)∨o11(t))), t ∈
[0, 8]. We have((xt(t)∧xu(t+1))⇒ (o7(t)∨o11(t))), t ∈
[9, 13]. We have((xt(t)∧xu(t+1))⇒ o7(t)), t ∈ [14, 16].
This constraint does not lead to any clauses for the change
in state ofx from true to unknown fort ∈ [17, 19]. This is
because any action changingx in this fashion will end after
t = 20 in case it starts at time 17 or later.
13. If fluent p is false at timet ∈ [0, k−2] and undefined at
time (t + 1), some action of duration greater than 1 which
makesp true must occur (start) at timet.
14. If fluent p is undefined at timet ∈ [0, k−1] and false at
time(t+1), some actionoi of duration greater than 1 which
makesp false must start at time(t+ 1− di). For example,
if o5, o7 ando10 are the only actions which delete fluenty
andd5 = 2, d7 = 5 andd10 = 7, then this constraint is
represented by((yu(t)∧ yf(t+ 1))⇒ (o5(t− 1)∨ o7(t−
4) ∨ o10(t− 6))).
15. If fluent p is undefined at timet ∈ [0, k − 1] and true
at time(t+ 1), some actionoi with duration greater than 1
which makesp true must start at time(t+ 1− di).

All of the following constraints represent mutual exclu-
sion relations between actions. These contributeO(k. |
O |2) clauses to the encoding. These constraints are identi-
fied after taking into account the all possible kinds of tem-
poral relationships between two actions (seven types) from
Figure 1 and all possible effects two actions may have on
a fluentp. Given two actionsoi andoj and a fluentp, the
actions can affect the fluent in the following ways: (i) both
oi andoj needp and both deletep, (ii) only oi needsp and
bothoi andoj deletep, (iii) neither oi nor oj needsp and
both deletep, (iv) neitheroi nor oj needsp and both make
p true, (v)oi makesp true andoj only deletesp, (vi) oi only
needsp andoj only deletesp and, (vii)oi makesp true and
oj both needsp and deletesp.
16. If two actionsoi andoj have same duration such that
oi deletes pre-condition ofoj , thenoi andoj cannot start at
same timet. The clauses¬(oi(t) ∧ oj(t)), t ∈ [0, k − 1]
are generated for all pairs of such actions to represent this
constraint in the encoding.
17. If oi with duration greater than 1 deletes pre-condition
p of actionoj which has duration 1 such thatoj does not
delete its own pre-conditionp, thenoi andoj cannot start

at same time t. The clauses¬(oi(t) ∧ oj(t)), t ∈ [0, k − 1]
are generated for all pairs of such actions to represent this
constraint in the encoding.
18. If oi has pre-conditionpwhich it also deletes and action
oj only deletesp (oj does not needp), then ifoi starts att,
thenoj cannot start at a timet′ ≥ t if (t′+dj) = (t+di). To
represent this in the encoding, the clauses¬(oi(t)∧ oj(t′))
are generated for all pairs of such actions, for all timest and
t′ such that(t+ di) = (t′ + dj), t′ ≥ t, t ∈ [0, k − 1], t′ ∈
[0, k − 1].
19. If actionsoi andoj both only delete some fluentp and
both do not needp, then it cannot be the case thatoi ends
at starting time ofoj . This avoids consecutive deletions of
a fluent without making the fluent true. To represent this
in the encoding, the clauses¬(oi(t)∧ oj(t′)) are generated
for all pairs of such actions, for all timest andt′ such that
(t+ di) = t′, t ∈ [0, k − 1], t′ ∈ [0, k − 1].
20. If two actionsoi andoj both only delete some fluentp
and both do not need it, then it cannot be the case thatoi
ends at ending time ofoj . To represent this in the encoding,
the clauses¬(oi(t) ∧ oj(t′)) are generated for all pairs of
such actions, for all timest and t′ such that(t + di) =
(t′ + dj), t ∈ [0, k − 1], t′ ∈ [0, k − 1].

The encoding containsO(k.(| O | + | U |)) variables
andO(k.(| O | + | U |) + k. | O |2) clauses. The number
of variables and clauses in the SAT encoding of a temporal
planning problem are respectively higher than the the num-
ber of variables and clauses in the encoding of the same
problem with all action durations set to 1. This is mainly be-
cause of the action durations and the three variables needed
to model three different states of each fluent.

4 Discussion
We showed how temporal planning can be encoded as a
SAT problem and found the asymptotic number of vari-
ables and clauses in the encoding. In this section, we
show how the size of this encoding can be reduced with-
out losing soundness and completeness. We also show how
this encoding can be adapted to the more complex case
of temporal planning in which it is not necessary for all
pre-conditions of an action to be true at the same time and
different effects of an action may become true at different
times during its execution. We also show how the encoding
is useful in casting temporal planning as a CSP other than
SAT.

4.1 Reducing Encoding Size

Though a smaller encoding is not always easier to solve,
smaller encodings have been shown to be solvable faster
[Kautz & Selman 1996], [Ernst et al 1997], [Mali 1999].
The size of an encoding can be reduced by propagating the
truth assigned to unit clauses. Such unit clauses are avail-
able in the specification of initial state and goal in the en-
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Figure 1: Temporal relations between two actionso′ ando′′

coding. Almost all SAT simplification techniques which
apply to the case where all actions have duration 1 also ap-
ply to the case where actions have unequal durations and
we will not discuss these.

One can select an accurate value ofk to avoid solving
several encodings generated with unacceptable lower val-
ues ofk. The planning graph [Blum & Furst 1997] can be
used to wisely choose the value ofk. Graphplan works in 2
phases. The first involves growing aplanning graph and is
called theplangraph construction phase. This is a forward
phase, beginning with the initial state. The second phase is
a solution extraction phase. This is backward search phase
starting with the goal. Plangraph, or planning graph (PG),
has two kinds of levels calledaction levelsandproposition
levels. The 0th proposition level is the same as the initial
state. The 0th proposition level occurs before the 0th action
level which in turn occurs before the 1st proposition level
which precedes the 1st action level, etc. In general, thei th
proposition level is immediately succeeded by thei th ac-
tion level. And, thei th action level immediately precedes
(i + 1) th proposition level. A proposition level and an ac-
tion level can be considered as sets whose members are the
same as the contents of these levels. Thei th action level in
the plangraph contains all actions whose all pre-conditions
appear in thei th proposition level. There is also a dummy
action called ano-op, maintenance action, or persistence
action in the i th action level for each proposition in the
i th proposition level. The pre-condition and effect of this
action is the proposition for which the action was created.
This action is included in the plangraph because if no action
changing the truth of the proposition occurs, the truth of the
proposition remains same. The(i + 1) th proposition level
is the union of thei th proposition level and the effects of
the actions in thei th action level. Thus, proposition leveli
is a superset of proposition level(i − 1). Similarly, action
level i is a superset of action level(i− 1).

There are three kinds of edges in plangraph:(i) edges
from propositions in proposition leveli to the same proposi-
tions in proposition level(i+1) (for no-ops),(ii) edges from
propositions in proposition leveli to actions (whose pre-
condition list contains these propositions) in action level
i and (iii) edges from actions in action leveli to propo-

sitions (which are effects of these actions) in proposition
level (i+ 1).

A key to the efficiency of Graphplan is the inference of
binarymutex (mutually exclusive) relations. Two kinds of
mutexes are found: (i) mutexes between actions, and (ii)
mutexes between propositions. Each of these two kinds
of mutexes could be static or dynamic. Static mutexes are
found by examining pre-conditions and effects of actions.
Dynamic mutexes are found by propagating static mutexes
using truths of conditions in the initial state. Note that dy-
namic mutexes may be permanent or temporary. Two ac-
tions at action leveli are mutex if (i) their effects are in-
consistent (the effect of one action is the negation of some
effect of another action), or (ii) one action deletes some pre-
condition of another action, or (iii) the actions have pre-
conditions that are mutex at proposition leveli. For (iii)
one needs to understand the definition of mutex proposi-
tions given next. Two propositionsp, q in proposition level
i are mutex if (i)p is the negation ofq, or (ii) all ways (ac-
tions) of achievingp are mutex with all ways (actions) of
achievingq. Note that while considering all ways of achiev-
ing a proposition, no-ops are also considered.

If the plangraph has a proposition level that contains all
conditions from the goal such that no two of these are mu-
tex, Graphplan starts a backward search for a plan. For
each condition in the goal, it chooses a source of sup-
port (an action) in the immediately preceding action level.
The pre-conditions of these actions become subgoals to be
achieved. If no two pre-conditions of the chosen actions
are mutex, it chooses sources of support for these subgoals
from the immediately preceding action level and continues
this process. In case subgoals are found to be mutex, it
backtracks, chooses different sources of support, and re-
peats this process. If all combinations of the supporting
actions fail for each subgoal at each proposition level, then
Graphplan grows plangraph with one more action level and
proposition level and tries the backward solution extraction
process again. If no solution is found, Graphplan extends
planning graph by one action level and 1 proposition level
and tries the solution extraction again. Graphplan is guar-
anteed to report unsolvability of a problem. A plangraph is
said tolevel off if the none of the following change when
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the plangraph is grown further: (i) the number of actions
in last action level, (ii) the number of propositions in last
proposition level, (iii) the number of pairs of actions that
are mutex in last action level, and (iv) the number of pairs
of mutex propositions in last proposition level. In the plan-
ning graph in Fig. 2, false propositions are not shown in
proposition levels for readability. Because of same reason,
mutex relations are not shown. The planning graph has 3
proposition levels and 2 action levels. M1, M2, M3 and
M4 are actions in the domain. The pre-conditions and ef-
fects of these actions are shown on the left and right sides
of the boxes respectively. Here is the planning graph figure.
The goal is achievable with the plan Step 0: M2, Step 1:
M1 & M3. The actions M1 and M2 are static mutex and
the actions M3, M4 are dynamic mutex in the first action
level. Kautz & Selman have shown that planning graph can
be used to reduce the size of a SAT encoding for planning
with actions of unit duration [Kautz & Selman 1999].

A B

DA BF

M2 NOPNOP M1

A BFD C E

NOPNOP NOP M3M4 NOPM1 M2

M4  CF

M3 ED

M2 -B & DB

M1 B & FA

Action Descriptions

Initial State:  A & B                Goal State:  E & F 

Figure 2: A planning graph

It is clear that actions that do not appear in the last
action level of the leveled off planning graph are not
relevant to solving the problem. Such actions need not
be represented in the SAT encoding. Let us consider
a leveled off planning graph with four action levels
which are {o2, o4}, {o2, o4, o5}, {o2, o4, o5, o8, o9},
and, {o2, o4, o5, o8, o9, o11} respectively, excluding
no-ops from the action levels. This planning graph is
constructed by Graphplan [Blum & Furst 1997]. If
O = {oi | 1 ≤ i ≤ 20}, then it can be concluded that
actions o1, o3, o6, o7, o10, o12, o13, o14, o15, o16, o17, o18,
o19 ando20 are not relevant to solving the problem. These
need not be represented in the encoding for temporal
planning. Sinceo5 occurs in the first action level of
the planning graph, it is clear that in caseo5 occurs in
temporal plan, its start time will be greater than or equal
to min(d2, d4). This is because the planning graph shows
that o5 can occur only after one or more of the actions
from {o2, o4} occur. This means that we need not create
variableso5(t), t ∈ [0,min(d2, d4)− 1]. Similar argument
shows that we need not create the following variables:

o8(t1), t1 ∈ [0, (min(d2, d4) + min(d2, d4, d5)) − 1],
o9(t2), t2 ∈ [0, (min(d2, d4) + min(d2, d4, d5)) − 1]
and, o11(t3), t3 ∈ [0, (min(d2, d4) + min(d2, d4, d5) +
min(d2, d4, d5, d8, d9)) − 1]. This significantly reduces
the number of variables and clauses in the encoding.
This also reduces the number of literals in various
clauses. The number of stepsk can then be chosen so that
θ′ ≤ k ≤ θ′′ whereθ′ = (min(d2, d4)+min(d2, d4, d5)+
min(d2, d4, d5, d8, d9) + min(d2, d4, d5, d8, d9, d11))
and θ′′ = (max(d2, d4) + max(d2, d4, d5) +
max(d2, d4, d5, d8, d9) +max(d2, d4, d5, d8, d9, d11))

4.2 More Complex Temporal Planning

We assumed that all pre-conditions of an action are true
at the same time which is same as the time of start of ex-
ecution of the action. We also assumed that all effects
of an action hold at the same time which is same as the
time of end of execution of the action. In reality, dif-
ferent effects may hold at different times and it may not
be necessary for all pre-conditions of an action to hold
at the same time. Consider the actionmove(A,B,C)
which moves blockA from top of block B to top of
block C. Its pre-conditions areclear(A), on(A,B) and
clear(C). Let us assume that there are several grippers and
one does not need the pre-conditionhand − empty. The
effects of this action areon(A,C),¬clear(C), clear(B)
and,¬on(A,B). clear(A) andon(A,B) have to be true
at same time. Howeverclear(C) can become true later
during the execution of the action since some other ac-
tion may move block from the top ofC beforeA is put
onC. The effect¬on(A,B) holds immediately and the ef-
fecton(A,C) becomes true much later. Consider the action
fly(P,London, Paris) which flies planeP fromLondon
to Paris. Its effects areat(P, Paris),¬at(P,London).
It is clear that¬at(P,London) becomes true much ear-
lier thanat(P, Paris). Such an action may be specified
with times at which various pre-conditions are needed true
relative tos and various effects become true, relative tos,
wheres is start time of the action.

Let us see whether one needs to change constraints from
section 3 to handle such actions and if so how. Constraints
1 through 4 do not need any change to handle such ac-
tions. Constraint 5 needs a minor change. The new con-
straint specifies that different pre-conditions and effects are
true at different times. Constraints 6 and 7 do not need any
change. Constraint 8 needs a minor change. The new con-
straint states that pre-condition of an action deleted by itself
is undefined over the interval[t + 1, t + r − 1], when the
pre-condition is deletedr time units after the start of the
action,t being start time of the action. Constraint 9 needs
a minor change to specify that different effects of an action
are undefined over different time intervals. Constraints 10
and 11 do not need any change. Constraint 12 needs a mi-
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nor change. The new constraint states that if a fluentp is
true at timet and undefined at time(t+ 1), some action of
duration greater than 1 which deletesp at two time units or
more later than the time of start of its execution must occur
at timet. The remaining constraints can be easily adapted
to handle such actions.

4.3 Temporal Planning as CSP other than SAT

Since SAT can be easily transformed into 0-1 ILP, an
ILP encoding of temporal planning can be directly cre-
ated using our SAT encoding. For example, the clause
(x ∨ y ∨ ¬z ∨ ¬b) can be translated into the linear con-
straint (x′ + y′ + (1 − z′) + (1 − b′)) ≥ 1 where the
domain of the integer variablesx′, y′, z′, b′ is [0, 1]. The
direct translation of our SAT encoding into 0-1 ILP encod-
ing leads toO(k.(| O | + | U |)) integer variables and
O(k.(| O | + | U |) + k. | O |2) linear constraints among
these. It has been empirically shown in [Vossen et al 2000]
that the ILP formulations need to be stronger to be easily
solvable. The strength of an ILP formulation obtained by a
direct translation of SAT can be improved by adding con-
straints so as to reduce the number of non-integer solutions
of the ILP formulation.

One can create a CSP using the constraints that lead
to the SAT encoding. Specifically, one can havek. |
O | boolean variables whose values represent occur-
rence/absence of actions at various time steps. One can
have(k + 1). | U | variables with the domain{t, f, u} to
represent various states of the fluents at all time steps. Note
that in SAT encoding we need3.(k + 1). | U | boolean
variables to represent various states of all fluents at all time
steps. In the CSP formulation, we need only(k + 1). | U |
variables. Though the domains of these variables contain 3
values, the worst-case size of the space of assignments to
the fluent variables is lower in the CSP formulation. Since
by definition each variable in CSP is assigned a unique
value, we do not need constraints to specify that a fluent
cannot be in more than one state at any time. Note that in
the SAT encoding we need3.(k + 1). | U | binary clauses
to specify that a fluent cannot be in more than one state at
any time. In SAT encoding, we need(k + 1). | U | clauses
to specify that each fluent is true or false or undefined at
each time step. No constraints are needed in the CSP to
specify this requirement. Remaining constraints leading to
the SAT encoding can be translated to complete the CSP
formulation. This shows how the constraints we developed
to generate a SAT encoding are useful in casting temporal
planning as a CSP. Note that no extra effort is needed to
verify the correctness of the CSP formulation.

5 Summary
There is an increasing amount of work on extend-
ing/adapting the recent advances in plan synthesis under

classical assumptions to more expressive planning. More
expressive planning involves dealing with metric time,
conditional effects, quantifiers and resource quantities.
Verifying the soundness and completeness of such planners
which cast planning as some kind of CSP is non-trivial.
We developed a SAT encoding for temporal planning such
that that the encoding is solvable if and only if there is a
plan whose execution time is less than or equal to chosen
bound(k + 1). We showed how the size of the encoding
can be significantly reduced using information in planning
graph. We showed how the SAT encoding can be adapted
to handle actions all of whose pre-conditions need not be
true at same time and/or whose effects become true at
different times. We also showed how the SAT encoding is
useful in casting temporal planning as a 0-1 ILP and as a
CSP different from SAT and 0-1 ILP.
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Abstract

In this paperwe present�����	��

� , a domain-independent
temporalplannerthat handlesdurative actionsand returns
a setof solutionplansorderedby increasingtemporalcost.�����	��
�� guaranteesthefirst solutionto betheminimal du-
ration plan; next solution will be a longer plan and so on.
This functionality is quite relevant in many domainsas the
usermight be interestedin obtaininga good plan in terms
of executioncostratherthanthe minimal durationsolution.�����	��
�� appliesa heuristicextractedfrom a problemre-
laxationto guidea regressionsearchin anplanspacewhich
encodesthedifferentalternative solutionsto a problem.Un-
like statespacetemporalplanners,the branchingfactor in�����	��
�� is vastly reducedthus allowing to obtain a very
goodperformancein a theexperimentalevaluation.

INTRODUCTION
Classicalplanningmodelsarenotsuitablefor temporalplan-
ningdomainswhereactionstakedifferenttimes,actionscan
be executedconcurrentlyand plansneedto achieve goals
within givendeadlines.Themaingoalin temporalplanning
is to computethe minimal durationplan. This optimal so-
lution usually entailsa high cost in the plan executionas
moreresourcesor moreexpensive resourcesareneededto
carry out the plan. This way, a trip from city A to city B
will befasterby planebut alsomoreexpensive thandriving
betweenbothcities. Or usinga singlevehicleto transporta
setof objectsratherthanseveralvehiclesmight bea prefer-
ablesolutionif theuserwantsto usetheminimumnumber
of resourcesaspossible.���
�������

is a domain-independenttemporalplannerca-
pable to efficiently computeseveral solution plans for a
given temporalproblem.

���
�������
guaranteesthe mini-

mal durationplan. Afterwards,it progressively computes
othersolutionplansin increasingtemporalcost.

���
�������
behavesvery much like POCL planners. Unlike standard
partial-orderplanning,

���
�������
isapropositionaltemporal

plannerwhich usesthe informationextractedfrom a prob-
lemrelaxationto guidea regressionsearchin a planspace.
�
This work hasbeenpartially supportedby projectsDPI2001-

2094-C03-03(MCyT), UPV n. 20010017andUPV n. 20010980.
Copyright c

�
2002, American Associationfor Artificial Intelli-

gence(www.aaai.org). All rightsreserved.

The main contribution of
���
�������

is its excellentper-
formanceandscaling-upasshown in the experimentalre-
sultsfor several temporaldomains.Unlike mostof the re-
cent heuristic temporalplanners,namelyTP4 (Haslum&
Geffner 2001)or SAPA (Do & Kambhampati2001),which
arestatespaceplanners,

���
�������
worksonaspaceof tem-

poralplans,whatallows to vastlyreducethebranchingfac-
tor duringthesearchprocess.At eachplannode

���
�������
appliesa completeprocessof conflict checkingto obtainall
possibletemporalsolutions.

Thispaperis organizedasfollows: next sectionshowsthe
structureof durative actionsusedin

���
�������
, the follow-

ing one is a brief revision on the main conceptsof POCL
planning, sectionComponentsof

���
�������
explains the

maincomponentsof thetemporalplanner, sectionConflicts
shows the conflict resolutionprocess,section

�
�����
algo-

rithm givesa completedescriptionof the algorithmimple-
mentedin

���
�������
; last but onesectionshows someex-

perimentalresultsobtainedwith
���
�������

andlastsection
concludes.

INTERN AL MODEL OF TIME: DURATIVE
ACTIONS���
�������

handlesa very simple model of durative ac-
tions.Unlikeconservativemodelsof actions(Smith& Weld
1999),durativeactionsallow to includelocalconditionsand
effectsto besatisfiedat differenttimesduringtheexecution
of the action. This approachallow actionsto overlapeven
whentheirpreconditionsoreffectsreferto thesameproposi-
tionsbecausenow all literalsareannotatedwith timepoints.���
�������

hasbeenadaptedto the new versionof PDDL
language,PDDL 2.1(Fox & Long2001).Fromall thecom-
ponentscited in (Fox & Long 2001),

���
�������
makesuse

of all but endconditions.
The two basic componentsin TANDOR are temporal

propositionsandtemporalactions.A temporalproposition, , is a tuple !#"%$'&�( where" is thepropositionand & is the
timeinstantatwhich " is produced.A temporalaction ) is a
tuple !+*,$.-/$'01( where* representstheactionitself, - is the
starttimeand 0 theendtimeof theaction( 0324-6587:9<;>=?*�@ ).

Let )A2B!+*,$.-/$.0�( bea temporalaction:
CED�F:G 7H=I)J@12LK D�F:G 7H=?)	@�MON GQP =?)	@ where K DRFHG 7S=?)	@ is the

setof conditionsto beguaranteedat thestartof theaction
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and N GQP =?)	@ is thesetof invariantconditionsthatmustbe
guaranteedT over theexecutionof theaction U -/$'0WV .

CYX<Z =I)J@62[K X<Z =?)	@.M XRX<Z =?)	@ whereK X<Z =I)J@62YK � 7<7,=?)	@'M
K �	\^] =I)J@ is thesetof effectsto beassertedat time - , andXRX<Z =I)J@�2 X � 7<7S=I)J@�M X �	\^] =?)	@ is thesetof positive and
negative effects to be assertedat time 0 . Given )_2B!
*S$`-/$'0a( , K X<Z =I)J@32 � !E"�$b&�(�c^"#d � 7/7,=?e^@JM �	\^] =Ie^@�f
&g24-h� and XRX<Z =?)	@�2 � !i"�$b&�(�cj"kd � 7<7S=Ie^@�M �	\^] =Ie^@Sf
&g2Y0/� .���
�������

dealswith adiscretemodelof timeandwewill
assumethatconditionsandnegativeeffectsof asameaction
cansimultaneouslyoccurat thesametimepointwithoutbe-
ing this a causeof inconsistency in themodel. In thesame
way, positive effectsareavailablesincethe first instantof
time at which they areproduced.That is, we will assume
closedtemporalintervalsfor theeffectsof anaction.

REVIEWING SOME POCL CONCEPTS
POCL plannerswork on a plan spaceby progressively re-
fining an initial empty plan. Eachnodein the plan space
encodesa partial-orderplan which is constructedby incre-
mentallyaddingall plan components.The basic

�����Jlm�
�
algorithmis shown in Table1 (Yang1997).

Algorithm POPLAN( nB$.oqpsr^put );
Input: A setof planningoperatorsn , andan initial plan
o psr^pvt consistingof a startstepanda finish stepanda con-
straintthatthestartstepbebeforethefinishstep;
Output: A correctplanif asolutioncanbefound.

OpenList := oqpsr^pvt
repeat

o := SelectPlan (OpenList);
remove o from OpenList;
if Correct ( o )= TRUE then return( o );
else

flaw := SelectFlaw( o );
if flaw is a threat then
Succ := Resolve-Threat (flaw, o );

else
Succ := Establish-Precond ( o );

add all nodes in Succ to OpenList;
until OpenList is empty;
return (fail);

Table1: POPLANalgorithm

The search-controlproblemin POCL plannersoccursin
two dimensions.In the first, a decisionhasto be madeas
to which nodeamongthesetof all frontier nodesshouldbe
selectednext for expansion.A seconddimensionof search
control is definedas the problemof selectinga next flaw
from theselectednodeto work on.

Thr eats. A threatrepresentsa potentialconflict between
an effect of a step w�p in the plan and a causallink when
wRp cannullify the link (Peot& Smith 1993). Threatscan

be solved by applyingdemotionof w�p , promotionof wRp or
by introducinga variable-bindingconstraintto separate the
potentialvaluesthattwo variablescanbeassignedto.

COMPONENTS OF TANDOR���
�������
behavesvery muchlike POCL planners.Unlike

standardpartial-orderplanning,
���
�������

is apropositional
temporalplannerwhichusestheinformationextractedfrom
a problemrelaxationto guidea regressionsearchin a plan
space.

Thegoalof TANDOR is to computethesolutionplansin
increasingorderof temporalcost. First stageof the algo-
rithm buildsarelaxedplanninggraphwhich is laterusedfor
thecalculationof admissibleheuristics.During thesecond
stage

���
�������
incrementallybuilds the plan spacewhere

eachnoderepresentsadifferentalternativeto solvetheprob-
lem.

Creating the Temporal Planning Graph
The TemporalPlanningGraph (

�q�Rx
) is a relaxed graph

wheredeleteeffects of actionsare ignored. The
�q�Rx

is
a directed,layeredgraphalternatingpropositionandaction
levels.

Definition 1 (proposition level) A propositionlevel yzU &{V is
madeup of all temporal propositionsgeneratedat time & .
yzU |^V consistsof all theliterals in theinitial situation.
yzU &{V�2 � !A"%$b&�(�ch&�2Y|q}�~�)A2B!�*,$.-/$'0�([fE!A"%$b&�(�d� K � 7<7S=I)J@%M X � 7<7,=?)	@`�h�

Definition 2 (action level) Anactionlevel �1U &{V is formedby
all temporal actionsthat canbeexecutedat time & andhave
notappearedin a previousactionlevel.
�BU &{Vq2 � )�2B!�*,$'&�$'0A(�c���"[d D�F:G 7H=?)	@�~�!�"%$'&>�
(� &>���E&�f�����2B!+*��?$`-W�I$'0��R(�$`-Q�R!E&���*��	�2Y*S�
First level in the

�
��x
is yzU |mV which containsall liter-

als in the initial situation. Given a propositionlevel yzU &{V ,���
�������
checkswhetherit is possibleto create �1U &{V ac-

cordingto definition 2. Notice that no specialcheckingis
requiredfor invariantconditionsasdeleteeffectsof actions
areignoredin the

�
��x
. Once �1U &{V is created,theeffectsof

actionsin �1U &{V areaddedin the correspondingproposition
level accordingto definition1. Following,

���
�������
moves

forwardin time to thenext yzU &{V andtheprocessis repeated
again.

The
�
��x

creationterminateswhenno new temporalac-
tionscanbeaddedin thegraph,thatis whenthelastproposi-
tion level hasbeenanalyzed.Notice theTPGcreationdoes
not stop when a propositionlevel yzU &{V containingall top-
level goalsis reached.This is sobecausewe cannot guar-
anteethat the solutioncomprisedfrom yzU |mV to yzU &{V is the
minimal durationplan asdeleteeffectshave beenignored
andconflictsamongactionstoo. Consequently, the

�q�Rx
is

a fully extendedgraphwhich containsat leastone tempo-
ral instanceof eachdifferentactionandencodesall different
temporalplansfor theproblemat hand. The value & of the
first temporalpropositionlevel yzU &{V whereall top-levelgoals
have appearedis usedasa lower boundduring the second
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stageandwill representthe durationof the optimal plan if
no harmful� interactionsoccuramongactions.

The set of fully instantiatedactionsextractedfrom the�
��x
is usedin two ways:

a) in theunificationprocessat thetime of finding anaction
whoseeffectsachieveaprecondition

b) to computetheestimateddurationof thepartialplancom-
prisedin a node

Creating the spaceof temporal plans

Thesecondstageof
���
�������

is aregressionsearchprocess
to createthespaceof temporalplans.Eachnode(temporal
plan)in thesearchspaceis anAND graph,(

��x
), andrepre-

sentsapartialsolutionplan.Fromtheinformationcontained
in the

�
��x
,
���
�������

computesthe estimateddurationof
thepartialplancomprisedin the

�gx
.

The plan comprisedin an
�gx

may containconflicts or
harmful interactionsamongthe actionsin the node. The
conflict resolutionusuallyentailsanupdatingof the

��x
es-

timatedvalue. Whenthis valueis higherthanthevaluesof
the remainingsolutions(frontier nodesof the plan space),���
�������

selectsanother
�gx

andproceedsin thesameway.
Following, we detail the compositionof AND graphs.

Next sectionexplains the typesof conflictsandtheir reso-
lution andthe following oneshows the completealgorithm
of thetemporalplanner(

�q�R���
).

Structur eof AND graphs

Definition 3 (AND graph) An �q� is a tuple !��k$.�z$.�#(
where:
C � is a set of temporal actionswhere each node is the

producerof a temporal propositionC � is a setof temporal ordering relationsamongactions
in �C � is theestimatedoverall duration of thepartial solution
plancomprisedin the

��x
Definition 4 (temporal ordering relation) Let
)�2B!�*,$.-/$.0�( and ��2B!�*��I$.-Q�?$.0���( . A tempo-
ral ordering relation between ) and � (representedas

) � t{¡ ¢W£¤ � � ) is a tuple !8&�$'¥a( where:
C & is the typeof ordering relation and representsthe two

time points (start/endtimesof ) and � ) betweenwhich
therelationis posedC ¥ is the minimal temporal distancebetweenboth time
points

Thefour typesof orderingrelationsare:

C )��R¦.§�¦ ¡ ¢W£¤ � � indicatesthat � startsits executionafter ¥
time unitshaveelapsedfrom thestarttime of ) , i.e. -Q��¨
-658¥

C ) ��¦.§R© ¡ ¢W£¤ � � indicatesthatexecutionof � will finishafter
¥ time units have elapsedfrom the start time of ) , i.e.
0Q��¨�-�5O¥

Table2: Transitivinesspropertyfor temporalorderingrela-
tions

�8�ª - ¤ -h$.¥/� - ¤ 0<$.¥/� 0 ¤ -/$'¥<� 0 ¤ 0<$'¥<�
) �«�
- ¤ -h$.¥ !�- ¤ -/$ !�- ¤ 0<$ !�- ¤ -h$ !�- ¤ 0<$

¥�5O¥<�R( ¥�5O¥<��( ¥�5Y¥<�,5
7H9/;b=?��@�(

¥�5Y¥/��5
7:9<;b=¬�J@�(

- ¤ 0/$.¥ !�- ¤ -/$ !�- ¤ 0<$ !�- ¤ -h$ !�- ¤ 0<$
¥�5[¥<� ¤
7H9<;b=¬��@�(

¥�5[¥<� ¤
7H9/;b=?��@�(

¥�58¥<��( ¥�58¥/�%(
0 ¤ -/$.¥ !�0 ¤ -/$ !�0 ¤ 0<$ !�0 ¤ -h$ !+0 ¤ 0<$

¥�5O¥ � ( ¥�5O¥ � ( ¥�5Y¥ � 5
7H9/;b=?��@�(

¥�5Y¥ � 5
7:9<;b=¬�J@�(

0 ¤ 0<$.¥ !�0 ¤ -/$ !�0 ¤ 0<$ !�0 ¤ -h$ !+0 ¤ 0<$
¥�5[¥<� ¤
7H9<;b=¬��@�(

¥�5[¥<� ¤
7H9/;b=?��@�(

¥�58¥<��( ¥�58¥/�%(

C )­��©`§�¦ ¡ ¢W£¤ � � indicatesthat executionof � startsafter ¥
time unitshave elapsedfrom theendtime of ) , i.e. -Q�	¨
0�5O¥

C ) �R©.§�© ¡ ¢W£¤ � � indicatesthatexecutionof � will finishafter
¥ timeunitshaveelapsedfrom theendtimeof ) , i.e. 0��R¨
0�5O¥
Temporalorderingrelationsfulfill thetransitivinessprop-

erty. Table2 shows the resultsof combiningthe different
typesof temporalorderings. Rows represent)®�¯� and
columns�°� ª .

Orderingrelationsare also usedto set causallinks be-
tweena produceranda neederaction. Therearetwo types
of causallinks accordingto theproductiontimeof effects:

C )±��¦.§R¦ ¡ ¢W£¤ � � , ¥Y¨_| , if ~4!�"%$'&²(�d�K � 7<7,=I)J@6f³"�dD�F:G 7H=?��@�f²&6��-Q�
C )��R©.§�¦ ¡ ¢W£¤ � � , ¥Y¨_| , if ~4!­"�$b&³(�d X � 7<7S=I)J@�f³"�dD�F:G 7H=?��@�f²&6��-Q�

to representthatastartor endeffectof ) is usedto satisfy
a conditionof � . Notice that no matterthe type of condi-
tion of � asbothstartconditionsandinvariantsrequirethe
effect to hold at thebeginningof theneederaction.We will
simplify the representationof causallinks by usingtheno-

tation ) � t §�¦ ¡ ¢W£2�´ � , which denoteseitherof the two above
orderingrelations.

Obviously, transitivinessis also appliedto causallinks.

For example, if ) �R©.§�¦ ¡ ¢W£¤ � � and ���R©.§�¦ ¡ ¢`µ?£2%´ ª , a
causal link between ) and ª would be representedas

) ��©.§R¦ ¡ ¢`¶%¢`µv¶R·`¸'¹sº¼»/½¾£2%´ ª .

Property 1 (correctnessand consistencyof an AND graph)
�q� 2B! �k$.�z$.� ( is correct and consistent if
�,��2B!E*,$.-/$'01(�d³�­"kd DRFHG 7,=¬�J@ :

1) ~�)Od��¿ch)O� t §�¦ ¡ ¢W£2�´ �#d�� and
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2) if "kdkK DRFHG 7,=¬�J@��
� ª dk�«cv!�À,"%$'&>��(�dkK �	\^] = ª @RM X �	\^] = ª @g�
&>�R!+&6��-6}²&��+-Á!E&>�

if "kdAN GQP =¬��@��
� ª dk�«c:!+À,"�$b&>�%(�d�K �	\h] = ª @RM X �	\^] = ª @g�
&>�R!E&��+-�}a&��+01!8&>�

Basically, property1 statesthatan
�gx

is correctandcon-
sistentif thereexists a produceractionfor every condition
of all actionsin the

��x
andthereis not acontradictorytem-

poralpropositionbetweentheproductiontimepointandthe
requiredtime interval.

Definition 5 (temporal solution plan) A valid temporal
plan for a planningproblemis thesetof nodes� of a cor-
rectandconsistent

��x
.

CONFLICTS
Conflictsarisewhenproperty1 is not satisfied.Particularly,
if part1) of property1 holdsandpart2) fails thena definite
conflict is found in the graph. Otherwise,whenthe causal
link is notestablishedyet, thereexistsapotentialconflict in
the
��x

. Conceptually, conflictsareverysimilar to threatsin
partial-ordercausal-linkplanning.���
�������

is aimedto detectpotentialconflicts in AND
graphs. When a potential conflict is found in an

�gx
,���
�������

createsall possibleconflict-freecombinationsof
actions.

Definition 6 (potential conflict) Let �3� 2 =?�k$.�z$.�,@
where ) 2B!E*,$.-/$.0�(�$b� d�� . Â^=I)�$'��@ is a potentialconflict
if oneof thetwo followingexpressionsholds:

1) "kd�K D�F:G 7H=I)J@'f+!°"%$'& � (�dkK �	\^] =?��@�M X �	\h] =¬��@�f1& � �
-

2) "kdiN GWP =I)J@'fE!i"�$b&>�R(�dkK �	\^] =?��@%M X �	\^] =?��@�f²&>�R��0
Solving(avoiding) a potentialconflict impliesto createa

conflict-free
��x

beforesolvingtheconditionsof theactions
involvedin theconflict. Let Â^=?)6$b�J@ beapotentialconflictas
definedin 6. Therearetwo generalwaysof solvingpotential
conflicts.

Method 1. Choosea produceraction ª for ) suchthat !
"%$'&6(�dkK � 7<7S= ª @�M X � 7/7,= ª @ andpostthetemporalordering

relations�A� t¬µ § t{¡ Ã`£¤ � ª and ª � t §R¦ ¡ ÄW£2�´ ) .
Let ª 2B!Y* � $.- Ã $.0 Ã ( and &�2�- Ã if !O"�$b&q(�dAK � 7/7,= ª @

or &�2[0 Ã if !°"�$b&�(�d X � 7<7S= ª @ :
C if &>�R!E&���- thennoneof theactionshasto bemoved

C if &���&>� thenthetemporalorderingrelation �#� t¬µ § t{¡ Ã�£¤ � ª
impliesto move ª forwardin timeadistanceof &>� ¤ &S5EÅ
timeunits

C if &�(�- thenthecausallink ª � t §�¦ ¡ ÄW£2%´ ) impliesto move
) forwardin time adistanceof & ¤ - timeunits.

This is a generalmethodto solve any typeof conflict. If
the produceraction ª is alreadyestablishedin the

��x
then

theconflict becomesa definiteconflict.
A commoncharacteristicof this solvingmethodis that it

makesnecessarythe useof two differentproduceractions
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for ) and � . Figure1 shows the four possiblecasesof ap-
plication of method1. Dashedlines indicateorderingre-
lationsandsolid lines causallinks. Conditionsareplaced
above the correspondingtime point of the actionandpos-
itive andneagtive effectsbelow the action. Clearly, in the
four cases� needsanotherproduceractionfor its condition
" . Notice that this resolutionmethodis also valid in case
!°"%$`-�(�dkK �	\^] =I)J@ or !A"%$'0Á(�d X �	\h] =?)	@ .

Method 2. Thesecondmethodis only applicableif it is
feasibleto setadirecttemporalorderingrelationbetween)
and � , regardlesstheproduceractionsof ) and � .
C if "ÆdÆK DRFHG 7,=?)	@ then establishthe temporalordering

)+�R¦.§ t¬µ?¡ Ã`£¤ � � , which moves � forwardin time a distance
of - ¤ &>��5�Å timeunitsC if "Çd N GQP =I)J@ then establishthe temporal ordering

)+�R©.§ t¬µ?¡ Ã`£¤ � � , which moves � forwardin time a distance
of 0 ¤ &>�/5[Å timeunits

Notice that this resolutionmethodis not valid if "Èd
K DRFHG 7S=?)	@bf+! "%$`-�(�d�K �	\h] =?)	@ or "kd#N GQP =?)	@bf+! "%$.0Á(�dX �	\^] =?)	@ . In thefour casesshown in Figure2 both ) and �
cansharethesameproduceraction.

Oncedescribedthetwo generalconflict resolutionmeth-
ods,we cangivea definitionof unsolvableconflict.
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Definition 7 (unsolvableconflict) Âh=?)6$b��@ is anunsolvable
conflictÉ if both ) and � share thesameproduceractionand
method2 of resolutioncannotbe applied, that is it is not
feasibleto establisha direct temporal ordering between)
and � .

TPOP ALGORITHM
The algorithmto build the temporalPOP(

�
�����
) is very

similar to the standardPOPLAN algorithmshown in table
1. Therearesomedifferencesthough:
C Unification process. While POP planners use a\jÊ>Ë e<Ì ] Í ÊÏÎ ¤EÐ ; \WÑ F:G 7 procedureto find all possiblechoices

to achieve a goal,
���
�������

makes use of the already
instantiatedactionsin the

�q�Rx
. This way, the pattern

matchingprocessis lesscostlyasactionsareinstantiated
only once.

C Precondition resolution. When solving a precondition
" of an action * p , ���
������� might usean action in the�
��x

(new stepin POCLplanners)or analreadyexisting
action in the

�gx
itself (old stepin POCL planners). If

bothchoicescomefrom thesameoperator,
���
�������

ig-
noresthecreationof asuccessornodewhich introducesa
new actionfrom the

�
��x
andonly keepsonechild node

with the old actionfrom the
��x

. This apparentlack of
completenessis recoveredduring the conflict resolution
processwhenapplyingMethod1. Actually, Method1 is
a techniquebasedon thewhite-knightconceptdeveloped
by Chapman(Chapman1987) to restorea precondition.
The useof this so called restoration techniquehasbeen
successfullyappliedin POCLplannersfor solvingthreats
(Sebastia,Onaindia,& Marzal2000). In summary, if us-
ing anexisting actionin the

�gx
to achievea precondition

is a wrong choicethena conflict will eventuallyarisein
the
��x

andit will besolvedby meansof themethodsex-
posedin theprevioussection.

The
�q�R���

algorithmis input the
�q�Rx

of a problemand
returnstheminimaldurationtemporalplan. If thealgorithm
keepson being executedit will return other solutionsor-
deredby increasingtemporalcost. The algorithmconsists
of thefollowing steps:

1)
�
�����

initialization . Initially, the
�
�����

andthefirst
�gx

,
��x�Ò 2�=I�k$'�z$`�S@ , is composedof two ficticiousactions
)82B!Y*<Äh$'|H$'|²( , �#2B!Y*�r�$`��$`�°(�dA� which represent

the initial andfinal staterespectively; )Y��©.§R¦ ¡ Óh£¤ � �[d#�
and � is the time & of the first propositionlevel in the�
��x

atwhichall top-levelgoalsarefoundsimultaneoulsy
(this will be, in thebestcase,theoptimalplanduration).DRFHG 7,=¬��@ representsthetop-level goalsand X<Z =I)J@ thelit-
eralsin theinitial situation. K \jË>�gx 2 � �q� Ä � .

2) SelectAG.

2.1 if K \ÏË>��x is emptythenexecutionof
���
�������

is fin-
ished.

2.2
��x 2[Ô³Õ×Ö%Ó/K \ÏË>��x .

3) Selectflaw fr om AG.

3.1 if
��x

containspotentialconflicts� selectaconflict Â andcreateall possiblewaysof solv-
ing Â by applyingmethod1 andmethod2.� for each method application create an

��x
:� ��xgØ $ ��xJÙ $jÚWÚjÚv� .� K \jË>�gx 2[K \ÏË>��x ¤ ��x M � �gx Ø $ �gx Ù $WÚjÚjÚv� .� go to 2

3.2 selectan action )�2B!�*,$`-h$.0°(�d�� in
��x

suchthatDRFHG 7,=?)	@ areunsolved� if noneof the actionsin � hasunsolved conditions
thenreturn

�gx
asa temporalsolutionplan. If another

plansolutionis requiredgoto 2; otherwise,
���
�������

executionis finished.� ���
������� searchesin the
�
��x

for the setof actions
� to generateeach"kd D�F:G 7S=I)J@� remove �#d�� if � is theinverseactionof )� remove ª dO� if the introductionof ª createsa loop
with a predecessoractionof )� for eachcombinationof valid produceractionfor con-
ditionsin D�F:G 7,=?)	@ createan

�gx
:
� �gxgØ $ �gxJÙ $jÚjÚWÚ¼� .� K \jË>�gx 2[K \ÏË>��x ¤ ��x M � �gx Ø $ �gx Ù $WÚjÚjÚv�� go to 2

Thefunctionto computetheheuristicvalueof
�gx

is very
simple.Theestimateddurationof thepartialplancomprised
in
��x

(startor end time of the final ficticious action � ) is
determinedby thestart/endtimesof theactionsin

��x
. If no

conflictsappearin
��x

thenstarttimesof actionsaregiven
by the

�q�Rx
andconsequentlythevalueof � will remainthe

sameastheinitial value.If someconflictsarisein thegraph
thenthestart/endtimesof actionsmaychangeandthesenew
valueswill be propagatedthroughthe graphto updatethe
valueof � accordingly.

The propagationprocesscomputesthe new start/end
timesof actionsaccordingto the changesprovokedby the
conflict resolution(seesection). Then for a given node
)È2B!Û*,$.-/$.0­( whoseconditionsare all solved ( ��"ÜdDRFHG 7,=?)	@a~��Ýc�� � t §�¦ ¡ ¢W£2%´ )Ýd�� ), the start time of ) is
computedas -k2±Ô�*<Þ t{¡ ßmàhá�â'rh¢Wºsã/½ !ä"%$'&z(�dYK � 7/7,=¬�J@�MX � 7/7S=¬��@ . Thisprocessis repeatedsuccessively up to reach-
ing thefinal ficticiousaction.

Thereareseveralcriteria that
���
�������

appliesto prune
anodein thesearchspace:

1) anunsolvableconflict is foundin the
��x

2) theonly choiceto achieveaconditionof anaction ) is the
inverseactionof ) . This doesnot apply if � and ) share

thesameproduceractionand � ��©.§R¦ ¡ ÄW£¤ � ) .

3) theonly choiceto achieveaconditionof anaction ) is by
usinganactionwhich generatesa loop in a branchof the��x

.

By applyingthesecriteriaaswell astheuseof somelocal
heuristicsas“selectfirstly the confict with leastnumberof
resolutionalternatives” or “selectfirstly theactionwith the
leastnumberof solving choices”,we achieve plan spaces
with very low branchingfactors.In orderto accomplisheffi-
cienttemporalplanning,branchingis asimportantaslower-
boundheuristics.
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Table3: Durationof actionsfor thefirst temporaldomainå æ�çjèhé¼êÏë
20 9 G ] F em7 Í G�ì 20íhî
ï�ð�ïSñ
60 7:; Í P \ Dgò3D%ó 200è<ôõé öj÷ ï�ð�ïSø
180 7:; Í P \ D�ó1D%ù 30

Table4: Resultsfor thefirst temporaldomain

instance ��ú:û Sol. 1 Sol. 2 Sol. 3 TOTAL
1 0.051 0.061 0.085 0.107 0.304
2 0.051 0.082 0.027 0.155 0.315
3 0.063 0.086 0.06 0.144 0.353
4 0.052 0.118 0.092 0.020 0.282

SOME EXPERIMENT AL RESULTS
In this sectionwe show someexperimentalresultsobtained
with

���
�������
. All the tests were run ten times on a

SUN Ultra 10 machine. We evaluatethe performanceof���
�������
on problemsfrom two metrictemporaldomains.

The first domainis a similar versionof the temporallo-
gisticsdomain.Thesettingis formedby threecities D�ò $ D�ó
and D%ù with airportsin D�ò and D�ó . Thereis oneobject to
transportfrom D�ò to D�ù . Table3 shows thedurationsof ac-
tions(symmetricalactionshavethesameduration).Wehave
testeddifferentinstancesof thisproblem,changingthenum-
berandlocationof planesandtrucksamongcities.For each
instancethereareseveralplanswhich

���
�������
returnsin

orderof increasingduration.Wedescribeonly thefirst three
plansfor instance1.
C instance1. Oneplanein Dgò ; a truck

� ò in Dgò andanother
truck

� ó in D�ó . Theoptimalplanfor this instanceis to fly
from D�ò to D%ó andthendrivefrom D%ó to D�ù with truck

� ó .
The total plan durationis 170 time units. Next solution
takes220 time units andcorrespondsto the plan which
drivesdirectly from D�ò to D�ù with the truck

� ò . Next
plantakes270t.u. andconsistsof driving from Dgò to D�ó
with truck

� ò andthendrivefrom D%ó to D%ù with thesame
truck.

C instance2. Oneplanein D�ò ; a truck in D�ò andanother
truck in D%ù .

C instance3. Two planesandtwo trucks,oneplaneandone
truck in D�ò , theotherplaneandtruck in D%ó .

C instance4. Oneplanein D%ó , two trucks in Dgò and D�ó
respectively.

Table4 shows theresultsin seconds.First columnis the
time for the

�q�Rx
construction,secondcolumn shows the

time necessaryto obtainthe first solution,third andfourth
column is the additional time to get the secondand third
plan.Lastcolumnshowsthetotal time.

Thedifferenttimesfor eachsolutiondependsonthenum-
berof conflictsfoundin theresolutionprocessaswell asthe
numberof waysof solving thoseconflicts. As we cansee,
timesareverysimilar for all theprobleminstances.

Table5: Resultsfor thezeno-travel domain

instance ��úHû Sol. TOTAL
zeno-travel 1 0.002 0.003 0.005
zeno-travel 2 0.007 0.019 0.026
zeno-travel 3 0.009 0.048 0.057
zeno-travel 4 0.012 0.104 0.116

Theseconddomainis thezeno-traveldomain(Penberthy
& Weld1994)in which it is necessaryto transportone,two,
threeor four objectsfrom oneplaceto anotherby usingonly
onevehicle. Table5 shows therunningtimesof

���
�������
for the zeno-travel domain. The mostsignificantaspectof
theseresultsis not the timesthemselvesbut that

���
�������
scalesupverywell to reasonablesizedproblems.As wecan
seein table5 the time for solving oneproblemis roughly
twice as much as the previous instance. In K ���^� (Do &
Kambhampati2001)theresultsobtainedfor zeno1to zeno4
in aSunUltra 5 machinewith 256MB RAM gofrom 0.35to
7.76secondswhenusingthe sum-duration heuristics.And
theresultsof

��x6�
(Smith& Weld 1999)publishedin (Gar-

rido, Fox, & Long2001)show that
��x6�

needslessthan0.1
secondsto solve zeno1andmorethan100secondsto solve
eitherof theotherinstances.

CONCLUSIONS AND FUTURE WORK
In this paperwe have presented

���
�������
, an admissible

heuristictemporalplannerwhich is ableto returndifferent
solution plansorderedby increasingtemporalcost. This
functionalityis veryrelevantis practicaldomainsastheuser
might be interestedin obtaininga goodquality plan rather
thantheminimal durationone.���
�������

performsa regressionsearchin a plan space
andappliesaheuristicderivedfrom arelaxedtemporalplan-
ninggraph.

���
�������
performsverywell in typical tempo-

ral domainsas shown in the preliminary experimentalre-
sults.Theapplicationof lower-boundheuristicsin a search
processwith very low branchingfactorsis aimedatscability
with reasonableplanquality.

Currenly, we areinvestigatingon theapplicationof POP
heuristicson threatsandgoalselectionto

���
�������
. In the

long term,our objective is to incorporateresourcemanage-
mentin

���
�������
to integrateplanningandscheduling.
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Handling Durative Actions in a Continuous Planning Framework
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Abstract

This paper describes a continuous planning framework to be
used by a planning agent which is situated within an envi-
ronment, in which goals have priorities and deadlines while
actions have duration. In contrast to much work in planning
in which a set of goals is posed to a planner which then gen-
erates a complete plan to achieve such goals, this framework
assumes that goals may be generated continuously, which
requires the interleaving of planning and execution. Con-
straints upon time may mean it is not possible for all goals
to be achieved – as a consequence the planning agent must
be able to prioritise its goals. A crucial component of this
framework is a temporal manager which enables the plan-
ner to reason about whether or not there is sufficient time
available to achieve all goals, and to calculate deadlines for
actions and outstanding subgoals. In this paper, the way in
which the partial order planning paradigm could be extended
to reason with PDDL2.1 level 3 durative actions is also in-
vestigated with a view to incorporating this paradigm within
the continuous planning framework. The issue of plan met-
rics is discussed as the continuous planning framework of-
fers the possibility of evaluating the degree to which plans
support the planning agent’smotivationsas well as taking
into account the number of high priority goals that have been
achieved.

Introduction
The focus of much work on planning is primarily concerned
with developing planners which are efficient and which pro-
duce plans that are both sound and complete (Blum & Furst
1995; Bacchus & Ady 2001; Smith & Weld 1999). In these
systems, goals are presented by an external user, and plan-
ning ceases either once a plan has been generated which
achieves these goals or if the planner fails to generate a
plan. There is no facility for the achievement of new goals
that are presented to the planner once the planning process
has commenced. In addition, once a plan has been cre-
ated it remains unexecuted. The framework introduced in
this paper has been designed for an agent situated within an
environment which requires continuous planning. It is as-
sumed that the agent has a set ofmotivationswhich enable
it to generate and prioritise goals. New goals may be posed

to the system while it is planning, which requires planning
and execution to be interleaved. Goals have deadlines and
actions take time to execute which means a core compo-
nent of the framework is responsible for reasoning about
whether or not goals may be achieved by their deadlines,
and for assigning deadlines to actions and subgoals. Goals
also have an associated priority so that instead of simply
failing to return a plan if there is insufficient time to satisfy
one or more goals by their deadlines, the system is able to
abandon the achievement of some goals in favour of achiev-
ing others. Finally, the agent’smotivationsmay be used as
part of a heuristic to enable the planner to select the most
promising plan for further refinement.

This paper presents the continuous planning framework
in section and then describesmotivationsand how they
enable the planning agent to generate and prioritise goals,
and select good plans for subsequent refinement. The core
component, thePlan to achieve goalcomponent which uses
an extended partial order planning paradigm is presented
and discussed. The remainder of the paper then describes
how the partial order planning paradigm could be extended
to reason with the extra expressive power of PDDL2.1 level
3 durative actions. Finally, conclusions and further work
are discussed.

The Continuous Planning Framework
The continuous planning framework is illustrated in figure 1
and was designed for an autonomous agent (such as a robot)
situated within an environment. An underlying assumption
is that the agent (via theGenerate/update goalscomponent)
can generate new goals in response to its current context
(this is encapsulated within the current initial state model,
the plan, as well as the agent’s motivations). For the pur-
pose of this paper it is assumed that this component can
be emulated by a user keying in new goals. Solid rectan-
gular boxes represent the various processes in the frame-
work that are the focus of this research – these processes
have been implemented using Allegro Common Lisp. The
dashed boxes represent two components responsible for up-
dating the agent’s motivations and and for generating goals.
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Figure 1: The Continuous Planning/Execution Framework

These have not been implemented and will not be discussed
in this paper – details can be found in (Norman 1997;
Coddington 2001). The ovals represent knowledge sources
– these represent the planning problem, (including the ini-
tial and goal states as well as the current plan) and the
agent’s motivations.

This framework can be viewed as a dynamic system in
which the agent continually generates goals in response to
its perceived current and predicted future states of the en-
vironment as well as in response to its motivations. Each
newly generated goal has a deadline by which it must be
achieved, as well as a value indicating its importance or pri-
ority. Newly generated goals are added to the representation
of the planning problem. The processSelect goal or action
determines whether one of the goals should be achieved or
whether one of the actions (belonging within a plan) should
be executed. When this process chooses to achieve a goal,
the goal is passed to a planner which plans to achieve the
goal. An important part of the planning process involves
determining whether or not goals may be achieved by their
deadlines as well as assigning deadlines to actions and sub-
goals. The planner generates a search space of alternatives
when planning, which requires a plan evaluation metric to
select the most promising plan for further refinement (Se-
lect best plan). This metric is designed to take into account
the total duration, the number of actions, the number of high
priority goals that have been achieved, as well as the degree
to which the plan supports the agent’s motivations.

When a decision is made to execute an action, theExe-
cute actioncomponent updates the plan and the model of
the current state to reflect the changes that have occurred
following execution. If the actual outcome differs signif-
icantly (i.e. enough to undermine the plan in some way)
from the predicted outcome, the componentRecoveris re-
sponsible for repairing the plan. In addition, as a conse-
quence of changes to the environment and plan following
execution, the agent’s motivations may change (these are
updated by the componentUpdate motivations), which in

turn may cause new goals to be generated or existing goals
to be updated.

The continuous planning framework is similar to
Sage (Knoblock 1995) – an extension of UCPOP (Pen-
berthy & Weld 1994) which supports simultaneous ac-
tions execution and which integrates planning and execu-
tion. Sage however, does not reason about time or take
into account the context of the planning agent when choos-
ing plans for subsequent refinement. The remainder of the
paper will focus mostly on the component responsible for
generating plans. A full description of the remaining com-
ponents can be found in (Coddington 2001).

Motivations
Motivations may be thought of as long term higher level
drives or emotional states which direct an agent which is
situated within an environment to both plan and act. As-
sociated with each motivation is a value indicating its cur-
rent weight – this value changes over time and provides a
driving force directing the generation of goals to satisfy the
motivation. For example, a truck-driving agent might have
a motivation concerned with conserving fuel. The weight
associated with this motivation depends upon the level of
fuel in the truck – as the level of fuel decreases and falls be-
low some threshold, a goal to replenish the fuel supply will
be generated. The weight associated with motivations has a
direct effect upon the priority of goals generated to satisfy
those motivations. Finally, whilst acting to achieve goals,
the agent may cause changes to its motivations. Through
executing an action, an agent may support or undermine
its motivations. For example, the truck-driving agent will
undermine the motivation to conserve fuel when it drives
from one location to another, and will support that moti-
vation when it refuels. It is therefore possible to evaluate
the degree to which the actions in a plan (and therefore
the plan itself) support or undermine the agent’s motiva-
tions. This is exploited as part of a plan evaluation metric.
In summary, motivations, together with the agent’s context
(the perceived current state and predicted future states cap-
tured in the plan), enable the agent to generate and priori-
tise goals with deadlines, and enable the agent to evaluate
plans, favouring plans which best support the motivations.
Full details concerning motivations and the way in which
they cause goals to be generated can be found in (Norman
1997).

Planning to achieve goals
Figure 2 shows the subcomponents of the planner (Plan to
achieve goal) in more detail. A goal (selected by the com-
ponentSelect goal or action) is presented to the planner
which generates a plan to achieve that goal. Currently, the
planner uses an extended partial order planning paradigm
(for example SNLP (McAllester & Rosenblitt 1991)). Once
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Figure 2: Planning to achieve a goal

a plan has been generated, the componentEstimate dead-
lines is responsible for both determining whether there is
sufficient time available to achieve all goals in the plan as
well as for assigning deadlines to actions (and therefore
subgoals). If this process fails it means there is insufficient
time available to achieve all of the goals within the plan
in which case the plan is edited to remove a goal, together
with its associated actions and constraints. Once a plan has
been edited, theEstimate deadlinescomponent reestimates
deadlines. When the temporal component has successfully
assigned deadlines to actions, the process is complete.

The Plan to achieve goalcomponent of the continuous
planning framework was implemented using an extended
partial order planning paradigm for several reasons. Firstly,
partial order planners output plans that offer a higher de-
gree of execution flexibility than those generated by Graph-
plan (Blum & Furst 1995) and state search planners and
are arguably better suited for frameworks in which plan-
ning and execution are interleaved (Nguyen & Kambham-
pati 2001). In particular, the set of persistence constraints
(which maintain the truth of preconditions), may be used
when monitoring the outcome of execution to see whether
the remaining plan is still valid. In addition, partial order
planning is arguably more suited than Graphplan or state
search planners to the requirement that new goals may be
generated during the planning process as the new goals may
simply be added to the set of outstanding goals without
affecting the planning process. Graphplan style planners,
in contrast, would have to recommence the plan extraction
process to take into account the new goals. Smith (Smith,
Frank, & Jonsson 2000) argues that partial order planners
offer a more promising approach for handling domains with
durative actions, temporal and resource constraints. The
main drawback of partial order planning has been the lack
of a good heuristic for selecting plans for further refine-
ment; search control is of fundamental importance for par-
tial order planning. However, recent work by (Nguyen &
Kambhampati 2001) challenges the prevailing pessimism

about the scalability of partial order planning by presenting
novel heuristic control techniques.

Achieving a goal

The partial order planning paradigm has been extended in
two ways to support the fact that goals have an associated
deadline and a value indicating their importance, while ac-
tions have duration.

• When creating a new action or further instantiating an
existing action in order to achieve a goal it is necessary
to estimate the duration of that action. The duration of an
action may depend upon the values assigned to its param-
eters. For example, the duration assigned to an instance
of the operator schemadrive-to(?x, ?y)will depend upon
the values assigned to the variables?x and ?y. In this
case, the exact duration can only be determined when
both ?x and ?y have been instantiated. In the current
implementation of the framework, a worst case estimate
of the duration of each incomplete action instantiation
is provided which requires a degree of domain knowl-
edge. For example, if the domain contains a network of
locations within a town, the worst case estimate of the
duration associated with instances of thedrive-to(?x, ?y)
would be the time taken to travel between the two fur-
thest apart locations.

• In order to edit the plan, a record must be kept of the
dependencies that exist between actions and goals. Cur-
rently, each action contains a list of the goals to which
they contribute.

• Goals have a value indicating their priority. Actions
which contribute to those goals are also assigned a value
indicating their priority – if an action contributes to a sin-
gle goal, the action inherits the value indicating the im-
portance of that goal, if the action contributes to more
than one goal it is assigned the sum of the values indicat-
ing the importance of each goal. Preconditions of actions
have the same priority as their associated action.

• Actions are assigned values indicating the degree to
which they support the agent’s motivations (for further
details see (Coddington 2001)).

Estimating Deadlines

Actions and their associated preconditions must be assigned
a deadline in order that the planner can ensure that the goal
to which they contribute will be met by its deadline. The
purpose of theEstimate deadlinescomponent is twofold.

• To enable theSelect goal or actioncomponent to deter-
mine which goal is to be achieved or whether an action
is to be executed.
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• To reason about whether there is sufficient time available
to achieve all goals by their respective deadlines.

The algorithm adopts a pessimistic approach when esti-
mating deadlines – if actions are only partially ordered with
respect to each other those actions are each assigned the ear-
liest possible deadline. For example, if three actionsa1, a2

anda3, each with a duration of 3 minutes and which remain
unordered with respect to each other, are chosen to achieve
a goal with the deadline 17:00, the algorithm estimates the
deadline for each action to be 16:51. This means that during
the early stages of plan refinement the deadlines estimated
for actions and subgoals are likely to be too early. This is
in contrast to DEVISER (Vere 1983) which estimates exe-
cution windows bounded by the earliest possible execution
time (which is too early) as well as the latest possible exe-
cution time (which is too late). If there is insufficient time
available to achieve a goal, the algorithm fails and returns
the goal.

Editing the plan
If there is insufficient time available to achieve a goal, the
Edit the plancomponent removes that goal together with its
associated actions and constraints. This requires a record
of the dependencies between actions and goals to be main-
tained as described in section . Once a plan has been edited,
deadlines are reestimated for the actions in a plan. Should
there still be insufficient time available to achieve all goals,
the plan is again edited. This process continues until there
is sufficient time available to execute the remaining plan.

Evaluating Plans
A plan evaluation heuristic has been implemented which
takes into account the degree to which a plan supports the
agent’s motivations, the number of higher priority achieved
goals, the total execution time, as well as the number of ac-
tions. Further details of the heuristic may be found in (Cod-
dington 2001).

Discussion
The decision to edit the plan once it has been determined
that there is insufficient time available to achieve all of the
goals, was based upon the desire to emulate human decision
making – humans tend to abandon some goals in favour of
others if there is insufficient time available to achieve all
goals. It seems preferable to preserve as much of the origi-
nal plan as possible as opposed to replanning from scratch.
However, this approach has various associated costs – in
particular, it is necessary during the planning process to
maintain a record of the dependencies between actions and
goals to facilitate plan editing. In addition, once a plan has
been edited, deadlines have to be reassigned to the remain-
ing actions in the plan, and, if there is still insufficient time
available, the cycle of editing and reassigning deadlines is

repeated. An alternative approach would be to simply re-
plan from scratch, once it is established that there is insuffi-
cient time available to achieve all goals, by presenting only
a subset (selected by taking into account the priorities and
deadlines of each goal) of the original set of goals (gener-
ated by the componentGenerate/update goals) to the plan-
ner. In the future it is intended to perform a set of experi-
ments to determine whether or not the decision to edit the
plan is more or less efficient than replanning from scratch.
If replanning from scratch proves to be less costly, some
of the main benefits of partial order planning such as being
able to plan to achieve goals using a skeletal partial order
plan, will be lost.

Partial order planning for PDDL2.1 level 3
durative actions

The partial order planning paradigm used as the basis for
thePlan to achieve goalcomponent of the continuous plan-
ning framework makes the classical temporal planning as-
sumption whereby actions with duration are viewed as a
black box – the preconditions of durative

actions must be true at the starting point of execution and
remain true throughout the interval during which the action
is executed, while effects become true at the end point of
execution but are undefined during the interval of execu-
tion. Both temporally extended GraphPlan based systems
such as TGP (Smith & Weld 1999) and TPSYS (Garrido,
Onaind́ıa, & Barber 2001) and partial order planners such
as DEVISER (Vere 1983) make this assumption about du-
rative actions. However, this assumption excludes many
valid plans as there is no way of syntactically distinguish-
ing between preconditions (propositions that are required to
be true only until the starting point of the action) and invari-
ant conditions (propositions that are required to remain true
throughout the interval of execution), while effects are only
defined at the end point of execution.

In contrast, PDDL2.1 level 3 durative actions (Fox &
Long 2001) provide greater expressive power by allowing
the domain modeller to specify local pre and postcondi-
tions of the end-points of the interval over which execution
of the durative action takes place, as well as any invariant
conditions that must hold throughout that interval (Fox &
Long 2001). This is achieved by using temporally anno-
tated conditions and effects: the annotation of a condition
states whether the associated proposition must be asserted
at thestart of the interval, theendof the interval orover
the interval; the annotation of an effect asserts whether the
proposition occurs immediately or at the end point of the
interval. Figure 3 shows how a PDDL2.1 level 3 durative
action models a person boarding an aeroplane. A num-
ber of researchers have recently developed extensions of
GraphPlan or state search planners capable of reasoning
with PDDL2.1 level 3 durative actions (Do & Kambham-
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(:durative-action board
:parameters (?p - person ?a - airplane ?c - city)
:condition (and (at start (at ?p ?c))

(at start (at ?a ?c))
(over all (at ?a ?c)))

:effect (and (at start (not (at ?p ?c)))
(at end (in ?p ?a))))

Figure 3: A PDDL2.1board operator.

pati 2001; Garrido, Fox, & Long 2001).
Since the advent of GraphPlan and the many GraphPlan

inspired successors, partial order planning has been ne-
glected due to its comparatively poor performance. How-
ever, the extra burden of reasoning about time even mak-
ing the simplistic black-box assumptions about durative ac-
tions (stated above) causes the performance of temporally
extended GraphPlan based systems (such as (Smith & Weld
1999)) or state search planners to deteriorate in comparison
to their performance in non-temporal domains. The extra
expressive power of PDDL2.1 with regard to modelling du-
rative actions seems likely to lead to an even greater dete-
rioration in performance if only because of the additional
constraint reasoning that must be done to ensure temporal
consistency (Coddington, Fox, & Long 2001).

Partial order planning (McAllester & Rosenblitt 1991;
Penberthy & Weld 1994), on the other hand, is more suit-
able for modelling concurrency between actions with differ-
ent durations, and, because it avoids full instantiation, may
be more efficient when reasoning with planning domains
specified using PDDL2.1. It was therefore decided to in-
vestigate extending the partial order planning algorithm to
solve problems specified using the level 3 durative action
specification of PDDL2.1 level 3 with a view to incorpo-
rating it in the continuous planning framework described in
section . In the remainder of this paper, the algorithm is
described in further detail.

Extending partial order planning
One way of planning with PDDL2.1 level 3 durative actions
(see (Fox & Long 2001)) is to decompose them into their
instantaneous start and end actions, taking care to maintain
the relationship between start and end and also between
those points and any invariant conditions specified by the
durative action. The meaning of a durative action is ob-
tained by the construction of two instantaneousend-point
actions, with a standard STRIPS semantics (assuming there
are no non-atomic conditions or effects), and a collection of
instantaneousmonitoringactions responsible for maintain-
ing invariant conditions over the specified duration. This
approach provides a simple basis for handling durative ac-
tons in a partial order framework.

If no invariant conditions (of the form(over all p) )
are specified, a durative actionDA can simply be trans-

formed into two STRIPS actions, one for each of the end-
points,start andfinish associated withDA. When invari-
ants are specified it is necessary to ensure that the invari-
ant remains true over the interval that occurs between the
start andendpoint associated withDA. In a partial order
planner this may be achieved by modelling invariant condi-
tions as special causal links which may be protected using
standard partial order planning threat resolution procedures.
The only aspect of durative actions which is not captured
in this transformation using standard partial order planning
machinery is the duration associated withDA. This may be
modelled by minor modifications to both the representation
of temporal constraints as well as to the temporal constraint
consistency checker. The extension that is required is to
ensure that if an actionastart is temporally constrained to
come afterbstart, andaend is constrained to come before
bend, then the duration ofa is strictly less than the dura-
tion of b. In the partial order framework, checking that this
requirement is satisfied will help to prune inconsistent alter-
natives early. Alternatively it might be left to the final par-
tial plan linearisation process to ensure that sufficient time
elapses between the start and end points of durative actions,
but this is a less efficient solution because of the failure to
identify some temporally inconsistent plans.

The process is as follows: When instantiated, a dura-
tive actionDA is converted into two actionsDAstart and
DAend which are added to the actionsA belonging to the
partial planP .

1. Thenamefield ofDAstart (DAend) is thenamefield of
DA appended with the suffixstart for DAstart (or end
for DAend).

2. Theparametersfield of DAstart (DAend) contains the
set of typed variables belonging within the precondition
and effect propositions ofDAstart (DAend).

3. The preconditionof DAstart (DAend) is equal to the
conjunction of the set of all propositionsp, such that(at
start p) ((at end p) ) is a condition ofDA.

4. Theeffectof DAstart (DAend) is equal to the conjunc-
tion of the set of all simple effect propositionse, such that
(at start e) ((at end e) ) is an effect ofDA.
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Should the durative actionDA contain invariant condi-
tions of the form(over all p) , causal links are cre-
ated of the formDAstart

p−→ DAend and added to the set
of causal linksL. The implications of modelling invariant
conditions as causal links is discussed further in section
below.

In addition, the temporal constraintDAstart ≺ DAend
is added to the set of constraintsO.

When the level 3 durative action templateboard de-
scribed in figure 3 is selected to achieve the goal
(in ernie plane) it is instantiated and transformed into the
actionsboardstart andboardend of figure 4.

The temporal constraintboardstart ≺ boardend is added
to the set of temporal constraintsO.

The invariant condition(over all (at plane ?c1))is trans-
formed into a causal link

boardstart
(at plane ?c1)−→ boardend

and added to the set of causal linksL. The justification for
this is discussed in the following section.

Modelling Invariant Conditions
The decision to model invariant conditions of the form
(over all p) as causal links of the formDAstart

p−→
DAend assumes (if the causal link is interpreted in the
traditional partial order planning manner) that the action
DAstart establishes the invariant conditionp (i.e.DAstart
containsp as an effect proposition) while the actionDAend
consumesp (i.e. DAend containsp as a condition proposi-
tion). In fact, there are three cases to consider:

• DAstart containsp as a precondition;

• DAstart containsp as an effect;

• DAstart does not containp either as a precondition or as
an effect.

In the first of these cases the causal linkDAstart
p−→

DAend is added, and the goal(p,DAstart) is added to the
open conditions of the plan. This expresses the requirement
thatp be maintained over the whole interval of the action,
but it is a non-standard use of causal links to use them to
promise that a condition will be maintained before it has
actually been achieved. On the other hand, the plan will
be invalidated ifp cannot be achieved forDAstart, and the
sooner it is known thatpmust be maintained the less wasted
search will be incurred.

The second case is a simple one - the causal link
DAstart

p−→ DAend is added to the plan whenDAstart
and DAend are added, becauseDAstart is itself the
achiever of its own invariant condition.

The last case, in whichp is an invariant but neither a pre-
condition or a start effect, is slightly more subtle. In fact,
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Figure 5: Three Invariant Situations

because the temporal relations between time points in the
plan are all strict precedence relations (partial order plan-
ners typically do not reason about synchronous activity)
this case can be treated as equivalent to the first. That is,
the causal linkDAstart

p−→ DAend is added to the plan,
along with the goal(p,DAstart). The goal ensures that an
achiever will be found forp, the causal link ensures thatp
will be preserved until the end point. The subtlety exists
because, if we could exploit synchronicity it would be nec-
essary to be precise about the exact point at whichp needs
to be asserted to satisfy the invariant. Because we cannot,
we are forced to ensure thatp is asserted strictly before the
point at which it is required (which is immediately after ap-
plication of the action).

Figure 5 describes the three cases and the causal links
that must be added.

The fill-bath operator, shown in figure 6, is an example of
the second case above. The invariant condition(tap-on ?b)
is achieved by the fill-bath action itself and has to be main-
tained throughout the filling interval. Theboard operator,
given in section 3, is an example of the first case (the plane
must be at the city as a condition of board and throughout
the duration of boarding).

Conclusions and Further Work

In this paper a continuous planning framework was pre-
sented in which it is assumed that a situated planning agent
is able to generate and prioritise goals taking into account
its context andmotivations. Goals have deadlines and ac-
tions have duration which means it may not be possible to
achieve goals by their deadlines. In addition, planning and
execution must be interleaved while the agent’s motivations
may be used as part of a heuristic to select the most promis-
ing plan for further refinement. The component responsible
for generating plans (Plan to achieve goal) was based upon
the partial order planning paradigm which was extended to
reason about whether or not there is sufficient time available
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(:action board-start (:action board-end
:parameters (ernie plane ?c1 - city) :parameters (ernie plane)
:condition (and (at ernie ?c1) :condition ()

(at plane ?c1))
:effect (not (at ernie ?c1))) :effect (in ernie plane))

Figure 4: The PDDL2.1board operator is converted into two simple action instances,board-start andboard-end .

(:durative-action fill-bath
:parameters (?b)
:duration (= ?duration (/ capacity flow))
:conditions (and (at start (plug-in ?b)

(at start (= (level ?b) 0))
(at start (tap-off ?b))
(at start (in-bathroom))
(at end (in-bathroom))
(over all (plug-in ?b))
(over all (tap-on ?b))
(over all (bath-filling ?b))))

:effect (and (at start (tap-on ?b))
(at start (not (tap-off ?b)))
(at start (bath-filling ?b))
(at end (not (tap-on ?b)))
(at end (tap-off ?b))
(at end (not (bath-filling ?b)))
(at end (assign (level ?b) capacity))))

Figure 6: A PDDL2.1 fill-bath operator.

to achieve all goals, to estimate deadlines for actions, and to
maintain a record of the dependencies between actions and
goals to facilitate plan editing. The degree to which plans
support the motivations of an agent, together with the num-
ber of goals of high priority offer an extra plan metric when
selecting the best solution to a planning problem – the use
of plan metrics other than the number of actions in a plan
were discussed by the developers of PDDL2.1 (Fox & Long
2001).

Because the original implementation of this component
made the classical black-box assumption concerning du-
rative actions it was decided to investigate the feasibility
of extending the partial order paradigm to reason about
PDDL2.1 level 3 durative actions which give the domain
modeller greater expressive power. The required extensions
described in this paper are simple and elegant, but more
work is needed to confirm whether or not this elegance is
bought at the expense of an unmanageable search problem.
A partial order planner capable of reasoning with PDDL2.1
durative actions is currently being implemented and future
work will involve experimenting with search control in this
system by investigating the heuristic techniques described
in (Nguyen & Kambhampati 2001), symmetry-breaking
techniques (Fox & Long 1999) and goal-ordering strate-
gies (Porteous, Sebastia, & Hoffmann 2001).

Finally, once the partial order planning componentPlan
to achieve goalhas been adapted to reason with PDDL2.1
durative actions, minor modifications will have to be made

to the component responsible for assigning deadlines to ac-
tionsEstimate deadlinesto cope with the fact that durative
actions are now represented using two consecutive start and
end point instantaneous STRIPS actions. Such extensions
will enable the continuous planning framework described in
this paper to reason about goals with deadlines and durative
actions with greater expressive power.
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Abstract

In thispaperweaddresstheproblemof post-processingpo-
sition constrainedplans,outputby many of therecenteffi-
cient metric temporalplanners,to improve their execution
flexibility . Specifically, given a positionconstrainedplan,
we considerthe problemof generatinga partially ordered
(aka“order constrained”)plan that usesthe sameactions.
Although variationsof this “partialization” problemhave
beenaddressedin classicalplanning,the metric and tem-
poralconsiderationsbring in significantcomplications.We
develop a generalCSPencodingfor partializingposition-
constrainedtemporalplans,thatcanbeoptimizedunderan
objective function dealingwith a variety of temporalflex-
ibility criteria, suchas makespan. We then presentsome
greedyvalue orderingstrategies that aredesignedto effi-
ciently generatesolutionswith goodmakespanvaluesfor
theseencodings.We demonstratethe effectivenessof our
greedypartializationapproachin the context of a recent
metric temporalplannerthatproducesp.c. plans. We also
briefly discussandevaluateanextensionof our partializa-
tion approachfor temporalplanswith resourceconstraints.

1 Intr oduction
Of late, therehasbeensignificantinterestin synthesizingand
managingplansfor metric temporaldomains.Plansfor metric
temporaldomainscanbeclassifiedbroadlyinto two categories–
”position constrained”(p.c.) and “order constrained”(o.c.).
Theformerspecifytheexactlystarttimefor eachof theactions
in the plan,while the latter only specifythe relative orderings
betweentheactions.Thetwo typesof plansoffer complemen-
tary tradeoffs vis a vis searchandexecution.Specifically, con-
strainingthe positionsgivescompletestateinformationabout
thepartialplan,makingit easierto control thesearch.Not sur-
prisingly, several of the moreeffective methodsfor plan syn-
thesisin metric temporaldomainssearchfor andgeneratep.c.
plans(c.f. TLPlan[1], Sapa[3], TGP[18]).

At thesametime,from anexecutionpointof view, o.c. plans
aremoreadvantageousthanp.c. plans–they provide betterex-
ecutionflexibility both in termsof makespanand in termsof
“schedulingflexibility” (whichmeasuresthepossibleexecution
tracessupportedby theplan[20;15]). They arealsomoreeffec-
tive in interfacingtheplannerto othermodulessuchassched-
ulers(c.f. [19;11]), andin supportingreplanningandplanreuse
[21; 9].

A solution to the dilemmapresentedby thesecomplemen-
tary tradeoffs is to searchin the spaceof p.c. plans,but post-
processtheresultingp.c. planinto ano.c. plan. Althoughsuch
post-processingapproacheshave beenconsideredin classical

planning([10; 21; 2]), the problemis considerablymorecom-
plex in thecaseof metrictemporalplanning.Thecomplications
includetheneedto handlethemoreexpressiveactionrepresen-
tationandtheneedto handleavarietyof objectivefunctionsfor
partialization(in thecaseof classicalplanning,wejustconsider
theleastnumberof orderings)

Our contribution in this paperis to first developa Constraint
SatisfactionOptimizationProblem(CSOP)encodingfor con-
vertingap.c.planin metric/temporaldomainsinto ano.c.plan.
This generalframework allowsusto specifya varietyof objec-
tive functionsto choosebetweenthepotentialpartializationsof
thep.c.plan.Wethendevelopagreedyalgorithmfor partializa-
tion, whichcanbeseenasspecificvariablesandvalueordering
strategiesovertheCSOPencoding.Wewill demonstratetheef-
fectivenessof thesepartializationalgorithmin thecontext of a
recentmetric/temporalplannercalledSapa[3]. Ourresultsshow
thatthetemporalflexibility measures,suchasthemakespan,of
theplansproducedby Sapacanbesignificantlyimprovedwhile
retainingSapa’sefficiency advantages.

Thepaperis organizedasfollows. In Section2, we discuss
thebackgroundon actionrepresentationthatwe assumefor the
temporalplanningproblemand the definitions relatedto the
partializationproblem.Then,in Section3 wediscusstheCSOP
encodingfor the partializationproblem. Section4 focuseson
how the CSOPencodingcanbe solved. In Section4, we also
provideagreedyvariableandvalueorderingstrategiesfor solv-
ing theencoding.Theempiricalresultsfor thisgreedyordering
strategy areprovidedin Section5. In Section6, we show how
the partializationencodingcan be extendedto handletempo-
ral planningproblemswith continuouschanges.Section7 dis-
cussestherelatedwork andSection8 presentsourconclusions.

2 Preliminaries

2.1 Action representation
The representationof actionsthat we assumein this paperis
similar to that usedon [1], and[3]. Here,we shall review the
temporalaspectsof the representation,postponingthe discus-
sionof resourceconsumptionaspectsto Section6. Eachaction
A hasa duration ��� , startingtime ����� , andanendtime 	�����
��� �
� � � . Thepreconditionsof anactionmayeitherbeinstan-
taneousor durativeandtheireffectsmayoccuratany timepoint
duringtheirexecution.Action A haspreconditions��������	������
thatmayberequiredto betruefor duration � ����� � � 	!��� �#" suchthat��� �%$ ����� � $ 	���� � $ 	!� � . Figure 1 shows graphically the
action �&
('�)�*�+,�-� � � � '�� ( '�)�*�+,�-�.*�/102*435	 � �6�879/10 � ':)�/;*<�6=6)8>?� ). In
this action, precondition�A@�
B*<�;�-� � ':� only needsto be true
at the startingpoint of � ( �����!C� 
%	!���!C� 
D�1��� ), precondition
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Load(p,t,l)

At(p,l)

At(t,l)
~At(p,l)

In(p,t)

Figure1: Action Example

�.EF
G*<�;�H� � ':� needsto be true throughoutthe durationof �
( �1���1I� 
J�1� � � 	����1I� 
K	�� � � ). Weneedaperiodof time +MLN� � to
achievetheeffect 	O@P
JQR�S�;�-� � '�� , whichindicatesthatthepack-
ageis not on theground( ���UT C� 
V�1���WLJ	��UT C� LK	!��� ), andneed
thewholeactiondurationto achievetheeffect 	8EX
JY4>Z�[� � �U� or
having thepackageinsidethetruck( ���UT I� 
J�1���\L]	!�UT I� 
K	!��� ).
For eacheffect 	 of action � thatoccursat 	!� T� , thereis a dura-
tion � ��� T� � 	!� T� " ^ ����� $ ��� T� $ 	!� T� $ 	���� in which we do not
allow any processthatleadsto theeventthatcausesQR	 to occur.
Notethatunlike preconditions,aneffect 	 canbothbepositive
(add)or negative(delete).

An importantissuein convertinga p.c. planinto ano.c. plan
is to ensurethatactionsthatarenotorderedwith respectto each
otherarefreeof any interference.In general,two actions� and�X_ interfereif `8� ^ Q,�a��bc���d�feg�-�a���M����_h�.ijbc�:�X_k� . Unlike
classicalplanning,thetemporalconcurrency between� and �X_
dependson theexacttemporalconstraints(valuesof �1� � � 	!� � in� and ��_ ). Thus,thetemporalrelationsbetweentwo interfering
actions� and ��_ dependon theexactproposition� thatrelates
themandit is possibleto have morethanoneinterferencere-
lation betweentwo actions,eachoneenforcingdifferentsetof
temporalconstraints.Therefore,we usethenotation l � �nm �Ao to
denoteaspecificinterferencerelationbetween� � �X_ asit holds
if Q,����bc�:��� and�����M����_p� i bc�:�X_k� . Eachinterferencerela-
tion l � �nm � o constrainsthetemporalordersbetween� and �X_ -
specificallywith theconstraint��	!�Uq4�� LF����� � o �frs�:	���� � o LF���Uq4�� � .
In ourexamplein Figure1, if any action � _ thatusesthepropo-
sition �S�;�-� � '�� of having theeffect of causing�X�;�-� � ':� , then �X_
is interferenceupon� with action �K
K'�)�*�+.�[� � � � ':� .
2.2 ProblemDefinition
PositionandOrder constrainedplans: A positionconstrained
plan (p.c.) is a plan where theexecutiontimeof each action is
fixedto a specifictimepoint. An order constrained(o.c.) plan
is a plan where only therelativeorderingsbetweentheactions
arespecified.

Therearetwo typesof positionconstrainedplans:serial and
parallel. In aserialpositionconstrainedplan,noconcurrency is
allowed. In a parallelpositionconstrainedplan,actionsareal-
lowedto executeconcurently. Examplesof theserialp.c. plans
are the onesreturnedby classicalplannerssuchasGRT [17],
MIPS[5] andtheir temporalcousins.Theparallelp.c.plansare
the onesreturnedby Graphplan-basedplannersandtheir tem-
poralcousinssuchasSapa[3], TGP[18], TP4[7]. Examplesof
plannersthatoutputorderconstrained(o.c.)plansareZeno[16],
HSTS[14], IxTexT[11].

Figure2 shows a valid p.c. parallelplan consistingof four
actions �d@ � �XE � ��t � �Su with their startingtime pointsfixed tov @ � v E � v t � v u andano.c planconsistingof thesamesetof ac-
tionsandachieving thesamegoals.For eachaction,theshaded
regionsshow thedurationsin whicheachpreconditionor effect
shouldhold during eachaction’s executiontime. The darker
onesrepresentthe effect and the lighters representprecondi-
tions. For example,action � @ hasa preconditionw andeffectx

; action ��t hasno preconditionsandtwo effects Q x and y .
It shouldbeeasyto seethato.c. plansprovide moreexecu-

tion flexibility thanp.c. plans. In particular, an o.c. plan can
be “dispatched”for executionin any way consistentwith the
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{Q} {G} {Q} {G}
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R

~R
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S
R
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Figure2: Examplesof p.c. ando.c. plans

relative orderingamongthe actions. In otherwords, for each
valid o.c. plan �nz|{ , theremaybemultiple valid p.c. plansthat
satisfytheorderingsin �nz|{ , whichcanbeseenasdifferentways
of dispatchingtheo.c.plan.

A measureof thetemporalqualityof aplanis its “makespan.”
The makespanof a plan is the minimum time neededto exe-
cutea plan. For a p.c. plan,themakespanis thedurationfrom
the earlieststartingtime until the latestendingtime amongall
actions. In the caseof serialp.c. plans,it is easyto seethat
the makespanwill be greaterthanor equalto the sumof the
durationsof all the actionsin the plan. For the o.c. plan, the
makespanis the minimum makespanof any of the p.c. plans
that areconsistentwith it. Given an o.c. plan � z|{ , thereis a
polynomialtime algorithmbasedon topologicalsortof theor-
deringsin � z}{ , which outputsa p.c. plan � � { whereall the
actionsareassignedearliestpossiblestarttime point according
to the orderingin �nz|{ . The makespanof that p.c. plan � � { is
thenusedasthemakespanof theoriginalo.c.plan �Rz}{ .

While generatinga p.c. plan consistentwith an o.c. plan
is easyenough,in this paper, we are interestedin the reverse
problem–thatof generatingano.c. plangivenap.c.plan.Thus,
for a given p.c. plan � � { , we want to find the optimal o.c.
planaccordingto somecriterionof temporal/executionflexibil-
ity suchassmallestmakespanor smallestnumberof orderings.
In thenext section,weshallprovideageneralCSPencodingfor
this “partializationproblem.” Findingoptimalsolutionfor this
encodingturns out to be NP-hardeven for classicalplanning
(i.e., non-durativeactions)[2]. Consequently, we shalldevelop
valueorderingstrategiesthatareableto find a reasonablesolu-
tion for theencodingin polynomialtime.

3 Formulating a CSOPencodingfor the
partialization problem

Supposethat � � { , containinga setof actions~ , andtheir start-
ing times ��� � {� , is a valid p.c. plan for sometemporalplanning
problem � . Let �Rz}{ be a partializationof � � { for theproblem� . � z}{ mustthensatisfythefollowing conditions:

1. �Rz}{ containsthesameactions~ as � � { .
2. � z}{ is executable.This requiresthat the preconditionsof

all actionsaresatisfied,andno pair of interferingactions
areallowedto executeconcurrently.

3. � z}{ is avalid planfor � . Thisrequiresthat � z|{ satisfiesall
thetop level goals(includingdeadlinegoals)of � .

4. (Optional)Theorderingson � z|{ aresuchthat � � { is alegal
dispatch(execution)of �Rz}{ .

5. (Optional)Thesetof orderingsin �Rz}{ is minimal (i.e., no
orderingis redundant)

Given that �Rz}{ is an order constrainedplan, ensuringgoal
andpreconditionsatisfactioninvolvesensuringthat(a)thereis a
causalsupportfor theconditionandthat(b) thecondition,once
supported,is not violatedby any possiblyinterveningaction.
Thefourthconstraintensuresthat �nz|{ is in somesenseanorder
generalization of � � { [10]. This is not strictly neededif our
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interestis only to improve temporalflexibility .1 Finally, the
fifth constraint� above is optionalin thesensethatany objective
functiondefinedin termsof theorderingsanyway ensuresthat� z}{ containsno redundantorderings.

In thefollowing, wewill developaCSPencodingfor finding� z}{ that capturesthe constraintsabove. This involvesspeci-
fying the variables,their domains,and the inter-variablecon-
straints.
Variables: Theencodingwill consistof bothcontinuous(tem-
poral) anddiscretevariables. The continuousvariablesrepre-
sentthetemporalaspectsof actionsin theplan,andthediscrete
variablesrepresentthelogicalcausalstructureandorderingsbe-
tweentheactionsin theplan.Specifically, for thesetof actions
in thep.c.plan � � { andtwo additionalactions�X� and �X� repre-
sentingtheinitial andfinal dummyactions,2 thesetof variables
areasfollows:
Temporal variables: For eachaction � , theencodinghasone
variable �1� � to representthe time point at which we canstart
executing � . The domain for this variable is ��)8�g���1���Z�s
� � � ��� � .
Discretevariables: Thereareseveraldifferenttypesof discrete
variablesrepresentingthecausalstructureandqualitativeorder-
ingsbetweenactions:� Causal effect: We needvariablesto specify the causal

links relationshipbetweenactions. Specifically, for each
fact �W�W�M����� anda setof actions �!��@ � �dEO�h�h���h� �d�,� such
that ����bc�:����� , we set up one variable: y#�� where�c)8�s�:yn�� ��
��!� @ � � E ���h�h� � � � .� Supportivelyrelated: Two actions � and ��_ aresupport-
ively relatedif `8���W��bc�:�����]�M�:�X_k� . For eachsuchpair,
we introduceonevariable �s��A�Ao�^ �c)8�s���s��A�Ao ��
%������ � (A �;	8�9)8��	 � A’ , or no-order between� & �X_ ). In our
examplein Figure2, someorderingvariablesare: �\�� C � I ,�\��A�U� I , �\��A�|�9  .� Destructively related (interference):Two actions � and��_ are destructively related if they interfere with each
other. For eachsuchpair, usingthe samenotationintro-
ducedat the end of Section2.1, we introduceone vari-
able l � �A� o : ��)8�g��l � �A� o ��
¡�<� �1¢ � ( ���;	8�9)8��	 � �X_ , or�F*5�,��	!� � ��_ ). For theplanin Figure2, theorderingvari-
ablesare: l �� C � t and l �� I � � .3

Following arethenecessaryconstraintsto representtherela-
tionsbetweendifferentvariables:

1. If � supportsthecondition� for � , thenthereshouldbea
supportiveorderingbetween� and � w.r.t. � :y#�� 
£�¥¤¦�g�§ � 

�

2. Causallink protections:If � supports� to � , thenevery
other action � _ that hasan effect Q,� must be prevented
from comingbetween� and � :¨.©ª�«j¬W­¯®2°�±k²A³5´�µ�¶�·H°�±�¸º¹�· l © ª oh» «�¼�¸2½¾· l © ª o ª «�¿�¸

3. Constraintsto prevent non-minimalorderings(optional):
If � doesnot support� to � , thenthereis no needfor a

1In theterminologyof [2], thepresenceof fourthconstraintensures
that À,Á�Â is a de-orderingof À © Â , while in its absenceÀ.ÁUÂ caneitherbe
a de-orderingor a re-ordering.

2 °�Ã hasno preconditionsandhaseffects that addthe factsin the
initial state. °ÅÄ hasno effect andhaspreconditionsrepresentingthe
goals.

3Sometimes,we will use the notation °Æ¼ © ° ± to representÇ © ª�ª o «�¼ and l © ª2ª o «�¼ .

supportiveorderingbetween� and � w.r.t. � :y#��£È
£�¥¤¦�g�§ � 
 � .

4. Thereareconstraintsbetweenorderingvariablesandac-
tion start time variables(as per the discussionin Sec-
tion 2.1). Specifically, we wantto enforcethatif �É� � � _then 	!��� � L£����� � o . However, becausewe only maintainone
continuousvariable ��� � in the encodingfor eachaction,
theconstraintsareasfollow:Ç © ª2ª o «�¼ËÊÍÌ|Î ª�Ï ·HÐÑÎ © ªMÒ Ì|Î ª ¸ºÓgÌ|Î ª o Ï ·�Ì|Î © ª o Ò Ì|Î ª o ¸ .l © ª2ª o «�¼ËÊÍÌ|Î ª Ï ·HÐÑÎ�Ô ©ª Ò Ì|Î ª ¸nÓsÌÑÎ ª o Ï ·HÐ�Î © ª o Ò Ì|Î ª o ¸ .l © ª2ª o «�¿ËÊÍÌ|Î ª o Ï ·HÐÑÎ © ª o Ò Ì|Î ª o ¸nÓgÌ|Î ª Ï ·�Ì|Î�Ô ©ªÕÒ Ì|Î ª ¸ .
Noticethatall values�:����� � Ö ��� � � , �:	!��� �×Ö �1� � � areconstants
for all actions� andpropositions� .

5. Deadlinesand other temporalconstraints:Thesemodel
any deadlinetypeconstraintsin termsof thetemporalvari-
ables.For example,if all thegoalsneedto beachievedbe-
fore time � � , thenwe needto adda constraint:�����fØ $ � � .
Othertemporalconstraints,suchasthosethatspecifythat
certainactionsshouldbeexecutedbefore/aftercertaintime
points, can also be handledby adding similar temporal
constraintsto theencoding.

6. Constraintsto make the orderingson �Rz|{ consistentwith� � { (optional): Let
v � be the fixedstartingtime point of

action � in theoriginalp.cplan � � { . To guaranteethat � � {is consistentwith the setof orderingsin the resultingo.c
plan � z|{ , weaddaconstraintto ensurethatthevalue

v � is
alwayspresentin thelive domainof thetemporalvariable����� .

Giventhepresenceof bothdiscreteandtemporalvariablesin
this encoding,the bestway to handleit is to view it asa lev-
eledCSPencodingwherein the satisficingassignmentsto the
discretevariablesactivateasetof temporalconstraintsbetween
thetemporalvariables.Thesetemporalconstraints,alongwith
the deadlineandorderconsistency constraintsarerepresented
asa temporalconstraintnetwork [4]. Solving the network in-
volvesmakingthedomainsandinter-variableintervalsconsis-
tentacrossall temporalconstraints[20]. Theconsistenttempo-
ral network thenrepresentsthe o.c. plan. Actions in the plan
canbe executedin any way consistentwith the temporalnet-
work (thusproviding executionflexibility).
Objective Function: Eachsatisficingassignmentfor the en-
codingabovewill correspondto apossiblepartializationof � � { ,i.e., an o.c. plan that containsall the actionsof � � { . How-
ever, someof theseassignments(o.c. plans)may have better
executionpropertiesthan the others. We can handlethis by
specifyingan objective function to be optimized,andtreating
theencodingasa ConstraintSatisfactionOptimization(CSOP)
encoding. The only requirementon the objective function is
that it bespecifiablein termsof thevariablesof theencodings.
Objective functionssuchasmakespanminimizationandorder
minimizationreadilysatisfythis requirement.

4 Solving the partialization encoding
As mentionedabove, the encoding,oncesetup,canbe solved
by a coupledframework (suchastheoneusedin LPSAT [22])
wherein a discreteCSPsolver is usedto handlethe discrete
variables,anda temporalCSPsolver is usedto handlethetem-
poralvariables.Every assignmentto thediscretevariableswill
activate a set of constraintsbetweenthe temporalvariables,
which, in conjunctionwith the constraintsof type 4 and5 can
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be solved by the temporalCSPsolver. All the temporalcon-
straintsÙ are “simple” [4] andcan thus be handledin termsof
a simpletemporalnetwork. Optimizationcanbe doneusinga
branchandboundschemeon top of this.

Notwithstandingtheforegoingdiscussion,solvingtheCSOP
encodingwill beNP-hardproblem(thisfollowsfrom [2]). Con-
sequently, we focuson developingvariableandvalueordering
strategiesfor theencoding,which canensurethat thevery first
satisficingsolution found will have a high quality in termsof
theobjective function. Clearly, thesestrategieswill dependon
the specificobjective function. In the following, we will de-
velopstrategiesthat aresuitedto objective functionsbasedon
minimizing themakespan.

4.1 Greedyvalue ordering strategiesfor solving the
encoding

In thissection,wediscussavalueorderingstrategy thatfindsan
assignmentto theCSOPencodingsuchthat thecorresponding
o.cplan � z|{ is biasedto haveareasonablygoodmakespan.The
strategy dependsheavily on the positionsof all the actionsin
theoriginal p.c. plan. Thus,it worksbasedon thefact that the
alignmentof actionsin the original p.c. plan guaranteesthat
causalityandpreservingconstraintsaresatisfied.Specifically,
all CSPvariablesareassignedvaluesasfollows:
Supporting Variables: For eachvariable yn�� representingthe
action that is usedto supportprecondition� of action � , we
chooseaction �X_ suchthat:

1. ����bc����_k� and 	!��� � o LF�1��� � in thep.c. plan � � { .
2. Thereis no action � s.t: Q,����bc�:�
� and 	!��� �Ao L�	!�Uq4�§ L����� � in � � { .
3. Thereis nootheraction Ú thatalsosatisfiestwo conditions

aboveand 	���� ÛNLN	���� � o .
Interfer enceordering variables: For eachvariablel � �A� o , we
assignvalue:

1. l � �A� o 

� if 	!� � � LF�1� � � o in � � { .
2. l � �A� o 
 ¢ if 	!��� � o LF����� � in � � { .

Other ordering variables: For all theorderingvariables�s��A� o
that are not enforcedto have value � by the assignmentsto
supportingvariablesy#��A� o , we assignvalues�s��A� o 
 � .

This strategy is backtrack-freedueto the fact that the origi-
nal p.c. plan is correct. Thus,all preconditionsof all actions
aresatisfiedandfor all supportingvariableswecanalwaysfind
an action ��_ that satisfiesthe threeconstraintslisted above to
supporta precondition� of action � . More over, one of the
temporalconstraintsthatleadto theassignmentof interference
ordering variables l � �A� o will alwaysbe satisfiedbecausethe
p.c. plan is consistentandno pair of actionsthathave interfer-
encerelationsoverlapeachother. Finally, this strategy ensures
that the orderingson � z|{ areconsistentwith the original � � { .Therefore,thesearchis backtrack-freeandno constraintis vi-
olatedbecausethereis onelegal dispatchof thefinal o.c. plan�Rz}{ , which is thestartingp.c. plan � � { . Moreover, becausethe
p.cplan � � { is oneamongmultiplep.cplansthatareconsistent
with theo.c plan � z}{ , themakespanof � z|{ is guaranteedto be
equalor betterthan � � { .Complexity: It is alsoeasyto seethat the complexity of the
greedyalgorithmis Ü���yÞÝP� � Y � Ü�� where y is thenumber
of supportingrelations,� is thenumberof actionsin theplan,Y is thenumberof interferencerelationsand Ü is thenumberof
orderingvariables.In turn y $ �aÝ#� , Y $ � E and Ü $ �ßÝ#� E
whereP is thenumberof preconditionsof anaction.Thus,the
complexity of thealgorithmis Ü����£Ý � E � .
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Figure3: TemporalLogisticswith drive inter-city actions.
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Figure4: TemporalLogisticswithoutdrive inter-city actions.

5 Empirical resultsfor Temporal Planning
Wehaveimplementedthevariableandvalueorderingdiscussed
in thelastsection(Section4.1)andtestedit with theSapaplan-
ner. Sapais a forwardstatespaceplannerthatoutputsparallel
p.c. plans. The resultsreportedin [3] show thatwhile Sapais
quite efficient, it often generatesplanswith inferior makespan
values.Ouraimis to seehow muchof animprovementourpar-
tialization algorithmprovidesfor the plansproducedby Sapa.
Thetestsuiteis the80randomtemporallogisticsprovidedwith
TP4planner. In thisplanningdomaintrucksmovepackagesbe-
tweenlocationsinsidea city andairplanesmove thembetween
cities.Figure3 and 4 show thecomparisonresultsfor only the
20 largestproblems,in termsof numberof citiesandpackages,
among80 of thatsuite.In Figure3, trucksareallowedto move
packagesbetweendifferentlocationsin differentcities,while in
theFigure4, trucksarenotallowedto do so.

The graphsshow the comparisonbetweenfour different
makespanvalues: (1) the optimal makespan(as returnedby
TGP[18]); (2) themakespanof theplan returnedby Sapa;(3)
the makespanof the o.c. resultingfrom the greedyalgorithm
for partializationdiscussedin the lastsection;and(4) thetotal
durationof all actions,which would bethemakespanvaluere-
turnedby severalserialtemporalplannerssuchasGRT [17], or
MIPS[5] if they producethesamesolutionasSapa.Noticethat
themakespanvalueof zero for theoptimalmakespanindicates
thattheproblemis not solvableby TGP.

For the first test which allows driving betweencities ac-
tion, comparedto the optimal makespan,on the average,the
makespanof the serial p.c. plans(i.e, cumulative action du-
ration) is about4.34 times larger, the makespanof the plans
outputby Sapais about3.23 times larger and the Sapaplans
after postprocessingareabout2.61 timeslonger(over the set
of 75 solvableproblems;TGPfailed to solve theother5). For
thesecondtest,without thedriving inter-city actions.Thecom-
parisonresultswith regardto optimalsolutionsare: 2.39times
longerfor serialplans,1.75timeslongerfor theplansoutputby
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Sapa,and1.31 timeslongerafter partialization. Theseresults
areavã eragedoverthesetof 69outof the80problemsthatwere
solvableby TGP.4

Thus, the partializationalgorithm improves the makespan
valuesof the plansoutput by Sapaby an averageof 20% in
the first set and 25% in the secondset. Notice also that the
sametechniquecanbe usedby GRT [17] or MIPS [5] andin
thiscase,theimprovementwouldbe40%and45%respectively
for thetwo problemsets.

The partializationand topologicalsort times are extremely
short. Specifically, they arelessthan0.1 secondsfor all prob-
lemswith thenumberof actionsrangingfrom 16 to 37. Thus,
usingourpartializationalgorithmasapost-processingstagees-
sentiallypreservesthesignificantefficiency advantagesof plan-
nerssuchasSapa,GRT andMIPS, that searchin the spaceof
p.c. plans,while improving thetemporalflexibility of theplans
generatedby thoseplanners.

Finally, it shouldbe notedthat partializationimprovesnot
only makespanbut alsoothertemporalflexibility measures.For
example,the “schedulingflexibility” of a plandefinedin [15],
which measuresthenumberof actionsthatdo not have any or-
deringrelationsamongthem,is significantlyhigherfor thepar-
tialized plans,comparedeven to the parallelp.c. plansgener-
atedby TGP. In fact, our partializationroutinecanbe applied
to theplansproducedby TGPto improvetheir schedulingflex-
ibility .

6 Temporal planning with continuouschanges
An advantageof settingup an encodingfor the partialization
problemis thattheencodingcanbegeneralizedto handleother
typesof constraintson theplan. In fact,we have extendedthe
encodingto handletemporalproblemsin the presenceof met-
ric/resourceconsumption.In thissection,webriefly summarize
theextension,andpresentsomepreliminaryempiricalresults.
Extending the Representation:Let äæåç bea valueof a metric
resource� at a time point � , we assumethat an action � that
uses� hasfollowing constraints:

1. Resourceduration: Like propositions,� uses� for a pe-
riod betweentwo time points ��� å� and 	!� å� s.t:����� $ ����å� $ 	���å� $ 	!��� .

2. Resource preconditions: At time point ����å� , theremay
be someconstraintson the value of � (such as the ac-
tion should have enoughresourcesto be executetable).
We assumethat the constraintsare in the form of com-
parisonsuch as: ä åçKè�é , where é is a constant,andè � �<L �1ê�� $ �1ë�� 
ì� . To simplify the discussion,for
the restof this section,we will only discussthe caseforè 
 ê . Theothercasesareverysimilar.

3. Resource effects: Actions may increase/decreasean
amountí�å� of � duringtheperiodfrom �1��å� to 	!��å� .

Extending the encoding: To be able to output the o.c plan
that is resource-consistent,which meansthat all resourcere-
latedconstraintsäæåî çHïð ê é aresatisfiedby thesetof orderings
in theo.cplan,we needto introducea new setof variablesand
constraintsto ourgeneralCSOPencodingdiscussedin previous
sections.Thedetailsareasfollows:
Variables: For eachpair of actions � and �X_ that use the
sameresource� , we introduceone variable ñ å�A� o to repre-
sentthe resource-enforcedorderingbetweenthem (similar to

4While TGPcouldnotsolveseveralproblemsin thistestsuite,Sapa
is ableto solve all 80 of them.
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Figure5: Resultsfor temporalproblemswith resources

theway �\å�A� o representsthepreconditionenforcedorderings;
seeSection3). If � and ��_ can not use the sameresource
at the sametime, then �c)8�s� ñ å�A�Ao �£
ò�<� �1¢ � , otherwise�c)8�s� ñ å�A� o �Å
ó��� �1¢���� � .
Constraints: Therearetwo additionaltypesof constraints:

1. Constraints representing the relations between the
resource-relatedorderingsandactionstarttimevariables:ñVôª2ª o «�¼ËÊÍÌ|Î ª Ï ·HÐÑÎ ôª Ò Ì|Î ª ¸RÓgÌ|Î ª o Ï ·�Ì|Î ôª o Ò Ì|Î ª o ¸ñ ôª2ª o «�¿ËÊÍÌ|Î ª o Ï ·HÐÑÎ ôª o Ò Ì|Î ª o ¸nÓgÌ|Î ª Ï ·�Ì|Î ôª Ò Ì|Î ª ¸
Notice that the values ���1��å� Ö ��� � � and ��	!��å� Ö ��� � � are
constantsfor a givenaction � thatusesresource� .

2. Constraintsto guaranteethe resourceconsistency for all
actions: Specifically, for a given action � that usesre-
source � and has a resourceconstraint ä åî çHïð ê é , let
�8�d@ � �XE � �h���h���h� �X�9� be a setof actionsthat alsouse � andY�>A=�� å be the valueof � at the initial state.We setup one
constraintthatinvolvesall variablesñ å�AõH� asfollows:

Y�>A=�� å � ö� õ6÷ ï � í å� õ � ö� õ:ø ï �nm ù ïð õ|ú.û
í å� õ ê é

(where � � � å � is shorthandfor ñ å� õ � 

� ). Thecon-
straint above ensuresthat regardlessof how the actions� � that have no ordering relation with � ( ñ å� õ � 
 � )
are alignedtemporallywith � , the orderingsbetween�
and other actionsguaranteethat � hasenoughresource
( äæåî çHïð ê é ) to execute.

Greedyvalue ordering: Besidethedefault variableandvalue
orderingusedby any solver thatwe chooseto solve our CSOP
encoding,wecanalsousethevalueorderingsimilarto thestrat-
egy usedto assignvaluesto thecausalandorderingvariablesin
Section4.1. Specifically, the variablesñ å�A� o canbe assigned
valuesbasedontheirfixedstartingtimesin theoriginalp.cplan� � { asfollows:� ñ å�A� o 

� if 	!��å� LF�1��å� o in � � { .� ñ å�A� o 
 ¢ if 	!��å�Ao LF����å� in � � { .� ñ å�A�Ao 
 � otherwise.

Due to the fact that the original p.c plan � � { is correct,it is
easyto seethat thevalueorderingdiscussedabovewill leadto
abacktrack-freesearchoverthesetof resource-relatedordering
variables(donotcauseany temporalor resourceinconsistency).
Preliminary Empirical Evaluation: We implementedthis
valueorderingstrategy andtestedit with asetof logisticsprob-
lems in which different trucks and airplanesconsumefuel at
different rateswhile moving packages.They alsoneedto re-
fuel whenthey do not have enoughfuel in their tank to finish
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the trip. We testedwith 10 problemsandtheresultsareshown
in Figureü 5. Currently, thereis no plannerthat canhandlere-
sourcesandoutputoptimalmakespan.Therefore,we compare
only thetotalduration,themakespanof parallelplansoutputby
Sapa,andthemakespanvaluesafterpartialization.Theresults
show thatonaverage,thebacktrack-freevalueorderingstrategy
improvesthemakespanvalueby 22%.

7 RelatedWork
The complementarytradeoffs provided by the p.c. and o.c.
planshave beenrecognizedin classicalplanning. Oneof the
earliestefforts to attemptto improve thetemporalflexibility of
planswas the work by Fadeand Regnier [6] who discussed
an approachfor removing redundantorderingsfrom the plans
generatedby STRIPSsystem. Later work by Mooney [13]
andKambhampatiandKedar[10]characterizedthis partializa-
tion processasoneof explanation-basedordergeneralization.
Backstrom[2] categorized approachesfor partialization into
“de-ordering”approachesand “re-ordering” approaches.The
ordergeneralizationalgorithmsfall underthede-orderingcate-
gory. Hewasalsothefirst to pointout theNP-hardnessof max-
imal partialization,andto characterizethepreviousalgorithms
asgreedyapproaches.

Thework presentedin this papercanbeseenasa principled
generalizationof thepartializationapproachesto metrictempo-
ral planning. Our novel contributionsinclude: (1) providing a
CSPencodingfor thepartializationproblemand(2) character-
izing the greedyalgorithmsfor partializationasspecificvalue
orderingstrategieson thisencoding.In termsof theformer, our
partializationencodingis generalin that it encompassesboth
de-orderingand re-orderingpartializations–basedon whether
or not we include the optional constraintsto make the order-
ingson �nz|{ consistentwith � � { . In termsof thelatter, thework
in [21] and[10] canbeseenasproviding a greedyvalueorder-
ing strategy over thepartializationencodingfor classicalplans.
However, unlike thestrategieswepresentedin Sections4.1and
6, theirvalueorderingstrategiesarenotsensitiveto any specific
optimizationmetric.

It is interestingto notethatour encodingfor partializationis
closelyrelatedto the so-called“causalencodings”[8]. Unlike
casualencodings,which needto considersupportinga precon-
dition or goal with every possibleaction in the action library,
the partializationencodingsonly needto considerthe actions
thatarepresentin � � { . In this sense,they aresimilar to theen-
codingsfor replanningandplanreusedescribedin [12]. Also,
unlike causalencodings,the encodingsfor partializationde-
mandoptimizing ratherthan satisficingsolutions. Finally, in
contrastto our encodingsfor partializationwhich specifically
handlemetric temporalplans,causalencodingsin [8] arelim-
ited to classicaldomains.

8 Conclusion
In thispaperweaddressedtheproblemof post-processingposi-
tion constrainedmetric temporalplansto improve their execu-
tion flexibility . We developeda generalCSPencodingfor par-
tializing position-constrainedtemporalplans,that canbe opti-
mizedunderanobjectivefunctiondealingwith avarietyof tem-
poralflexibility criteria,suchasmakespan.We thenpresented
greedyvalueorderingstrategiesthataredesignedto efficiently
generatesolutionswith goodmakespanvaluesfor theseencod-
ings.Weevaluatedtheeffectivenessof ourgreedypartialization
approachin thecontext of a recentmetrictemporalplannerthat

producesp.c.plans.Our resultsdemonstratethatthepartializa-
tion approachis ableto providebetween25-40%improvement
in themakespan,with extremelylittle overhead.Wealsobriefly
discussedan extensionof our partializationapproachfor tem-
poralplanswith resourceconstraints,anddemonstratedempir-
ically thatpartializationcanleadto up to 22%improvementof
themakespan.Currently, wearefocusingondevelopinggreedy
valueorderingstrategiesthataresensitiveto othertypesof tem-
poralflexibility measuresbesidesmakespan.
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Abstract

The paper considers the extensions to the domain-
independent Model Checking Integrated Planning Sys-
tem (MIPS) to pre-processes and solve mixed propo-
sitional and numerical planning problems in PDDL+
syntax for the 3rd international planning competition.

The static analyzer grounds all predicates and functors,
distinguishes constant from fluent atoms and numeri-
cal constants from variables. It further approximates
the bounding intervals for the resource variables, and
encodes their possible finite domain. Pre-compilation
also establishes symmetries within the object set and
dependencies among the set of operators.

Based on the inferred information, the directed search
exploration algorithm applies critical path schedul-
ing to parallelize sequential plans and to refine a re-
laxed plan graph heuristic, while different pruning ap-
proaches effectively reduce the branching factor.

Introduction
For the 2002’s international planning competition new
levels of the planning domain description language
PDDL+ (Fox & Long 2001) have been designed to
specify problems that include durative actions and re-
sources. While Level 1 considers pure propositional
planning, Level 2 also includes numerical resources, and
Level 3 additionally includes actions with durations.

At the moment four Level 2-3 competition problems
are published. Desert-Rat is a domain with an infi-
nite branching factor which was manually discretized
in (Edelkamp 2001b): n supply tanks are available as
fuel resources for trucks to finally reach the goal dis-
tance d from the base. Zeno-Travel requires to fly pas-
sengers with aircrafts to their respective target airports.
Boarding and debarking consumes a constant amount
of time. Each plane has a determined capacity for fuel,
while flying aircrafts changes the fuel level according
to the distances between the cities and with respect to
two different speeds. Fuel can be restored by refueling
the aircraft. Jugs-and-Water problems model two jugs,
namely Jug-1 and Jug-2. Initially, both are empty and

Copyright c© 2002, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

have a predefined capacity. It is allowed to completely
fill either Jug-1 or Jug-2 from a tap, to fill Jug-1 from
Jug-2, or Jug-2 from Jug-1, and to empty either jug on
the ground. The goal is to achieve content 1 in Jug-
1. Taxi is a variant of a transportation domain with
a representation of locations using numeric coordinates
and distance as a calculated function of those values.
In the example problem there are seven people located
somewhere on the grid-structured map and four taxis
serving them.

This paper presents extensions to the Model Check-
ing Integrated Planning System MIPS (Edelkamp &
Helmert 2001) to cope with this new expressiveness.
It summarizes and extends precursory work as follows.
In (Edelkamp & Helmert 1999) we showed how a static
analyzer can cluster atoms into mutually exclusive fact
groups to minimize the state description length, a tech-
nique especially important for symbolic planning strate-
gies (Edelkamp & Reffel 1999). In (Edelkamp 2001b)
first results on PDDL+ planning problems were pre-
sented. The preliminary treatment exemplifies the pars-
ing process in Zeno-Travel and Desert-Rats. More-
over, propositional heuristics and manual branching
cuts are applied to find sequential plans. In (Edelkamp
2002a) we proposed critical path scheduling for con-
current plans, an efficient method for detecting and
using symmetry, and refinements to the relaxed plan-
ning heuristic. Explicit (Edelkamp 2001c) and symbolic
pattern databases (Edelkamp 2002b) are off-line gener-
ated estimators referring to completely explored prob-
lem abstractions. In this unifying treatment we newly
contribute two approximate exploration techniques to
bound and to fix numerical domains, an any-time search
wrapper to produce optimal plans and a numerical ex-
tension to the FF plan graph heuristic, yielding first
plans in the Taxi domain.

The organization of the paper is as follows. To intro-
duce the underlying problem structure we provide a for-
mal characterization of mixed propositional and numer-
ical planning problems. We then present a scheduling
algorithm compacting a sequential plan into a concur-
rent plan with minimal critical path length. Next we
introduce our static analyzer that infers problem de-
scriptions according to the given framework and that
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deduces all different kinds of information needed for
exploration: dependencies, symmetry, bounds and en-
codings of domains for resource variables. In the experi-
mental section we provide plans to challenging planning
problems to all four benchmark domains. Finally, we
reflect the current state of the MIPS planning system
and draw conclusions.

Problem Structure

A PDDL+ domain specification contains predicates and
functions, the basis to define parameterized actions
with pre- and postconditions. Static analysis usually
ground predicates and functions, by instantiating all
parameters of the operators. Grounded predicates are
called atoms, and grounded functions are called re-
source variables.

State Space

Let A be the set of propositional atoms and V be the set
of variables in domain D, indexed by an isomorphism
φ : B → {1, . . . , |V |} for another set of propositional
atoms B, A ∩ B = ∅. The domain D is the set of real
numbers, but, as we will see later on, for each variable
D can be individually refined to a smaller set. Proba-
bly the most important variable is total-time, which in-
creases monotonically with each applied operator. The
difference in total-time before and after an applied ac-
tion is its duration. If the duration is zero an action is
called instantaneous.

A Mixed Numerical and Propositional Planning Prob-
lem is a state space problem P =< S,O, I,G >, with
S ⊆ 2A × D|B| being the set of states, 2A being the
power set notation of A, I ∈ S, G ⊆ S, and O being
the set of operators that transform states into states.
An operator o = (α, β, γ, δ) ∈ O has propositional pre-
conditions α, propositional effects β, numerical precon-
ditions γ, and numerical effects δ.

It is sufficient to assume that the propositional part
satisfies the STRIPS setting, where α ⊆ A is the pre-
condition and β = (βa, βd) is the effect with add list
βa ⊆ A, and the delete list βd ⊆ A. For the numerical
part γ is a set of constraints of numerical variables and
constants in the assumed calculus. Similarly, δ is a set
of rules transforming constraints into others.

Numerical Preconditions and Effects

For γ (and δ) we assume variables to be conditioned
on (or assigned to) the term evaluation of arithmetic
formula trees in set T as follows.

A numerical constraint / numerical precondition c ∈
γ is a triple c = (hc,⊗, tc) where hc ∈ B, ⊗ ∈
{≤, <,=, >,≥}, and tc ∈ Tc. A numerical modifier /
numerical effect m ∈ δ, is a triple m = (hm,⊕, tm)
where hm ∈ B, ⊕ ∈ {←, ↑, ↓}, and tm ∈ T .

There is no fundamental difference to more general
preconditions and effects. Our current implementation

generates one generic precondition tree, thereby includ-
ing boolean and logical operators and arithmetic sub-
trees.

Semantics
An operator o = (α, β, γ, δ) ∈ O applied to a state
S = (Sp, Sn) ∈ 2A × D|B|, Sp ∈ 2A and Sn ∈ D|B|,
yields a successor state S′ = (S′

p, S
′
n) ∈ 2A × D|B| as

follows. If α ⊆ Sp and Sn satisfies all c ∈ γ then
S′

p = Sp ∪ βa \ βd and for all m ∈ δ the vector Sn is
updated.

A vector Sn = (S1, . . . , S|B|) of numerical variables
satisfies a numerical constraint c = (hc,⊗, tc) ∈ γ if
sφ(hc) ⊗ eval(Sn, tc) is true, where eval(Sn, tc) ∈ D
is obtained by substituting all b ∈ B in tc by Sφ(hc)

followed by a simplification of tc. Similarly, the vec-
tor Sn = (S1, . . . , S|B|) is updated to vector S′

n =
(S′

1, . . . , S
′
|B|) by modifier m = (hm,⊗, tm) ∈ δ, if

• S′
φ(hm) = eval(Sn, tm) for ⊕ = ←,

• S′
φ(hm) = Sφ(hm) + eval(Sn, tm) for ⊕ = ↑, and

• S′
φ(hm) = Sφ(hm) − eval(Sn, tm) for ⊕ = ↓.

Sequential and Concurrent Plans
A sequential plan πs = (o1, . . . , ok) is an ordered se-
quence of operators oi ∈ O, i ∈ {1, . . . , k}, that trans-
form the initial state I into one of the goal states
G ∈ G, i.e. there exists a sequence of states Si ∈ S,
i ∈ {0, . . . , k}, with S0 = I, Sk = G and Si is the
outcome of applying oi to Si−1, i ∈ {1, . . . , k}.

Schedules order the operators along the time line,
i.e. the value of total-time before applying oi is re-
quired to start at ti. In optimal schedules each event
either starts or ends at the start or end time of an-
other event for a possibly exponential but finite num-
ber of valid schedules. Therefore a concurrent plan
πc = ((o1, t1), . . . , (ok, tk)) of πs is an optimal sched-
ule of a sequential plan. If ti = tj for i < j then oi is
executed before oj . The definition is sound, since next
section will show that optimal schedules with respect
to sequential exist and can be computed efficiently.

Scheduling
An operator o is said to precede another operator o′ in
O, o ≤o o′ for short, if and only if o and o′ are de-
pendent and be the index of operator o not larger than
the index of o′. Obviously, ≤o defines a partial order
relation. Therefore, given a sequential plan o1, . . . , ok

to the PDDL+ planning problem produces an acyclic
set of precedence constraints oi ≤o oj , 1 ≤ i < j ≤ k,
on the set of operators. It is also important to observe
that the constraints are already topologically sorted ac-
cording to ≤o by taking the ordering {1, . . . , k}.
Critical Path Analysis
The Project Evaluation and Review Technique (PERT)
is a critical path analysis algorithm usually applied to
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Procedure Critical-Path
for all i ∈ {1, . . . , k}

e(oi) = d(oi)
for all j ∈ {1, . . . , i− 1}

if (oj ≤o oi)
if e(oi) < e(oj) + d(oi)

e(oi) ← e(oj) + d(oi)
return e(ok)

Table 1: Algorithm to Compute Critical Path Length.

project management problems. The critical path is es-
tablished, when the total time for activities on this
path is greater than any other path of operators. A
delay in any tasks on the critical path leads to a de-
lay in the project. The heart of PERT is a network
of tasks needed to complete a project, showing the or-
der in which the tasks need to be completed and their
dependencies between them. Fortunately, as shown in
Table 1, PERT scheduling reduces to a derivate of Di-
jkstra’s single shortest path algorithm within acyclic
graphs (Cormen, Leiserson, & Rivest 1990).

Usually, duration d(oi) is the difference of time
stamps in the sequential plan. Since PDDL+ provides
different objective function c, e.g. the sum of total-time
and total-fuel-used in Zeno-Travel, d(oi) can be fixed as
c(si)− c(si−1) for i ∈ {1, . . . , k}.

The time and space complexities of the algorithm
Critical-Path are O(k2), where k is the length of the
sequential plan. Using an adjacency list representation
these efforts can be reduced to time and space propor-
tional to the number of vertices and edges in the de-
pendence graph.

Static Analysis

Based on the number of counted objects, a unique index
for each grounded predicate and function is devised. A
relaxed, so-called fact-space exploration on the propo-
sitional part of the problem determines a superset of
all reachable atoms and allows to distinguish constant
from fluent atoms, since only the latter ones are reached
by exploration (Edelkamp & Helmert 1999). Fact-
space exploration also determines all grounded opera-
tors. Once all preconditions are satisfied and grounded,
the symbolic effect-lists are instantiated.

Atoms are clustered into groups, so that each state
in the planning space can be expressed as a conjunct
of atoms selected from each group. In the Zeno-Travel
domain, the unique position of the passengers and the
unique position of each plane determine the partition.

According to the formal characterization of numeri-
cal modifiers and synchronous to fact space exploration
of the propositional part of the problem, all heads of nu-
merical formulae in the effect lists are grounded. This

allows to early distinguish constant numerical quanti-
ties from variable ones.

In ZenoTravel only the current fuel level for each
plane, the total amount of consumed fuel and the sim-
ulation time are variable. All other numerical predi-
cates are constants to be are substituted in the formula-
bodies. This simplifies the grounded operators, and the
formula trees of most numerical conditions and assign-
ments reduce to constants. However, some operators
like refueling in Zeno-Travel depend on fluent state
variables that have to be instantiated on the fly.

Dependent Operators
Two grounded operators o = (α, β, γ, δ) and o′ =
(α′, β′, γ′, δ′) in O are dependent, if one of the following
three conditions holds:
1. α ∩ (β′

a ∪ β′
b) 6= ∅, (βa ∪ βb) ∩ α′ 6= ∅,

2. For one c = (hc,⊗, tc) ∈ γ and one m′ =
(h′

m,⊕, t′m) ∈ δ′ hc ∈ LeafVariables(t′m) or h′
m ∈

LeafVariables(tc),
3. For one c′ = (h′

c,⊗, t′c) ∈ γ′ and one m =
(hm,⊕, tm) ∈ δ: hm ∈ LeafVariables(t′c) or h′

c ∈
LeafVariables(tm),
where LeafVariables(t) is defined as the union of all

variable-leaves in the formula tree t ∈ T .
The coarse approximation of the exact dependence

relation can be refined according to the PDDL+ guide-
lines for mutex operators, but for our purposes to define
a preference relationship for improving sequential plans
this approach is sufficient. In our implementation the
dependence relation is computed beforehand and tabu-
larized for a constant time access. It also allows to de-
tect transpositions of two operators o1 and o2 for prune
exploration in one case, which is called a transposition
cut.

To detect domains for which any schedule leads to no
improvement. a planning domain is said to be inher-
ently sequential if all operators in any sequential plan
are dependent or instantaneous. The static Analyzer
checks by testing each operator pair. While DesertRats
and Jugs-and-Water are inherently sequential, Zeno-
Travel and Taxi are not.

Grounding Variables
Even plan existence for numerical planning is unde-
cidable, since PDDL+ planning reduces to the halting
problem for abacus programs (Helmert 2002). If the
state space is finite then PDDL+ problems are trivially
decidable, since planning reduces to graph search. Since
|2A| is already finite, the crucial part is to show that
D|B| is finite, which is true if both D and B are finite.
Since |B| is finite, the cardinalities of variable domains
are good indicators for the hardness of the problems.

Static analysis can approximate variable domains by
finding bounding intervals for the variables and by re-
fining the actual contents of a finite domain intervals
by another exploration scheme.
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Procedure Bounding
(min, max) ← (In, In)
while (min, max) 6= (min′, max′)

for all o ∈ O
if o.test(min, max)

(min′′, max′′) ← o.restrict(min, max)
(min′, max′) ← o.update(min′′, max′′)
(min′, max′) ←

(min, max) ∪ (min′, max′)
(min, max) ← (min′, max′)

return (min, max)

Table 2: Algorithm to Compute Bounding Intervals for
Variables.

We will use the domain information only for heuris-
tic evaluation, so that lack of accurancy for this phase
will only decrease the algorithms’ performance, not its
overall applicability.

Bounding Variables For finding bounding intervals
for the variables we apply the strategy of Table 2.

At first, the minimal and maximal resource vectors
(min, max) are initialized to the value vector of the ini-
tial state. In the while-loop this vector is enlarged until
a fixpoint is reached. In each iteration every opera-
tor is tested for applicability by checking all numeri-
cal preconditions with the current vector of intervals
(min, max). The corresponding variable bounds were
propergated in the arithmetic precondition trees. If the
preconditions are satisfied, the intervals in (min, max)
are restricted with constraint propergation within the
set of preconditions expressions (Meriott & Stuckey
1998). Updating now takes the restricted vector of in-
terval (min′′, max′′) and applies the effect lists to it. Af-
terwards the resulting intervals (min′, max′) are merged
with the original vector pair (min, max).

Unfortunately, the algorithm might not terminate for
unbounded variable like total-time. The natural op-
tion we take is to allow each operator to apply only
once. Since the above approximation scheme is used
for a relaxed scheduling heurstic and not for the overall
planning process this is not a severe restriction, since
the relaxed plan graph construction also allows each
operator only to be invoked at most once.

The Taxi-Domain has nine variables: total-time,
street taxi1, street taxi2, street taxi3, street
taxi4, avenue taxi1, avenue taxi2, avenue taxi3,
and avenue taxi4. Since total-time is always as-
sumed to be unbounded the process yields the inter-
val [24, 94] for the street-* variables and [1, 97] for all
avenue-*-variables.

Procedure Instantiate
for all (r, v) ∈ In

Q.enqueue(r, v)
Dr ← {v}

while Q 6= ∅
(r, v) ← Q.dequeue()
for all γ ∧ m = (hm,⊕, tm) ∈ γ

if r ∈ LeafVariables(tm)
for all S ← generate(tm, r,⊗)

if S ∈ (min, max)
v ← eval(tm, S)
Q.enqueue(hm, v)
Dhm

← Dhm
∪ {v}

Table 3: Algorithm to Instantiate Variable.

Instantiating Variables as depicted in Table 3 ne-
glects preconditions and computes a fixpoint for the
variable domains by considering the numerical effects
γ in the operator set only. Similar to fact space ex-
ploration we utilize a queue Q, containing possible
variable-value pairs. First of all, the initial pairs are in-
serted into Q. As long as there is one pending element
(r, v) in Q it is extracted and all effects tm containing
r as a leaf variables are selected. Now all combinations
of domain values for the other variables are generated
and evaluated. All new pairs that respect the estab-
lished bounds (min, max) are added to the queue. In
Dr we maintain the current set of instantiation of vari-
able r. Depending on the number of variable occuring
in the evaluation tree and their corresponding domain
sizes, generate is of exponential nature. However, in
practice the number of occuring variables in the sim-
plified expression tree are bounded by one or two leaf
variables yielding a quick exploration scheme.

In the Taxi -Domain the instantiations for the
streets-variables are: 50, 48, 54, 80, 34, 68, 73, 40,
94, 75, 78, 43, 66, 27, and 24, while the the instantia-
tions for the avenue-variables are: 50, 54, 94, 46, 72, 1,
97, 36, 85, 49, 4, 47, 80, 39, and 3.

Symmetries
The core observation for symmetry reduction in a plan-
ning problem is that the symbolic definition of actions
in the domain description language cannot distinguish
between different objects in problem instances. This
is due to the fact that predicates, functions and ac-
tions are parameterized with objects that only have to
respect the specified type. Therefore, the main restric-
tion to symmetry within a type class are the current
state and the goal state.

Symmetry dedection exploits information on single-
valued invariances that are used by our planner to
build mutually exclusive fact groups. In (Edelkamp
& Helmert 1999) fact groups are defined by balanc-
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ing, merging and instantiating predicates. If we de-
fine #predi(p1, . . . , pi−1, pi+1, . . . , pn) as the number of
objects pi for which the fact (pred p1 . . . pn) is true
than we establish a single-valued invariances at i if
#predi(p1, . . . , pi−1, pi+1, . . . , pn) = 1. Object pi is the
representative of the invariance. More elaborated bal-
ance conditions require predicates mergings.

Comparing all instantiations of (pred p1 . . . pn)
for object pi and p′i now indicates symmetry in
the planning domain. If the set of instantiations
predi(p1, . . . , pi−1, pi+1, . . . , pn) match for all predicates
pred, a symmetry between pi and p′i is found. Based
on this observation in (Edelkamp 2002a) we give an ef-
ficient algorithm for reducing symmetry of objects to
symmetry of fact groups. All pre-compiled symmetries
of groups were tested for the current and goal state. If
the assumed isomorphism between the two group rep-
resentatives is verified all operators that apply changes
to one of objects are pruned.

In Desert-Rats all supply-tanks are found to be sym-
metric, such that in case their fuel level and position
match, any operator will consider just one of them. In
Zeno-Travel all passengers share symmetry. In Taxi at
least all taxis are found to be isomorphic.

Heuristics
For the propositional part we have implemented the
relaxed planning heuristic hf (Hoffmann & Nebel
2001) and the pattern database heuristic hp (Edelkamp
2001c).

Merging Propositional Estimates
One suitable combination of hf and hp heurstics is to
comparing the retrieved result of the pattern database
according to a problem abstraction with the set of op-
erators in the plan graph that respect the pattern. The
intuition is to slice the relaxed plan graph according
to the given problem abstractions. If in the backward
exploration an add-effect is selected the match will be
assigned to its fact group. If the number of matches
in an abstraction is smaller than the retrieved pattern
database value it will be incresed by the lacking amount.

Coarse Numerical Estimate
If the goal state contains numerical information, with
hn we approximate the number of steps necessary to
achieve the numerical goal independent of the proposi-
tional setting. For each variable r we take the differ-
ence dr of the goal value gr and the current variables
instantiation cr as an indicator. Since numbers can be
arbitrary small and large, we normalize the difference
values, deviding the d by their maximal absolute change
ar.

Once more we propose a relaxed fixpoint exploration
to approximate the vector a of maximal change of the
numerical quantities ar by neglecting numerical precon-
ditions to keep the exploration polynomial. For each
operator and given a we instantiate the effect lists and

determine if the ar for a quantity r has to be increased
or not. We terminate in case of no further change.

Scheduling Heuristic
Critical-path analysis can also guide the plan finding
phase. We derive a heuristic estimate hs that schedules
relaxed plans. Reacall that for each state FF solves
a relaxed planning problem explicitly, constructing the
relaxed plan as a sequence of grounded operators. Dif-
ferent to the heuristic estimate that only considers the
length of the greedily extracted plan, we also take the
sequence of operators into account. As the success of
the planner has shown, even though relaxed plans pro-
vide neither a lower nor an upper bounds they are very
informative.

However, schedules are not additive. Adding the two
PERT-schedules for the path pg(u) to a state and for the
sequence of actions ph(u) in the relaxed plan is not as
accurate as the PERT-schedule of the combined paths
pg(u) ◦ ph(u). Therefore, the classical merit function of
A*-like search engines f = g + h for generating path
length g and heuristic estimate h is not immediate for
concurrent planning. Therefore, we define the schedule
heurstic hs as the critical path of pg ◦ ph minus the
critical path of pg.

Combined Relaxed Plan Heuristic
The refined combination of propositional and numeri-
cal information in a unified plan graph heursitic is per-
formed in planning problems, in which at least some
numerical quantities are grounded to finite domains.

If numerical variables are finite, the corresponding
operators can be simplified by grounding the variables
to their respective instantiations. However, to avoid
the extensive blow-up in the number of operators, we
decided to keep numerical values and explicitly excecute
preconditioning and application numerical effect in the
relaxed plan exploration.

In the forward phase only effects were applied to gen-
erate the layered structure of the relaxed plan graph,
while in the backward phase we also apply precondi-
tions for propergation. We restrict to simple variable-
value equalities that fix values and fire further effects
in actions.

In Taxi this combined relaxed plan graph heuristic hc

integrates driving actions to the backward phase that
were not present in the relaxed plan of a purely propo-
sitional estimate.

Refining Relaxed Plan Estimate
The process of refining estimates (Edelkamp 2002a)
criticizes the retrieved relaxed plan with complete solu-
tions to problem abstractions. It generalizes the idea of
mobile analysis in (Long & Fox 2001). From the set of
operators in the relaxed plan a subset is extracted and
all preconditions considering the selected fact groups
are collected. The dependency graph for the operators
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Procedure Any-Time
G ← ∅
α ←∞
Open ← S
while Open 6= ∅

S ← Open.Extract()
for all S′ ∈ expand(S)

if (S′ ∈ G)
cp ← Critical-Path()
if cp < α

α ← cp
G ← S′

else
Open.Change(S′)

return G

Table 4: General Any-Time Search Algorithm.

fulfilling the preconditions based on the dependency re-
lation given above will often contain cycles. An ex-
tended linear time topological sorting algorithm will
include a new operator if a cycle is encountered.

Search Strategies

We have implemented A* (Pearl 1985) with the option
of scaling the influence of the estimate, thus including
the extremes of breadth-first and best-first search. In
pure propositional planning we prefer a dial as the pri-
ority queue implementation, while in general numerical
planning we chose weak-heaps (Edelkamp & Stiegeler
2002). For very large exploration problems we provide
IDA* (Korf 1985) with and without bit-state hashing.
Hoffmann’s Enforced-Hill-Climbing algorithm (Hoff-
mann & Nebel 2001) has also been integrated. For
symbolic exploration MIPS also provides the sym-
bolic breadth-first and symbolic A* search (Edelkamp
2001a). Even if non-deterministic domain are not yet
available in PDDL syntax, weak and strong planning
algorithms (Cimatti, Roveri, & Traverso 1998) are also
part of the portfolio.

Any-Time Search
Short sequential plans do not necessarily imply short
concurrent plans and vice versa. Even scheduling ex-
tended sequential plans with relaxed plan graph approx-
imations will not necessarily yield optimal plans. Nev-
ertheless, as the experiments highlight the quality of
the established schedules is considerably good. Table 4
indicates how to wrap a heuristic search planner for so-
called any-time performance, gradually improving the
plan quality.

For grounded PDDL+ problems with finite state-
spaces the any-time extension for any heuristic search
algorithm that changes the enumeration order in the
tree expansion of the problem graph is complete and

optimal. A more general result is given by Pearl (Pearl
1985): If the cost of every infinite path is unbounded,
A* search fully enumerates state-space and preserves
optimality. This indicates that any-time heuristic
search algorithms eventually find optimal plans even
in infinite state spaces.

Elimination of Duplicates
One subtle problem arises when eliminating dupli-
cate states to avoid redundant work. Consider the
two sequences (zoom city-a city-c plane), (board
dan plane), (refuel plane), (zoom city-c city-a
plane), (board scott), (debark dan), (refuel
plane), and (board scott), (zoom city-a city-c
plane), (board dan plane), (refuel plane), (zoom
city-c city-a plane), (debark dan), (refuel
plane) in the Zeno-Travel domain. The set of opera-
tors is the same and so is the resulting state. However,
the concurrent plan for the first sequence is shorter than
the schedule for the second one, since in the previous
case the time for boarding scott is compensated by the
remaining two operators.

Therefore, to preserve completeness and optimality
is to compute and store schedules instead of states.

Experiments
We apply Any-Time Weighted A* for hf , hp and the
schedule heuristics hs and hc. To both sequential es-
timates the numerical offset hn is added. The search
depth of the plan, the number of expanded and the
number of stored states are denoted by d, e and s, re-
spectively. The sequential plan quality is depicted as
sseq and the corresponding concurrent plan length is
abbreviated by scon. CPU time is denoted by t and
given in seconds on a Sun Ultra Workstation, 248 MHz.

Zeno-Travel
The results for Zeno-1 are as follows.

sseq scon e s d t
hp + hn 370 290 11 57 8 0.00s
hf + hn 400 380 8 41 6 0.00s

376.667 330 24 105 7 0.00s
340 290 62 270 7 0.01s

hs 370 290 10 51 8 0.01s
h ≡ 0 400 380 429 1799 6 0.08s

390 340 1975 8191 7 0.36s
340 290 1982 8223 7 0.36s

Both hp + hn and hs find the optimum as the first
established plan, while hf + hn needs some efforts to
consolidate. The optimal plan is:

0: (board scott plane city-a) [30]
30: (zoom plane city-a city-c) [100]
130: (board ernie plane city-c) [30]
130: (refuel plane city-c) [40]
170: (zoom plane city-c city-d) [100]
270: (debark scott plane city-d) [20]
270: (debark ernie plane city-d) [20]
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Different to Zeno-1 Zeno-2 the objective is to min-
imze fuel consumption.

sseq scon e s d t
hp + hn 666.66 666.66 8 41 6 0.00s
hf + hn 666.66 666.66 111 520 7 0.02s
hs - - - - - -
h ≡ 0 666.66 666.66 429 1799 6 0.07s

The search with hs fails, since zero-valued operators
generate large plateaus, so that the search generates
scheduled plans with almost arbitrary number of oper-
ators without eventually reaching the goal. The best
concurrent plan is:

0: (board scott plane city-a) [0]
0: (fly plane city-a city-c) [333.33]
333.33: (board ernie plane city-c) [0]
333.33: (board dan plane city-c) [0]
333.33: (fly plane city-c city-d) [333.33]
666.66: (debark scott plane city-d) [0]
666.66: (debark ernie plane city-d) [0]

For Zeno-3 the sum of time and fuel consumption
has to be minimized with the following outcome.

sseq scon e s d t
hp + hn 1370 1290 11 57 8 0.00s

1253.33 1173.33 30 145 8 0.01s
1096.67 1046.66 150 727 7 0.04s

hf + hn 1066.66 1046.66 8 41 6 0.00s
hs 1093.33 1046.66 7 45 7 0.01s
h ≡ 0 1066.66 1046.66 429 1799 6 0.08s

The optimal schedule is:

0: (board scott plane city-a) [30]
30: (fly plane city-a city-c) [483.33]
513.33: (board ernie plane city-c) [30]
513.33: (board dan plane city-c) [30]
543.33: (fly plane city-c city-d) [483.33]
1026.66: (debark scott plane city-d) [20]
1026.66: (debark ernie plane city-d) [20]

Since all problems are solved in less than a second,
the efficiency is difficult to interpret. Therefore, we
evaluate a more involved example of (Edelkamp 2001b),
where the third passenger also has a pre-specified tar-
get location. The objective function is total-time. The
following table depicts the improvement of plan quality
in this extended Zeno-Travel-1 problem.

sseq scon e s d t
hp 803.33 733.33 234 1137 11 0.04s
+ 780 713.33 842 3960 12 0.16s
hn 743.33 673.33 876 4082 12 0.16s

766.66 670 1172 5371 12 0.22s
730 630 2549 11604 12 0.49s
730 600 7712 36364 12 1.57s
670 570 9423 44084 13 1.93s
670 540 36894 167593 13 7.54s

hf 780 683.33 987 5519 12 0.40s
+ 766.66 670 1074 5878 12 0.42s
hn 766.66 640 1179 6323 12 0.45s

730 630 1345 7010 12 0.50s
730 600 1450 7455 12 0.53s
670 570 5971 29122 13 2.10s
670 540 6367 31026 13 2.23s

hs 710 540 1285 5596 14 4.31s

Both sequential heuristics lead to fast convergence
in all cases, but the number of expansions grows con-
siderably. The FF heuristic is more effective than the
pattern database heuristic and consumes slightly more
time for each considered state. The schedule heuristic
still yields the optimal plan on the first shot and ex-
pands less states. This is counter-balanced in time con-
sumption. Breadth-first search fails to encounter depth
11.

The best plan of the problem is:

0: (zoom plane city-a city-c) [100]
100: (board dan plane city-c) [30]
100: (refuel plane city-c) [40]
100: (board ernie plane city-c) [30]
140: (zoom plane city-c city-a) [100]
240: (debark dan plane city-a) [20]
240: (board scott plane city-a) [30]
240: (refuel plane city-a) [40]
280: (zoom plane city-a city-c) [100]
380: (refuel plane city-c) [40]
420: (zoom plane city-c city-d) [100]
520: (debark scott plane city-d) [20]
520: (debark ernie plane city-d) [20]

When comparing any-time performance of improving
plans, the interpretation of the experimental outcome
is not immediate. Even if not necessarily optimal and
even if the first plan might be established later than
with sequential plan improvements, the relaxed plan
schedule is favorable, since, with respect to undecid-
ablility result, stopping with the first plan found, is
probably the best termination criterion we can get. On
the other hand, zero-resource operators according to the
objective function call for a cost function dependent on
the path length.

Discretized Desert-Rat
In the discretized Desert-Rat domain sequential plans
cannot be improved by critical-path analysis, since by
our definition all operators in a sequential plan are de-
pendent or instantaneous. Therefore, we evaluate the
time and exploration efforts for finding the first plan
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only. Since no propositional goal is specified the nu-
merically extended FF and pattern database heuristics
collapse to hn.

We have summarized the results in Desert-Rat in the
following table. The application of symmetry reduction
is denoted by +.

d sseq scon e s d t
(300)− 15 15 20 60 5 0.01s
(300)+ 15 15 20 60 5 0.01s
(500)− 35 35 18,413 47,980 13 6.44s
(500)+ 35 35 358 549 13 0.47s
(600)− 60 60 436,173 577,233 24 153.14s
(600)+ 60 60 26,723 43,782 24 8.46s
A sequential plan to the distance 600 problem is:

0: (load truck f5) [0]
0: (drive-out truck) [5]
5: (unload truck f5) [0]
5: (drive-back truck) [5]
10: (load truck f6) [0]
10: (refuel truck f2) [0]
10: (drive-out truck) [5]
15: (unload truck f6) [0]
15: (drive-back truck) [5]
20: (load truck f3) [0]
20: (refuel truck f1) [0]
20: (drive-out truck) [5]
25: (fill-up truck f5) [0]
25: (drive-out truck) [5]
30: (unload truck f3) [0]
30: (drive-back truck) [5]
35: (load truck f6) [0]
35: (refuel truck f5) [0]
35: (drive-out truck) [5]
40: (refuel truck f3) [0]
40: (drive-out truck) [10]
50: (unload truck f6) [0]
50: (refuel truck f6) [0]
50: (drive-out truck) [10]

Actually finding a such an involved plan for the chal-
lenging problem is a trademark for our efficient imple-
mentation and the advantage of accelerating sequential
plan-finding first.

Jugs-and-Water
The Jugs-and-Water domain is a Level-2 problem. It
contains no durative action and is inherently sequen-
tial. Unfortunately, the state spaces are very small,
that solving even larger (m, n)-Jug problems is easy.

sseq scon e s d t
(5,3) 0 0 11 13 6 0.00s
(1237,1721) 0 0 216 218 108 0.05s
The established plan for the former case is

0: (fill jug2) [0]
0: (pour jug2 jug1) [0]
0: (fill jug2) [0]
0: (pour jug2 jug1) [0]
0: (empty jug1) [0]
0: (pour jug2 jug1) [0]

Taxi
The following plan with 35 operators was found with
hc, symmetry and transposition cuts in about about
10 seconds CPU time while expanding only 852 states.
Since there is some space for improving the solution
quality, we currently study further refinements to the
heuristic estimate that can server better plans.
0: (schedule taxi1 arthur) [0]
0: (drive_to_fare taxi1 arthur up up) [79]
0: (schedule taxi2 ratburn) [0]
0: (drive_to_fare taxi2 ratburn down down) [73]
0: (schedule taxi3 grandma) [0]
0: (drive_to_fare taxi3 grandma up up) [46]
0: (schedule taxi4 prunella) [0]
0: (drive_to_fare taxi4 prunella down down) [34]
34: (load taxi4 prunella) [1]
35: (drive_to_dest taxi4 prunella up up) [104]
46: (load taxi3 grandma) [1]
47: (drive_to_dest taxi3 grandma up down) [81]
73: (load taxi2 ratburn) [1]
74: (drive_to_dest taxi2 ratburn up up) [49]
79: (load taxi1 arthur) [1]
80: (drive_to_dest taxi1 arthur down down) [77]
123: (unload taxi2 ratburn) [1]
124: (schedule taxi2 dw) [0]
124: (drive_to_fare taxi2 dw up down) [70]
128: (unload taxi3 grandma) [1]
129: (schedule taxi3 brain) [0]
129: (drive_to_fare taxi3 brain up up) [55]
139: (unload taxi4 prunella) [1]
157: (unload taxi1 arthur) [1]
158: (schedule taxi1 francine) [0]
158: (drive_to_fare taxi1 francine down down) [12]
170: (load taxi1 francine) [1]
171: (drive_to_dest taxi1 francine down up) [34]
184: (load taxi3 brain) [1]
185: (drive_to_dest taxi3 brain down up) [66]
194: (load taxi2 dw) [1]
195: (drive_to_dest taxi2 dw up up) [44]
205: (unload taxi1 francine) [1]
239: (unload taxi2 dw) [1]
251: (unload taxi3 brain) [1]

Conclusions
Essentially planning with numerical quantities and du-
rative actions is planning with time and resources. The
framework of grounded PDDL+ problems can be seen
as a normal form for resource planning and allows to
certify complexity results. We have proposed a planner
for mixed propositional and numerical planning prob-
lems with finite branching, in which numerical pre- and
postconditions are instantiated on the fly and which
produces concurrent plans for a broad subclass of prob-
lems. The planner parses, pre-compiles, solves, and
schedules PDDL+ problems with time and resources
and different objective functions. Optimization is per-
formed by an any-time extension to the underlying
heuristic search engine.

Some other planners like TP4 (Haslum & Geffner
2001), SAPA (Do & Kambhampati 2001), and TL-
Plan (Baccus & Ady 2001) can cope with different forms
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of PDDL+ expressiveness. We expect the international
planning competition to give more insights in current
state-of-the-art in planning technology.

PERT scheduling and critical path analysis for timed
precedence networks is one of the simpler cases for
scheduling (Syslo, Deo, & Kowalik 1983). We have
achieved a simplification by solving the sequential path
problem first. The any-time search algorithm origins
in Localized A* (Edelkamp & Schrödl 2000) and shares
similarities with depth-first branch-and-bound (Zhang
& Korf 1995). Different forms of symmetry reduction
based on the TIM inference module has also been shown
to be effective (Fox & Long 1999; 2002).

The core objective for future research is to enlarge
the problem class to conformant and infinite branching
problems. We will try to suit planning to various appli-
cation domains and to allow user interaction with a hor-
izontal bar or line Gantt chart that visualizes schedules
and includes the following features: actions are iden-
tified on the left hand side, time scale is depicted on
the top of the chart, a horizontal open oblong is drawn
against each activity indicating estimated duration.
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Abstract

Many planning domains have temporal features that can be
expressed as durations associated with actions. Unfortu-
nately, the conservative model of actions of most temporal
planners is not appropriate for some domains which require
richer models. Level 3 of PDDL2.1 introduces a model of
durative actions which includes local conditions and effects
to be satisfied at different times during the execution of the
actions, thereby giving the planner freedom to plan concur-
rent actions. This paper presents a temporal planning sys-
tem (TPSYS), which combines the ideas ofGraphplan and
TGP, to plan with such durative actions. The approach ne-
cessitates the modification of some aspects of the basic plan-
ning algorithm: the mutex reasoning, the generation of the
temporal graph and the search for an optimal plan. Although
the algorithm becomes more complex, the experimental re-
sults demonstrate it remains feasible as a way to deal with
durative actions.

Introduction
Typically, classical planning systems simplify real prob-
lems by imposing unreal constraints on the problems. Par-
ticularly, planners rely on a model of actions in which all
actions have the same duration. Although this assumption
may be adequate for some planning problems, it becomes
inadequate when dealing with temporal planning problems.
For instance, this assumption is not true in real temporal
environments, where different actions take different times
of execution and concurrent actions are required to min-
imise the duration of the plan. Consequently, in temporal
environments the optimisation criterion must be changed
because the interest lies in obtaining a plan of minimal du-
ration rather than a plan of minimal number of actions.

Most temporal planners appeared in the recent literature,
such asparcPLAN, TGP or TP4 (El-Kholy & Richards
1996; Smith & Weld 1999; Haslum & Geffner 2001) have
yielded some success when dealing with temporality on ac-
tions. Nevertheless, these temporal planners have adopted
the same conservative model of actions of non-temporal
planners. This means that two actions cannot overlap inany
way if an effect or precondition of one is the negation of an

effect or precondition of the other. Although this makes
it possible to produce reasonable plans in most benchmark
planning domains, there exist some domains which require
a richer model of actions, and in which better quality plans
can be found if a richer model of actions is used.

PDDL2.1 (Fox & Long 2001) is the new version of the
standard language (PDDL) for the encoding of the planning
domains which has been proposed for the the AIPS-2002
Planning Competition. PDDL2.1 provides five levels to de-
fine planning problems. Concretely, the level 3 introduces a
new model of actions, called durative actions, which makes
it possible to allow actions to overlap even when their pre-
conditions or effects refer to the same propositions. This
is possible because traditional preconditions and effects are
now annotated with time points.

This paper presents a Temporal Planning SYStem (from
now on TPSYS) in order to manage the model of dura-
tive actions proposed in level 3 of PDDL2.1.TPSYS is
based on a three-stage process, which combines the ideas
of Graphplan (Blum & Furst 1997) andTGP (Smith &
Weld 1999). Hence, the main contributions of this paper
are:

• An analysis of how durative actions can be managed in a
Graphplan-based approach.

• An explanation of how a compact temporal graph can be
generated.

• The extension of the mutual exclusion reasoning to man-
age PDDL2.1 durative actions, based on the work of
TGP.

• A description of the plan extraction stage and the way it
obtains the plan of optimal duration (in terms of the dura-
tion of the actions) as an acyclic flow of actions through
the temporal graph.

• Some experimental results showing the importance of the
mutual exclusion reasoning in richer models of actions,
as indicated in (Smith & Weld 1999).
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This paper is organized as follows. In the second sec-
tion, we briefly review the motivations for introducing the
model of durative actions of level 3 of PDDL2.1. The third
section introduces the action model, the components of a
durative action and the terminology used through the paper.
TheTPSYS algorithm and its three stages are described in
the fourth section. This section provides the modifications
the planning algorithm necessitates to deal with durative ac-
tions. Some experimental results are shown in the fifth sec-
tion, demonstrating the feasibility of the system proposed.
The sixth section discusses two approximations for dealing
with durative actions in traditional planners. Finally, the
conclusions are presented in the seventh section.

Motivation

PDDL does not allow the definition of actions with dura-
tion, which imposes an important limitation in real tempo-
ral problems. In developing PDDL2.1 to allow the mod-
elling of temporal planning domains it was considered crit-
ical to allow a fuller exploitation of concurrency than can
be captured using the strong mutex relation of the conser-
vative model of actions, as the used inTGP (Smith & Weld
1999). This entails a more precise modelling of the state
transitions undergone by different propositions within the
durative interval of the action. In particular, the precondi-
tions of the starting point of the action do not necessarily
need to be maintained throughout the interval. There may
be preconditions of the final effect of the action that can
be achieved concurrently rather than maintained through-
out the interval. Hence, it becomes necessary to distinguish
invariant from non-invariant conditions because there might
be invariant conditions that cannot be affected during the in-
terval of execution. Moreover, there might be initial effects
of the starting point that can be exploited by concurrent ac-
tions. All these distinctions give rise to quite sophisticated
opportunities for concurrent actions in a PDDL2.1 plan.

We motivate the modelling of the state transitions with
the following example of the classical logistics domain in
the conservative model of actions. Let us consider the ac-
tion fly(plane,origin,destination). This action requires the
propositionat(plane,origin)to be true before executing the
action, and asserts the propositions¬at(plane,origin)and
at(plane,destination)at the end of the action. This implies
that the location of theplane is inaccessible until the end
of the action, preventing concurrent actions (for instance,
those that require theplanenot to be in the origin) from be-
ing executed in parallel withfly(plane,origin,destination).
However, as presented in (Fox & Long 2001), this may
exclude many valid plans. In PDDL2.1 this can be easily
avoided by asserting¬at(plane,origin)as an initial effect.

In addition, if we want to know the fact of beingflying
during the actionfly, it would be enough by asserting the
proposition(flying-plane)as an initial effect of the start-

ing point and¬(flying-plane)as a final effect of the end
point. But, in a conservative model of actions, the equiv-
alent action for thisfly durative action would not represent
the fact of beingflyingdue to the impossibility of including
the proposition(flying-plane)and¬(flying-plane)as initial
and final effects, respectively. Therefore, it is impossible to
work with actions which require this proposition, such as
the possible actionrefuel-during-flight.

Although in real problems instantaneous actions are
never reallyinstantaneous, there are some cases in which
these actions could be useful for modelling purposes. Level
3 of PDDL2.1 also allows the definition of these actions,
i.e. traditional actions with no duration. Since PDDL2.1
intends to providephysicsinstead ofadviceof the planning
problem, instantaneous actions could be useful in order to
obtain a valid plan for different executive agents when the
duration of the action is very small (or even unknown) to be
considered by the planning agent. More generally, the do-
main engineer might choose to model the domain at a level
of abstraction at which it is not interesting to capture the
durations of practically instantaneous actions. That is, the
engineer might choose to emphasise the durations of some
actions but not of others.

These modelling choices do not lead to conflict with the
semantics presented in (Fox & Long 2001) because it is
possible, at level 3 of PDDL2.1, to express an instantaneous
action as an action with barely measurable duration. This
duration is epsilon, an amount so small that it makes no
sense to split it. This means that non-interfering actions
that take epsilon time can happen in parallel but they can-
not be interleaved. This epsilon is so small that it never
changes the sequence of actions in the plan. Epsilon has to
be chosen appropriately for a given domain and problem,
because it represents a discretization of the time-line into
indivisible units, the end points of which mark the points at
which actions can be initiated or terminated.

Action Model and Terminology
Unlike traditional actions of PDDL, durative actions
present more conditions to be guaranteed for the success
of the action. Moreover, durative actions do not only have
effects that hold at the end of the actions but also effects to
be asserted immediately after the actions start.

Definition 1 Components of a durative action(see Figure
1). Leta be a durative action which starts at times and
ends at timee, being executed through the interval[s..e].
The components ofa are the following:

• Conditions. The three types of local conditions of a du-
rative action are: i)SConda, the set of conditions to be
guaranteed at the start of the action; ii)Inva, the set of
invariant conditions to be guaranteed over the execution
of the action; and iii)EConda, the set of conditions to
be guaranteed at the end of the action.
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Figure 1: Components of a durative actiona.

• Duration. The duration of the action is a positive value
represented byDa ∈ R+.

• Effects. The two types of effects of a durative action are:
i) SEffa = {SAdda ∪ SDela}, with the positive and
negative effects respectively to be asserted at the start
of the action; and ii)EEffa = {EAdda ∪ EDela},
with the positive and negative effects respectively to be
asserted at the end of the action.

Although level 3 allows the modelling of numeric condi-
tions and effects as well as logical transitions, this version
of TPSYS does not manage them yet.

Durative actions entail an important difficulty: there ex-
ist some effects (SEffa) which can be obtained before the
action ends. Hence, it might be possible that an initiated
action could not end because its end conditions (EConda)
are not satisfied in the future. In that case, all the start ef-
fects (and the actions which are dependent on them) should
be invalidated. We call these kind of actionsconditional ac-
tionsbecause they are provisional until their end conditions
are guaranteed, and we define them as:

Definition 2 Conditional action. One actiona withDa >
0 is a conditional action if(SEffa 6= ∅)∧ (EConda 6= ∅)
holds. This way, the set of propositionsSEffa of a condi-
tional actiona only becomes valid when all propositions in
EConda are satisfied.

Conditional actions are motivated by observing that there
are domains in which durative actions are required precisely
for some effect achieved through the duration of execution
of an action (it is bounded by that duration). Such initial
effects cannot be exploited as end effects because they do
not persist beyond the end of the action. For example, in a
logistics domain the plane isflying only during the action
fly, so the initial effect(flying-plane)cannot be exploited
beyond the end of thefly action. Further, when plans are
validated, the successful termination of a durative action
must be confirmed even if a goal is achieved before the
end of its durative interval. This is because durative ac-
tionspromiseto terminate initiated actions in a stable state.
If anything in the plan prevents this stable termination then
the plan must be considered invalid. Richer goal specifi-
cations might allow one to consider goals that must persist
only over finitely bounded intervals (Do & Kambhampati
2001), but PDDL2.1 does not yet support this.

Definition 3 Conditional proposition. One propositionp
is conditional if all the actions{ai} which achievep are
conditional and they have not ended their execution yet.

Intuitively, if p is only achieved by conditional actions
{ai}, p will be conditional until at least one actionai ends
successfully, which implies bothSCondai andECondai
are satisfied. Once this happens,p is valid (stopping being
conditional).

As we have seen in the previous section, instantaneous
actions are allowed in level 3 of PDDL2.1. This does not
represent a serious inconvenience because the correspon-
dence rule below can transform an instantaneous action into
a durative action. This way, all the instantaneous actions
present in the planning domain can be managed in the same
way as durative actions.

Definition 4 Correspondence ruleRai 7→ad . The corre-
spondence rule maps an instantaneous actionai, with
Preai , Effsai = Addai ∪Delai into a durative action
ad in the following way:

SCondad = ECondad = Invad = Preai
SAddad = EAddad = Addai
SDelad = EDelad = Delai

durationad = 0

Figure 2 shows the definition of the simple logistics do-
mainzeno-travelfor durative actions of level 3 of PDDL2.1.
The three actions areboard, fly anddebark, which have du-
ration, conditions and effects. According to Definition 1,
the actions haveat start and over all conditions with the
conditions to be satisfied just at the beginning of the action
and during all its execution, respectively. Analogously, the
at startandat endeffects have the effects to be asserted at
the beginning and the end of the execution of the action.

At first blush the extension of aGraphplan-based plan-
ner to deal with durative actions of level 3 would seem quite
easy. However, durative actions imply important changes in
the way the temporal graph is generated and in the way the
search for a plan is performed. These modifications are pre-
sented in the next section.

The Temporal Planning SYStem
In TPSYS, a temporal planning problem is specified as the
4-tuple{Is,A,Fs,Dmax}, whereIs andFs represent the
initial and final situation, respectively.A represents the set
of durative actions in the planning domain. Time is mod-
elled byR+ and their chronological order.Dmax stands for
the maximum duration allowed by the user. Although this
bound is not defined in PDDL2.1 and it could be difficult to
be decided, it allows the user a good way to constrain the
goals deadline and the makespan of the plan as in (Do &
Kambhampati 2001).

TPSYS is executed in three consecutive stages (see Fig-
ure 3). After the first stage, the second and the third stage
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(:durative-action board
:parameters (?p - person ?a - aircraft

?c - city)
:duration (= ?duration (boarding-time ?c))
:condition (and (at start (at ?p ?c))

(at start (free ?a))
(over all (at ?a ?c)))

:effect (and (at start (not (at ?p ?c)))
(at start (not (free ?a)))
(at end (in ?p ?a))))

(:durative-action fly
:parameters (?a - aircraft ?c1 ?c2 - city)
:duration (= ?duration (flight-time ?c1 ?c2))
:condition (and (at start (at ?a ?c1)))
:effect (and (at start (not (at ?a ?c1)))

(at end (at ?a ?c2))))

(:durative-action debark
:parameters (?p - person ?a - aircraft

?c - city)
:duration (= ?duration (debarking-time ?c))
:condition (and (at start (in ?p ?a))

(over all (at ?a ?c)))
:effect (and (at start (not (in ?p ?a)))

(at end (free ?a))
(at end (at ?p ?c))))

Figure 2: Definition of a simple domain in level 3 of
PDDL2.1.

are executed in an interleaved way until a plan is found or
the duration exceedsDmax.

First stage: Preprocessing and Mutex Reasoning

Graphplan approaches define binary mutual exclusion re-
lations between actions and between propositions. As
TGP, TPSYS needs to calculate action-action mutex
relationships, action-proposition mutex and proposition-
proposition mutex. Since proposition-proposition mutex
appears as a consequence of action-action mutex (Blum &
Furst 1997), this stage only calculates the action-action and
action-propositionstaticmutex relationships. These mutex
relationships are static because they only depend on the def-
inition of the actions and they always hold. Therefore, there
is no reason to postpone their calculus to the next stages,
speeding up the second and third stages. The process of
calculating the mutex relationships is complicated by the
semantics of PDDL2.1, which embodies a more permis-
sive mutual exclusion relation than the languages of other
temporal planners. The components of durative actions in
PDDL2.1, presented in Definition 1, have some important
implications for mutex reasoning. In particular, the strong
mutex used by traditional temporal planners, such asTGP,
must be modified to allow durative actions to be applied
in parallel even in cases in which they refer to the same
propositions. In traditional approaches, if two actions have
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Figure 3: The three stages ofTPSYS.

interfering propositions they cannot be executed in parallel,
but when dealing with PDDL2.1 durative actions it may be
possible for such actions to co-occur.

There exist four action-action mutex situations, pre-
sented in Table 1. Case 1 (at start) represents the mu-
tex in which actions cannot start at the same time because
start effects are contradictory or start effects and start con-
ditions are conflicting. Case 2 (at end) represents the mutex
in which actions cannot end at the same time because end
effects are contradictory or end effects and end conditions
are conflicting. Case 3 (at end-start) represents the mu-
tex in which two actions cannot end and start at the same
time, i.e. the actions cannot meet, because the end effects
of one action are conflicting with the start conditions or
effects of the other action. This mutex (which does not
appear atGraphplan) might seem a stronger requirement
than is really required, but it takes account of the fact that
simultaneity can never be relied upon in the real world —it
cannot be guaranteed that the action requiring theat start
condition will definitely happen after the achievement of
that condition at execution time. Furthermore, the compu-
tationally efficient testing of validity of a plan relies on not
having to consider all possible orderings of so-called simul-
taneous happenings. This issue is discussed in depth in the
PDDL2.1 semantics. Moreover,Graphplan is tailored to
work with simple propositional formulae and it cannot be
assumed that the positive assertion of a proposition will not
interact harmfully with more complex precondition formu-
lae. However,TPSYS takes the correctness-preserving as-
sumption of including an epsilon (ε > 0) between the action
which ends and the action which starts to avoid this mu-
tex and to make easier the implementation of the algorithm.
Finally, case 4 (during) represents the mutex in which one
action cannot start or end during the execution of the other
because the start or end effects of the former are conflicting
with the invariant conditions of the latter.

In addition to the action-action static mutex, the
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Case Condition for the mutex Type of mutex Relation

(SAdda ∩ SDelb 6= ∅) ∨ (SAddb ∩ SDela 6= ∅)
1 ((SAdda ∪ SDela) ∩ (SCondb ∪ Invb) 6= ∅) AAstart−start

((SAddb ∪ SDelb) ∩ (SConda ∪ Inva) 6= ∅)
(EAdda ∩ EDelb 6= ∅) ∨ (EAddb ∩ EDela 6= ∅)

2 ((EAdda ∪ EDela) ∩ (ECondb ∪ Invb) 6= ∅) AAend−end
((EAddb ∪ EDelb) ∩ (EConda ∪ Inva) 6= ∅)
((EAdda ∪ EDela) ∩ (SCondb ∪ Invb) 6= ∅)
((EAddb ∪ EDelb) ∩ (SConda ∪ Inva) 6= ∅)3

(EAdda ∩ SDelb 6= ∅) ∨ (EDela ∩ SAddb 6= ∅)
AAend−start

(EAddb ∩ SDela 6= ∅) ∨ (EDelb ∩ SAdda 6= ∅)
(Inva ∩ SDelb 6= ∅) ∨ (Invb ∩ SDela 6= ∅)4
(Inva ∩ EDelb 6= ∅) ∨ (Invb ∩ EDela 6= ∅)

AAduring−during

Table 1: Conditions for the static action-action mutex relationships between two durative actionsa andb.

proposition-action mutex relationships are also calculated
in the first stage. As demonstrated in (Smith & Weld 1999),
when actions have different duration in aGraphplan-based
approach, mutex between propositions and actions help de-
duce more inconsistencies because they better connect mu-
tex between actions to mutex between propositions when
actions are executed in parallel.

Definition 5 Static pa-mutex (proposition/action mutex).
One propositionp is statically mutex with actiona iff p ∈
{SDela ∪ EDela}.

Second stage: Extension of the Temporal Graph
The second stage performs the extension of the temporal
graph. The temporal graph consists of a directed, layered
graph which alternates temporal levels of propositions and
temporal levels of actions, represented byP[t] andA[t] re-
spectively (Garrido, Onaindı́a, & Barber 2001). The lev-
els are chronologically ordered by their instant of time, by
means of a labelt which represents the instant of time in
which propositions are present and actions can start, or end,
their execution. The way of extending the temporal graph
is performed in a similar way toGraphplan. Particularly,
the process consists of generating all the actionsai in ac-
tion levelA[t] of the graph as soon as their start conditions
are non pairwise mutex in the proposition levelP[t], gen-
erating their start and end effects in the proposition levels
P[t] andP[t+Dai ]

, respectively. This process finishes once
all the propositions in the final situation are present, non
pairwise mutex in a proposition levelP[t], and the actions
which achieved them have already ended.

Modifications in the Extension of the Temporal Graph
Although the idea of extending the temporal graph is con-
ceptually simple, it contains some subtle details due to
the local conditions and effects of durative actions. In
each temporal level it is necessary to study first the effects
achieved by the actions which end (whoseat endconditions
hold), and then the effects achieved by the actions which
start. In consequence, each temporal levelt is divided

into two parts,end-part andstart-part, in which the follow-
ing action-action (AA[t] mutex), proposition-action (PA[t]

mutex) and proposition-proposition (PP[t]) mutex relation-
ships must be calculated. We use the notationAA[t], PA[t]

andPP[t] to represent the mutex relationships that hold at
time t. These mutex relationships are temporary and can
disappear in time, in contrast with the notationAA andPA
that represent the static mutex relationships which always
hold. The actions which end at action levelA[t] are stored
in A[t]end, whereas the actions which start at action level
A[t] are stored inA[t]start. Analogously, the propositions
achieved at theend-part are stored inP[t]end, and the propo-
sitions achieved at thestart-part are stored inP[t]start.

On one hand, the mutex relationships to be calculated
in the end-part are:AA[t]end−end with the actions which
are mutex ending att; PA[t]end−end with the proposi-
tions which are mutex with the actions which end att;
andPP[t]end−end with the propositions which are mutex
at t after ending all the actions. On the other hand, the
mutex relationships to be calculated in thestart-part are:
AA[t]start−start with the actions which are mutex starting
at t; AA[t]end−start with the mutex between the actions
which end and start att; PA[t]start−start with the propo-
sitions which are mutex with the actions which start att;
PP[t]end−start with the propositions which are mutex at
t and have been achieved by actions which end att and
actions which start att, respectively; andPP[t]start−start
with the propositions which are mutex att after starting all
the actions. The main reason for breaking down these mu-
tex relationships intoend-part andstart-part lies in making
their calculus simpler, as can be seen in the following defi-
nitions:

Definition 6 AA[t]end−end. Two actionsa, b are end-end
mutex at timet if one of the following holds: i)a, b are
AAend−end, ii) EConda, ECondb are PP[t]end−end, or
iii) a, b areAA[t−min(Da,Db)]start−start.

Definition 7 PA[t]end−end. Let p be a proposition anda
be an action. For each actionbi which achievesp at t, let
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Υi[t] be the condition underbi is mutex with the persistence
of p at timet, i.e. Υi[t] = [(p, bi arePA) ∨ (p,ECondbi
arePP[t]end−end)]. Propositionp and actiona are end-end
mutex at timet if the following condition holds:

∧
i[Υi[t] ∧

(a, bi areAA[t]end−end)].

Definition 8 PP[t]end−end. Let p, q be two propositions
and {ai}, {bj} be the sets of actions which achievep and
q at time t, respectively. Propositionsp, q are end-end
mutex at timet if both of the following conditions hold:
i) ∀bj : p, bj are PA[t]end−end, and ii) ∀ai : q, ai are
PA[t]end−end.

Definition 9 AA[t]start−start. Two actionsa, b are start-
start mutex at timet if one of the following holds:
i) a, b are AAstart−start, or ii) SConda, SCondb are
PP[t]start−start.

Definition 10 AA[t]end−start. Two actionsa (ending at
t) and b (starting at t) are end-start mutex at timet if
one of the following holds: i)a, b areAAend−start, or ii)
EConda, SCondb arePP[t]end−end.

Definition 11 PA[t]start−start. Letp be a proposition and
a be an action. For each actionbi which achievesp at t, let
Ψi[t] be the condition underbi is mutex with the persistence
of p at timet, i.e. Ψi[t] = [(p, bi are PA) ∨ (p, SCondbi
are PP[t]start−start)]. Proposition p and actiona are
start-start mutex at timet if the following condition holds:∧
i[Ψi[t] ∧ (a, bi areAA[t]start−start)].

Definition 12 PP[t]end−start. Let p be a proposition first
achieved at timet by the set of actions{ai} which end at
t. Analogously, letq be another proposition first achieved
at t by the set of actions{bj} which start att. Propositions
p, q are end-start mutex at timet if the following condition
holds:∀ai, bj : ai, bj areAA[t]end−start.

Definition 13 PP[t]start−start. Let p, q be two proposi-
tions and{ai}, {bj} be the sets of actions which achieve
p andq at timet, respectively. Propositionsp, q are start-
start mutex at timet if both of the following conditions hold:
i) ∀bj : p, bj are PA[t]start−start, and ii) ∀ai : q, ai are
PA[t]start−start.

Intuitively, AA[t] mutex relationships represent the im-
possibility of two actions ending, starting or abutting to-
gether at the same timet. PA[t] mutex represents the im-
possibility of having a proposition and one action starting or
ending at timet. PP[t] mutex represents the impossibility
of having two propositions together at timet. These cal-
culus of the mutex relationships obtains the same mutex as
Graphplan and, thereafter, they provide very useful infor-
mation to improve the process of search by avoiding com-
bination of actions, propositions and propositions/actions
which cannot be satisfied simultaneously, thus reducing the
space search (Blum & Furst 1997).

As can be seen in the previous definitions, the calculus
of the mutex relationships in theend-part andstart-part
are nearly identical, with the only difference of recovering
and storing the information in different structures. Thus,
in some cases the structures could be the same improving
the efficiency. Concretely, the implementation of the sec-
ond stage only keeps one structurePP[t] for PP[t]end−end,
PP[t]end−start andPP[t]start−start.

An important point to take into account when dealing
with durative actions in aGraphplan-based approach and
which forced us to modify the algorithm is the condition to
finish the extension of the temporal graph. InGraphplan or
TGP, this condition holds once all the propositions of the fi-
nal situation are non pairwise mutex. However, conditional
actions assertat starteffects which might be included in the
final situationbeforethese actions end. This implies that the
temporal graph extension might end in a level in which it is
impossible to find a feasible plan because any of the propo-
sitions in the final situation is still conditional (it has not
been validated yet), losing the benefits of theGraphplan-
based graph extension. Loosely speaking, it means that the
action which achieves that effect has not ended yet and the
effects could be invalid (unavailable) if theat endcondi-
tions of the action fail. In order to tackle this drawback, it
becomes necessary to propagate some additionalheuristic
information about the validity of the propositions achieved
in the temporal graph. In this case, the same disjunctive
reasoning on propositions ofGraphplan can be applied on
the instants of time at which the propositions stop being
conditional. This propagation mechanism is quite straight-
forward, according to the following definition:

Definition 14 End time of a conditional proposition. Letp
be a conditional proposition and{ai} the set of conditional
actions which achievep. In the proposition levelP[t] (at
time t), the end time in whichp stops being conditional,
maxetc (the maximum end time conditional) is calculated
asmin(αi), whereαi is defined as:

• max(maxetc(SCondai)+Dai ,maxetc(ECondai), t), if
p is achieved in an end-part of the graph.

• max(maxetc(SCondai) + Dai , t), if p is achieved in a
start-part of the graph.

Algorithm for the Extension of the Temporal Graph.
After introducing the modifications which are necessary to
extend the temporal graph, we present the algorithm (see
Figure 4) for extending the temporal graph. Starting at time
t = 0 (with all the mutex structures empty), the algorithm
generates new proposition and action levels (end-part and
start-part), calculating all the mutex relationships. First, the
end-part of the temporal graph is generated with the actions
which can end (their end conditions are satisfied). Hence,
the algorithm updatesA[t]end with the actions which end at
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Algorithm Temporal Graph Extension
t = 0
while (t ≤ Dmax) ∧ (Fs is not satisfied inP[t])∧

(Fs has not conditional propositions do
forall < ai, si, t > which can end atA[t]end do
A[t]end = A[t]end ∪ ai
P[t]end = P[t]end ∪ EAddai
Generatestart-part mutex

endforall
forall < bj , t, ej > which can start atA[t]start do
A[t]start = A[t]start ∪ bj
P[t]start = P[t]start ∪ SAddbj
Generateend-part mutex

endforall
t = next level in theTemporal Graph

endwhile

Figure 4: Algorithm for the temporal graph extension per-
formed in the second stage.

time t, P[t]end with their end effects, and calculates all the
mutex relationships presented above. Then, the algorithm
generates thestart-part of the graph with the actions which
can start (their start conditions are satisfied). The algorithm
updatesA[t]start andP[t]start with the actions which start at
time t and their start effects, respectively, calculating all the
mutex relationships. Here, new temporal levels are gener-
ated according to the duration of the actions generated. This
way, for eachbj generated inA[t]start, the temporal levels
P[ej ] andA[ej ] are created, where obviouslyej = t+Dbj .
No−op actions and delete-edges (which represent the neg-
ative effects) are not stored in the temporal graph during its
extension. This extension continues until the propositions
in the final situation are achieved and they are not condi-
tional, i.e. the actions which achieve them have ended and
those propositions are valid. Moreover, the extension also
finishes if the maximum time allowed by the userDmax is
exhausted, returning ’Failure’ (see Figure 3).

Lemma 1 The extension of the temporal graph is com-
plete. If the temporal graph extension ends at timet, the
algorithm generates all the necessary temporal levels (at
which actions can end or start) between time0 andt.

Proof 1 The proof is direct by definition of the algo-
rithm. The algorithm generates all the actions{bj} whose
SCondbj hold in each temporal level. Each action level
contains all the actions present in the previous action lev-
els —analogously for the proposition levels. This way, once
one actionbj appears in an action level, this action will ap-
pear in the next levels, and all the temporal levels in which
bj could end and start are calculated and created.

Third stage: Extraction of a Plan
The third stage performs the extraction of an optimal plan,
as an acyclic flow of actions, through the temporal graph ex-
tended in the second stage. In aGraphplan-based approach

the plan is obtained by moving through the graph in a back-
ward way. The process consists of obtaining the actions
which achieve the propositions to be satisfied. Now, du-
rative actions allow different ways to achieve these propo-
sitions, not only by theirat endeffects but also by their
at start effects. Moreover, in order to plan an action all
its conditions must be satisfied, which with durative actions
entails to satisfy the start, end and invariant conditions. This
breaks the traditional right to leftdirectionalityof Graph-
plan or TGP as shown in the following example.

Let us suppose an instant of timet during the extraction
of a plan at which a propositionp must be satisfied. Let
us suppose that actiona achievesp at t as a start effect
(p ∈ SAdda). If a has end conditions (EConda), they
will have to be satisfied at timet′ = t + Da, forcing the
algorithm to move again to an already visited instant of time
t′ > t. For this reason, the algorithm first selects the set of
actions{ai} which achieve each proposition as end effects
in order to keep the traditional directionality of the search.

Moreover, before planning an actiona it is necessary
to study whethera is compatible with the actions already
planned, i.e. that the new actiona does not modify the in-
variant conditions of the other actions (AAduring−during
mutex relationships of Table 1), discardinga if it is not
compatible.

The algorithm for the extraction of an optimal plan is
shown in Figure 5. It uses two structures, one queue
GoalsToSatisfy formed by pairs< p, t > with the goal
propositionp to be satisfied at timet, and one listPlan
formed by< ai, si, ei > 3-tuples with the planned action
ai starting atsi and ending atei. GoalsToSatisfy is ini-
tialized with the propositions of the final situation to be sat-
isfied at the instant of time at which the temporal graph ex-
tension has finished.Plan is initially empty. The algorithm
proceeds in the following way. While there are (sub)goal
propositions inGoalsToSatisfy, the algorithm dequeues
a pair< p, t > to be satisfied. Note that now,p could be
already satisfied at timet because actions are planned in dif-
ferent points of time and not always in a right to left order.
If p is not already satisfied at timet in Plan, actions that
satisfyp at timet are selected in a backtracking point. Al-
though all the set of actions{ai}which are compatible with
actions inPlan must be considered for completeness, the
actions which achievep as end effects are firstly selected to
keep the traditional right to left directionality. If actionai
is not mutex with the actions inPlan, thenai is planned
updating the structuresPlan andGoalsToSatisfy with
ai and the start, invariant and end conditions ofai, respec-
tively.

Since the temporal graph extension finishes as soon as
all the propositions in the final situation are present, non
pairwise mutex, and the plan extraction is complete, the al-
gorithm obtains the optimal plan in terms of the duration of
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Algorithm Plan Extraction
GoalsToSatisfy = Fs at the end time of second stage
Plan = ∅
while (GoalsToSatisfy 6= ∅) do

Dequeue< p, t > fromGoalsToSatisfy
if < p, t > is not already satisfied inPlan

Select< ai, si, ei > which satisfiesp at t and
compatible withPlan

P lan = Plan ∪ < ai, si, ei >
GoalsToSatisfy = GoalsToSatisfy ∪ SCondai

∪ Invai ∪ ECondai
endif

endwhile

Figure 5: Algorithm for the plan extraction performed in
the third stage.

the actions (Garrido, Onaindı́a, & Barber 2001).

Lemma 2 The extraction of a plan is a complete process.

Proof 2 The proof is trivial due to the fact that the
algorithm considers all the possible actions (back-
tracking point) which satisfy each propositionp from
GoalsToSatisfy.

Theorem 1 Optimality of the algorithm. The first plan the
algorithm extracts is the plan of optimal duration.

Proof 3 By contradiction, letPt be the first plan (of dura-
tion t) the algorithm extracts. We assume this plan is not
optimal, so we deduce that there exists a planP ′t′ (of du-
ration t′ < t) which has not been found by the algorithm
and is optimal. This implies one of the following cases: i)
the temporal levelt′ has not been generated during the ex-
tension of the temporal graph, or ii) the temporal levelt′

has been generated but the extraction stage has not consid-
ered the planP ′t′ from that levelt′. The first case is false
by Lemma 1 which claims the completeness of the tempo-
ral graph extension, and the second case is also false by
Lemma 2 which claims the completeness of the plan ex-
traction stage. In consequence, this contradicts the initial
choice of the existence ofP ′t′ . Hence,Pt is the plan of
optimal duration.

Application Example

We present a simple application example, based on the
logistics domainzeno-travelpresented in Figure 2. This
example allows us to illustrate the extension of the tem-
poral graph. In order to keep the temporal graph sim-
ple enough, the example to be solved consists of trans-
porting one person,ernie, from city − a to city − b by
using aplane which is initially in city − a. The dura-
tion of the actions is 5 forboard anddebark, and 10 for
fly. Table 2 shows the proposition levels and the action
levels. For each proposition levelP[t], only theP[t]end

part of the graph is shown because the actions of the do-
main have no positiveat start effects —negative effects
are not stored in the temporal graph. For each action level
A[t], both theA[t]end andA[t]start are shown with the ac-
tions which end, and start, respectively at each instant of
time. In timet = 0, actionsboard(ernie,plane,city-a)and
fly(plane,city-a,city-b)are generated, but because they are
AAstart−start mutex the propositionsin(ernie,plane)and
at(plane,city-b)are mutex until timet = 15, in which the
actiondebark(ernie,plane,city-b)is generated, thus obtain-
ing the goalat(ernie,city-b)in time t = 20. As can be seen,
although the actions have differing duration, the extension
of the temporal graph is equivalent toGraphplan. The pro-
cess of extraction of a plan selects the instances of actions
which obtain the goals, then the start and end conditions of
these actions, and so on. The plan obtained consists of the
following sequence of actions:

0 + ε : board(ernie,plane,city-a) [5]
5 + 2ε : fly(plane,city-a,city-b) [10]

15 + 3ε : debark(ernie,plane,city-b) [5]

The offsetε in the instant of time at which the actions are
executed is a necessary feature for a valid plan of PDDL2.1
(Fox & Long 2001). Thisε is included to avoid the simul-
taneity of the actions when they meet, as presented in the
case 3 of the mutex relationships of Table 1.

Experimental Results

Currently, there does not exist an extensive collection of
benchmarks for durative actions of PDDL2.1. Conse-
quently, we have adapted some of the traditional domains
of PDDL, such aslogistics, travel-bulldozer, ferry, grip-
per, monkey, blocksworldandzeno-travelto the model of
durative actions of PDDL2.1. Direct comparison between
TPSYS and recent temporal planner such asSapa (Do
& Kambhampati 2001) orTP4 (Haslum & Geffner 2001)
is difficult because they handle resources and even non-
admissible heuristics which cannot guarantee the optimal
solution. Nevertheless, we want to do direct comparison
in the immediate future. Consequently, we compareTP-
SYS with TGP to demonstrate that the algorithm presented
here remains feasible in dealing with traditional temporal
planning problems. We use two versions ofTGP: TGP,
which consists of the original version of (Smith & Weld
1999), andTGP-ng, which extendsTGP to keep minimal
nogoods, doing backjumping during the backward search in
the way proposed in (Kambhampati 2000). The tests were
censored after 60 seconds. The results of the tests obtained
in a 64 Mb. memoryCeleron 400 MHz. can be seen in
Table 3.

The results show thatTPSYS behaves well enough in
all the problems. UnlikeTGP, TPSYS calculates more
mutex relationships under the model or durative actions,
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Level P[t] A[t]

t P[t]end A[t]end A[t]start

0 at(plane,city-a),
at(ernie,city-a)

- board(ernie,plane,city-a),
fly(plane,city-a,city-b)

5
at(plane,city-a),
at(ernie,city-a),
in(ernie,plane)

board(ernie,plane,city-a) board(ernie,plane,city-a),
debark(ernie,plane,city-a),
fly(plane,city-a,city-b)

10

at(plane,city-a),
at(ernie,city-a),
in(ernie,plane),
at(plane,city-b)

board(ernie,plane,city-a),
debark(ernie,plane,city-a),
fly(plane,city-a,city-b),

board(ernie,plane,city-a),
debark(ernie,plane,city-a),
fly(plane,city-a,city-b),
fly(plane,city-b,city-a)

15

at(plane,city-a),
at(ernie,city-a),
in(ernie,plane),
at(plane,city-b)

board(ernie,plane,city-a),
debark(ernie,plane,city-a),
fly(plane,city-a,city-b)

board(ernie,plane,city-a),
debark(ernie,plane,city-a),
debark(ernie,plane,city-b),
fly(plane,city-a,city-b),
fly(plane,city-b,city-a)

20

at(plane,city-a),
at(ernie,city-a),
in(ernie,plane),
at(plane,city-b),
at(ernie,city-b)

board(ernie,plane,city-a),
debark(ernie,plane,city-a),
debark(ernie,plane,city-b),
fly(plane,city-a,city-b),
fly(plane,city-b,city-a)

-

Table 2: Outline of the temporal graph extension for the application example.

which allows to reduce the search space in the plan extrac-
tion. This allows the complexity ofTPSYS to follow the
same order of magnitud ofTGP —and evenTGP-ng. The
most important differences appear in the problemsatt-log3
andbig-bull2, in whichTGP is clearly better thanTPSYS.
Although the differences betweenTGP and TGP-ng are
not very significant in these tests, the benefits which can
be obtained by exploiting the CSP techniques presented in
(Kambhampati 2000) are very promising to dramatically
improve the behaviour of the plan extraction stage.

Discussion
The temporal planning system described in this paper rep-
resents an approximation for dealing with durative actions
of PDDL2.1 in aGraphplan-based approach. Therefore,
most of the extensions used inGraphplan-based planners
could be used here, such as memoization (Blum & Furst
1997) and regression (Kambhampati 2000) to improve the
third stage, propositions in the initial (final) situation being
placed (required) at any time during the execution of the
plan, and exogenous events as presented in (Smith & Weld
1999).

Now, we discuss two alternative methods to tackle with
durative actions withat start effects andat endconditions
in a temporal planner with ability to manage instantaneous
actions. Both of them consist of splitting each durative ac-
tion into a collection of simple actions.

The first alternative splits each durative action into two
instantaneous actions (which represent the start and end
points of the durative action) and one action with duration
(which represents the process of the action). All these three
new actions will have neitherat starteffects norat endcon-

Problem TPSYS TGP (TGP-ng)

att-log0 0.42 0.02 (0.01)
att-log1 0.44 0.05 (0.01)
att-log2 0.47 0.06 (0.05)
att-log3 14.10 2.65 (2.50)
bulldozer-prob 0.88 0.55 (0.45)
big-bull1 0.58 0.80 (0.75)
big-bull2 14.31 2.15 (2.10)
ferry1 0.01 0.01 (0.01)
ferry2 0.03 0.02 (0.02)
ferry3 0.30 0.03 (0.02)
gripper2 0.03 0.03 (0.02)
gripper4 0.17 0.13 (0.16)
gripper6 6.88 4.53 (13.50)
monkey1-test 0.20 0.17 (0.15)
monkey2-test 0.63 0.75 (0.70)
tower2 0.02 0.03 (0.02)
tower4 0.28 0.45 (0.50)
tower6 2.52 3.60 (3.25)
zeno-travel1 0.01 0.01 (0.01)
zeno-travel2 0.02 0.01 (0.01)
zeno-travel3 0.02 0.01 (0.01)

Table 3: Comparison ofTPSYS andTGP (results are in
seconds).
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ditions. Thus, a durative actiona is divided into:

• a1, with no duration.Prea1 = {SConda ∪ Inva} and
Effa1 = {SEffa ∪ efa1}.

• a2, with the duration ofa (Da). Prea2 = {Inva∪efa1}
andEffa2 = efa2.

• a3, with no duration.Prea3 = {EConda∪Inva∪efa2}
andEffa3 = EEffa.

The inclusion of theartificial effectsefa1 and efa2 of
actionsa1 anda2 respectively, allows to generate the ac-
tion a2 aftera1, anda3 aftera2, simulating the behaviour
of the original actiona. This way, during the plan extrac-
tion, actiona3 only can be planned ifa2 has been previ-
ously planned, and analogously,a2 only can be planned
after planninga1. The main drawback of this method is
the increment in the number of actions (in a factor of three
per each durative action) and in the number of propositions
(in a factor of two per each durative action) in the domain,
which by itself may be prohibitive. Moreover, if one goal of
the problem is satisfied byEffa1, i.e. the originalSEffa,
only the actiona1 would be planned (without needing to
plana2 nor a3), which would imply an unreal situation in
which only a part of the indivisible actiona is executed.

The second alternative is based on the semantic mapping
described in (Fox & Long 2001), and consists of splitting
each durative action into a collection of simple actions. The
collection includes two instantaneous actions (which repre-
sent the start and end points of the durative action) and a
number of identical monitoring actions responsible for con-
firming the maintenance of invariants. The monitoring ac-
tions can be achieved by requiring theno−opscorrespond-
ing to the invariants of an action to be active in the inter-
val between the start and end points of that action. There-
fore, they do not need to be built explicitly and only two
actions have to be constructed per durative action. Dou-
bling up the number of actions need not present a blow-up
at instantiation time, because the durative actions can be in-
stantiated first and then split, rather than vice versa. During
plan extraction it is necessary to maintain the link between
the actions representing the start and end points of a du-
rative action because neither one can be exploited without
the other. In addition, it is necessary to manage the tem-
poral constraints implied by the durations of the actions. A
planner based on this approach has been constructed and
appears to perform well in initial experiments (Long & Fox
2001). The approach still suffers from the problem caused
when the start of a durative action is added to the plan for its
effect (the initial effect of the durative action) necessitating
the addition of the end action to the plan if it has not already
been chosen. This in turn can introduce new preconditions,
so there is an iterative structure to the plan extraction algo-
rithm. This is highly reminiscent of theDP-Plan approach

(Baioletti, Marcugini, & Milani 2000) in which the direc-
tionality of Graphplan is exchanged for a Davis-Puttnam
search process.

Conclusions through Related Work
Last years have seen many attempts of dealing with tem-
poral planning. TheparcPLAN approach (El-Kholy &
Richards 1996) handles a rich set of temporal constraints,
instantiating time points in a similar way toTPSYS. TGP
(Smith & Weld 1999) introduces a complex mutual exclu-
sion reasoning which is very valuable in temporal environ-
ments. The critical difference betweenTGP andTPSYS is
based on several points. First,TPSYS calculates the static
mutex relationships in a preprocessing stage which allows
to speed up the rest of stages. Second,TGP uses a more
compact temporal graph in which actions and propositions
are only annotated with the first level at which they appear.
This reduces vastly the space costs but it increases the com-
plexity of the search process, which may traverse cycles in
the planning graph. In opposition,TPSYS uses a much
more informed temporal graph which reduces the overhead
during the search. Third, the mutex reasoning is managed in
TGP by means of inequalities and sophisticated formulae,
whereasTPSYS calculates the mutex relationships level by
level in a more similar way toGraphplan. Finally,TPSYS
uses a richer model of actions which implies: i) fewer con-
straints on the execution of the actions, ii) some modifi-
cations in the planning algorithm, and iii) a significantly
larger space of search. More recent temporal planners, such
asSapa (Do & Kambhampati 2001) orTP4 (Haslum &
Geffner 2001) handle concurrent actions and use heuristic
metrics to deal with resources in planning.Sapa uses a
model of actions similar to PDDL2.1, but it does not per-
form mutex propagation as our system.Sapa scales up
quite well, but it uses non-admissible heuristics which can-
not guarantee the optimal plan. On the other hand,TP4
uses admissible heuristic search to handle actions with time
and resources, but it assumes a conservative model of ac-
tions.

This paper has presented a temporal planning system
which handles durative actions provided by level 3 of
PDDL2.1. Instead of using a conservative model of ac-
tion, TPSYS manages actions with local conditions and
effects. Although durative actions make the calculus of the
mutex relationships, the temporal graph extension and the
plan extraction stages more complex, they allow modelling
of richer planning domains. Briefly, the main contributions
of the paper have been the description of:

• The new components of level 3 durative actions based on
(Fox & Long 2001) and the mutual exclusion relation-
ships they entail.

• The modifications needed during the temporal graph ex-
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tension. In the temporal graph extension, each temporal
level has been divided into two parts to make easier the
calculus of the mutex relationships.

• The modifications needed during the plan extraction. We
have presented how the plan is found through the tem-
poral graph without following the traditional right to left
directionality.

The algorithm still has some limitations. According to
our experiments, the performance of the algorithm degrades
when there are many actions and propositions in the plan-
ning domain, due to the calculus of the mutual exclusion re-
lationships. Moreover, the performance of the second stage
degrades when the duration of the actions is wildly differ-
ent. Particularly, the worst performance happens when the
greatest common divisor of the durations of the actions is 1,
which forces the algorithm to consider the maximum num-
ber of temporal levels, thus increasing the complexity of the
third stage. For this reason, the areas of future work are fo-
cused on the inclusion of memoization techniques similar
to the memoization performed inGraphplan and the inclu-
sion of some of the CSP techniques presented in (Kamb-
hampati 2000), which have been already tested onTGP.
We also want to extendTPSYS to handle additional fea-
tures of level 3 of PDDL2.1, such as numeric conditions
and effects and inequality relations on conditions.
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Introduction and Motivation
In this position paper we propose the model of timed au-
tomata, originating from the verification of real-time sys-
tems, as a model for posing and solving time-dependent
planning and scheduling problems. We believe that in the
same sense as automata are used as the major vehicle for
verification of systems where the model of time is qualita-
tive, timed automata can be the center of a a unifying math-
ematical modeling framework for quantitative time, having
the following attractive features:

1. It is sufficiently expressive to describe the essential as-
pects of time-dependent real-life problems in a variety of
application domains.

2. It provides for models with well-defined and clear dy-
namic semantics.

3. These models are amenable to computer-aided design
methods such as simulation, testing, verification and au-
tomatic synthesis of (optimal) schedules and plans.

4. These methods are currently supported by tools of vari-
ous levels of maturity, that treat the specific computational
problems of time-related reasoning.

The problems of time-dependent behavior in general, and
dynamic resource allocation in particular, pervade many as-
pects of modern life. A computer-aided timing technology
can contribute to domains ranging from the reliability and
efficient use of communication resources in a telecommu-
nication network to the allocation of tracks in a continen-
tal railway network, from scheduling for the computational
resources on a chip for durations of nano-seconds to the
weekly, monthly or longer-range reactive planning in a fac-
tory or a supply chain.

Timed automata provide a key modeling technology for
the controlled design and analysis of all sorts of embed-
ded systems. In particular, the state-of-the-art of applica-
tion of tools for timed automata is very promising, with
notable applications to verification (and debugging) of in-
dustrial real-time communication protocols and control pro-
grams, and applications to sequencing and resource alloca-
tion problems. Timed automata also seems to provide an in-
teresting middle-ground between purely finite-state systems

Copyright c
 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

and general hybrid systems: there are at present no tools or
techniques available for the analysis of systems with general
continuous dynamics of more than toy size, whereas there
are such tools available if the dynamics are abstracted to
timed automata.

Innovative Aspects
We sketch below some of the innovation that timed automata
bring to various approaches to time-dependent system anal-
ysis.

Time-dependent Behaviors: Toward State-Space Mod-
els A lot of the success in discrete verification and in con-
trol theory is due to state-space based models of their un-
derlying dynamical systems. Verification is based on tran-
sition systems models such as automata while control the-
ory is based on continuous dynamical systems where state-
variables evolve according to differential equation. Such
system models where the values of state variables determine
the possible future evolutions have a tremendous, positive
effect on the understanding of system dynamics. However,
the phenomena that we want to treat cannot benefit from
these two classes of models as they are: purely-discrete
models are too poor and continuous models are too detailed
(for the purpose of solving a scheduling problem there is
no use in modeling the process of executing a production
step using differential equations). The timed models that we
want to use are the ideal candidate for filling this model-
ing gap. They enrich discrete models with additional state-
variables, the clocks, which encode into a state exactly the
information necessary to determine the future: each clock
represents the time that has elapsed since the occurrence of
a certain past event upon which the future depends.

In contrast, many approaches to timing problems, such as
those used in operation research or performance modeling,
are not always based on such a rich dynamical model, but
rather on formulating and solving static optimization prob-
lems whose relation with the underlying dynamics is some-
times obscured. Such an approach is sometimes very suc-
cessful in solving particular problems efficiently, but their
ad-hoc nature can prevent their reusability. We strongly be-
lieve that if computer-aided timing analysis and design is to
become a mature discipline, its approach to problem solving
should be based on modeling problems faithfully by a clean
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semantic model, and not in terms of the specific technique
used to solve them.Such an approach makes the computa-
tional difficulty of the original problem explicit and allows
much more freedom later in choosing the solution method
that gives the best trade-off between its computational com-
plexity and the quality of the solution it provides.

Another advantage of the automaton-based approach is
that it enables the user to formulate, in a very natural fash-
ion, distributed systems comprising of small interacting sub-
systems. In other approaches one does not have such an in-
tuitive notion of communicating sub-systems to solve such
problems, but rather a very large number of equations and
inequalities in which the dynamical and compositional as-
pects are not made explicit.

In the context of AI, our feeling is that the underlying dy-
namic models are sometimes hidden by too much emphasis
on logical and syntactic considerations. Syntax is impor-
tant, especially for the efficient treatment of large interacting
sub-systems, but these issues should be considered only af-
ter the problems are well understood from a semantical point
of view.

Verification: From Untimed to Timed and from Safety to
Performance Verification methodology had a lot of suc-
cess during the last decade due to verification tools that can
predict the behaviors of complex discrete systems such as
digital circuits and communication protocols. Many models
used in this methodology are purely discrete and their treat-
ment of time is purely qualitative, that is, behaviors are just
sequences of events appearing one after the other but with-
out any quantitative timing information about the duration of
actions and the time between events. Timed models provide
for a more detailed level of modeling and incur, because of
this, a considerable computational overhead associated with
the treatment of clocks. Another dimension of innovation
with respect to standard verification is the evaluation of be-
haviors in terms of quantitative properties of (timed) behav-
ior, such as total elapsed delay time, i.e. a judgment in terms
of performance rather than the traditional classification into
“good” and “bad” behaviors.

Scheduling: Certainty vs. Uncertainty Classical mod-
els for scheduling in manufacturing such as the job-shop
problem, are somewhat detached from industrial practices.
They assume that the duration of every step as well as the
arrival times are fixed and known with certainty. In practice,
it is rarely the case that a schedule is executed as planned.
The problem of coping with uncertainty is identified (by
providers of scheduling tools and by their clients) as one
of the major problems in the domain. There have been vari-
ous attempts to model and solve such problems, but no uni-
fied approach has emerged. Using non-deterministic timed
automata with controlled and uncontrolled transitions (for
representing the uncertainty coming from the plant) we can
model a large class of such problems, and provide efficient
offline algorithms for synthesizing reactive schedulers. Such
algorithms can plan for the best, worst or average case, but
the scheduling strategies they produce are adaptive and can
take advantage, for example, of the fact that a task has ter-
minated before it was expected, and use the empty time slot.

a=b

a=C := 0

l � C � u ?=ba=C := 0

C = d?=b

Figure 1: Refining an untimed system description to a timed
one. In the untimed automaton a is followed by b, while
in the timed automaton the distance between the two events
is d. Uncertainty in the duration is modeled using a non-
deterministic automaton in which a transition can be taken
anywhere in the interval [l; u].

Uncertainty: Quantitative vs. Qualitative Due to histor-
ical reasons, most uncertain phenomena in system behavior
are treated probabilistically. For example in the theory of
queuing systems, it is often assumed that the inter-arrival
times and service times of clients are random variables. In
this setting, an optimal scheduler is one which optimizes
the expected value of the performance over all possible be-
haviors. Under certain assumptions on the nature of the
probabilistic processes analytical solutions can be found for
such optimization problems. Unfortunately, these assump-
tions are sometimes very restrictive, and unrealistic for many
modern applications. Without them numerical solutions can
be devised, but their complexity can be very high, making
them often also unsuitable for the treatment of large sys-
tems. Timed automata suggest an alternative formulation
for temporal uncertainty: instead of specifying a probability
distribution on durations only upper- and lower-bounds are
given (see Figure 1 for a small example). From these mod-
els, policies can be derived which are optimal with respect to
optimistic or pessimistic or average estimates, but which are
nevertheless guaranteed to function for all cases. Because
of the less involved model, we hope that the computational
difficulty of deriving such policies can be much smaller than
in the probabilistic framework.

Example: Job-Shop Scheduling
Instead of giving formal definition let us illustrate how our
approach is used to model and solve the classical job-shop
scheduling problem, a generic resource allocation problem
in which common resources (“machines”) are required at
various time points (and for given durations) by different
tasks. The goal is to find a way to allocate the resources
such that all the tasks terminate as soon as possible while
respecting resource constraints.

Consider two machines fm1;m2g and two jobs J
1 =

(m1; 4); (m2; 5) and J2 = (m1; 3) meaning that the the first
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Figure 3: The automata corresponding to the jobs J
1 =

(m1; 4); (m2; 5) and J
2 = (m1; 3).

job needs to use m1 for 4 time units and then machinem2 for
5 units, while the second job uses machines m1 for 3 units.
A machine cannot be used simultaneously by two jobs. Two
possible schedules are depicted in Figure 2. The length of
S1 is 9 and it is the optimal schedule.

Timed automata are automata augmented with continuous
clock variables whose values grow uniformly at every state.
Clocks are reset to zero at certain transitions and tests on
their values are used as pre-conditions for transitions. A run
of a timed automaton is an alternating sequence of discrete
transition and time periods in which the automaton stays in
a state. We model the job descriptions using the two timed
automata of Figure 3. Each automaton represents the prece-
dence and duration constraints of a job in isolation. The
resource constraints are capture by a composition of the au-
tomata that does not allow global states that violate them —
in our example state (m1;m1) is forbidden. The automa-
ton of Figure 4 represents the whole system and all its runs
correspond to feasible schedules.

The two schedules appearing in Figure 2 correspond to
the following two runs of the automaton (the 4-tuples corre-
spond to discrete state and clock values and we use notation
? to indicate inactive clocks):
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Figure 4: The global timed automaton for the two jobs.

S1 :

(m1;m1;?;?)
0

�! (m1;m1; 0;?)
4

�! (m1;m1; 4;?)

0

�! (m2; m1;?;?)
0

�! (m2;m1; 0;?)
0

�! (m2;m1; 0; 0)
3

�! (m2; m1; 3; 3)
0

�! (m2; f; 3;?)
2

�! (m2; f; 5;?)

0

�! (f; f;?;?)

S2 :

(m1;m1;?;?)
0

�! (m1;m1;?; 0)
3

�! (m1;m1;?; 3)
0

�! (m1; f;?;?)
0

�! (m1; f; 0;?)
4

�! (m1; f; 4;?)

0

�! (m2; f;?;?)
0

�! (m2; f; 0;?)
5

�! (m2; f; 5;?)

0
�! (f; f;?;?)

The problem of optimal finding optimal schedules can
then be reduced to the problem of finding the shortest (in
terms of elapsed time) path in a timed automaton. In
(AM01) an efficient implementation has been reported.

There is much more to be said about the computational
techniques used for analyzing timed automata, on the exist-
ing tools, on abstraction and approximation techniques, etc.
Instead we will give a a list of related publications by mem-
bers of our group.
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Abstract

A beneficial aspect of the planning competitions has been the
fact that it has forced the planning community to question
and begin standardization of the input and output semantics
of the very problem. A theme that often gets debated dur-
ing the formalization of any new extension to the PDDL rep-
resentation is that of“physics, not advice”, i.e., the model-
ing of the domain should be independent of the intention of
any agent in it. Though this philosophy is perfectly reason-
able from a competition standpoint because it provides no ad-
vantage to any specific type of planner, its adherance should
be balanced with the reality that planners have to solve real
applications where temporal constraints and advice are both
present. Moreover, what constitutes physics of a domain may
not be always clear and when applied alone, it can lead to
very simplistic domain descriptions that are devoid of practi-
cal interest.
In recent extensions to PDDL (PDDL2.1), the semantics of
durative actions and temporal constraints is quite similar to
how advice is used in Hierarchical Task Network (HTN) plan-
ning (i.e., schema reductions). Moreover, planning has in-
creasingly been solved as multi-stage sub-problems, where
each stage refines the problem at a lower level of abstrac-
tion. These characteristics are essentially that of HTN plan-
ners which can incorporate both physics and any available
advice from the domain. The bias against advice in the plan-
ning competitions has had the unintended effect that although
HTN planners are widely used in the industry, their tech-
niques have not been evaluated in any of the planning compe-
titions. Consequently, when one wants to use a planner from
the competition to solve problems in real applications, it is not
clear which planner would be able to use advice better. We
argue that the distinction between physics and advice is not as
important as the need to conciliate physics with advice in the
interest of competition in challenging problems in emerging
and interesting domains. We investigate temporal constraints
from a practical perspective and make suggestions on how to
incoporate temporal advice.

Introduction
The International Planning Competitions (IPCs)(McDer-
mott 2000; Bacchus 2000; Fox & Long 2002) have become
a widely anticipated and significant event in the AI horizon.
Besides the competitive (performance) element, each IPC

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

has uniquely contributed to better understanding of the plan-
ning problem and solution methods - AIPS-98 saw the emer-
gence of graphplan-based algorithms on the forefront while
AIPS-00 saw the dominance of heuristic-based algorithms.
Another beneficial aspect of the planning competitions has
been the fact that it has forced the planning community to
question and begin standardization of the input and output
semantics of the very problem. A theme that often gets de-
bated during the formalization of any new extension to the
PDDL representation is that of“physics, not advice”, i.e.,
the modeling of the domain should be independent of the
intention of any agent in it. Though this philosophy is per-
fectly reasonable from a competition standpoint because it
provides no advantage to any specific type of planner, it has
had the unintended effect that though Hierarchical Task Net-
work (HTN) planners have been widely used in the indus-
try, their techniques have not been evaluated in any of the
planning competitions1. HTN planners can incorporate both
physics and any available advice from the domain. Conse-
quently, when one wants to use a planner from the compe-
tition to solve problems in real applications, it is not clear
which planner would be able to use advice better.

The planning competitions should have domains that
demonstrate the growing reach of the area. However, what
constitutes physics of a domain is not always clear and
can lead to a very simplistic domain description that is
devoid of practical interest. For example, planning has
been considered in data integration to determine the best
way to integrate data from different sources(Knoblock1995;
Knoblock & Ambite1998; Kwok & Weld1996), and mon-
itor the actual execution of source requests. Traditionally,
sources have only been repositories of data but in new do-
mains like bioinformatics(Srivastava 2002), the sources can
be applications as well. Planning for query decomposi-
tion seems to have lost support in favour of cheaper meth-
ods (Levy 1998) like rule inversion(Duschka1996) and view
unfolding(Qian1996) when sources are data stores. The
main reason is that due to the physics of the domain, the
search space is made up ofinformationstates and there is
no subgoal interaction among actions as they can always

1SHOP(Nau et al 2000) participated in the hand-coded track of
AIPS-00 competition but it was not evaluated for its ability to use
advice.
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be executed on the sources to gain the information needed.
Hence, the conclusion drawn was that using planning for
just sequencing source-call actions is an over kill. But when
sources can also be applications, they may encode advice
(or policy) of their interactions which may prevent an action
from being always applicable. For example, if a user’s au-
thentication request is denied (by a trusted third-party), her
previously available credentials (information like password
or certificate) to access a source may become invalid. A
different kind of advice may come from practicality consid-
erations already known by the users in the domain (domain
“wisdom”). For example, there is such a wide disparity in
the size of data that is accessed in bioinformatics that some
classes of query plans are practically inexecutable. One can
encode them into the physics of the domain without upseting
any actor in the domain.

Another domain where interaction among applications is
key to problem modeling is that of web services composi-
tion(McDermott 2002). The scenario here is that an agent
or a service needs to determine if another service can fulfill
its requirements based on the operations that it exposes to
the outside world. There is a tremedous potential for apply-
ing planning techniques to handle interactions in these in-
creasingly important domains characterized by their online
demand for good timely results.

In the recent extensions to PDDL, the semantics of dura-
tive actions and temporal constraints (in PDDL2.1) is quite
similar to how advice is used in HTN planning (i.e., schema
reductions)(Fox & Long 2002). Moreover, planning has in-
creasingly been solved as multi-stage problems, where each
stage is solved at a lower level of abstraction. These trends
suggest that the distinction between physics and advice is
not as important as the need to conciliate physics with advice
for effective problem solving. We are specifically interested
in temporal constraints from a practical perspective.

Here is the outline of the paper: we start with a discussion
of how temporal constraints get specified through the two
main approaches to provide advice in planning - search con-
trol knowledge and HTN schemas. Next, we consider the
role of advice for feedback in multi-module planning which
has addressed resources and temporal constraints. We then
argue for adoption of a formal mechanisms in the competi-
tion to express temporal advice/semantics to planners inde-
pendent of the physical dynamics of time used for solving
the problem.

Advice in Planning
There are two main mechanisms to incorporate advice in
a planning algorithm, namely, as control knowledge or
through HTN schemas.

Control Knowledge
This approach requires declarative rules to be specified
which are used by the search algorithm to prune newly cre-
ated search nodes based on some matching criteria. Con-
trol knowledge is closely related with the solution search
strategy and can either be over syntactic/topographical con-
ditions(Penberthy & Weld 1992; Huang et al 1999) during

search or as temporal formula(Bacchus & Kabanza 2000).
Temporal formulas can be checked explicitly when the
search strategy directly tracks the progress of world during
search, e.g., forward chaining, or implicitly through model
checking techniques(McMillan 1992).

Although advice is usually expected from the user, there
exist automatic pre-processing techniques to detect and
incorporate some types of advice, like invariants, e.g.,
TIM(Fox & Long 1999), DISCOPLAN(Gerevini & Schu-
bert 1998)). These techniques use the domain description
and the particular problem being solved to deduce necessary
conditions. Planners should be credited for taking less ad-
vice from the user.

HTN Schemas
A HTN planning problem(Kambhampati et al 1998) can be
seen as a planning problem where in addition to the prim-
itive actions, the domain contains schemas which represent
non-primitive (abstract and non-executable) actions and ac-
ceptable rules to reduce non-primitive actions to primitive
and other non-primitive actions (hence an hierarchy of ac-
tions). All non-primitive actions are eventually reduced to
primitive actions so that the resultant plan is executable. The
acceptable solutions to a HTN problem not only achieve
the top-level goals but can also be parsed in terms of the
non-primitive actions that are provided for the top-level
goals(Barrett & Weld 1994).

Temporal properties like duration of an action have not
been explicitly modeled in HTN. However, a schema reduc-
tion indirectly encodes temporal ordering/constraints among
actions. For example, in Figure 1, an outline of schema re-
duction is shown for travelling from a source to a destination
using either the bus or the train, while hitchhiking is not al-
lowed. The duration of Travel is bounded by:

|Travel(source, dest)| ≥ min[
|GobyBus(source, dest)|,
|GobyTrain(source, dest)| ]

|Travel(source, dest)| ≤ max[
|GobyBus(source, dest)|,
|GobyTrain(source, dest)| ]

Since GobyBus and GobyTrain are also non-primitive ac-
tions, the duration of Travel can be refined to2:

|Travel(source, dest)| ≥
min[

|GetinBus|+ |Buyticket|+ |GetoutBus|,
|GetinTrain|+ |Buyticket|+ |GetoutTrain| ]

|Travel(source, dest)| ≤
max[

|GetinBus|+ |Buyticket|+ |GetoutBus|,
|GetinTrain|+ |Buyticket|+ |GetoutTrain| ]

The semantics of a schema is derived from the set of
primitive actions that result from the application of reduc-
tions. The relative ordering of actions in a schema can be

2Parameters of actions may be omitted for clarity.
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Travel(source, dest)

GobyBus(source,dest) GobyTrain(source,dest)

GetinBus(souce)

Buyticket(bus)

GetoutBus(dest)
GetinTrain(source)

Buyticket(train)

GetoutTrain(dest)

Hitchhike(souce, dest)

Figure 1:Schema reduction in a Travel domain (from (Kambhampati et al 1998)). Travel, GobyBus and GobyTrain are non-
primitive actions.

interpreted as temporal advice. If the ordered monotonic-
ity property holds during refinement(Erol 1995), the partial
plan and any derived information is sequentially communi-
cated to subsequent refinements until the plan is concretized.

Multi-Module Planning and Advice
A growing trend in planning is to solve it as multi-stage sub-
problems, where each stage refines the problem at a lower
level of abstraction. With the increasingly complex prob-
lems being posed in planning, usually a problemP can be
divided into multiple sub-problemspi that may differ in their
characterisitics – causal reasoning or different forms of re-
source reasoning. For example, the planning problem of
having courier packages delivered can be divided into a rout-
ing problem of finding the path to be taken and a driver allo-
cation problem. If one were to solveP as a whole, the choice
of techniqueM for it may not be the most appropriate tech-
nique for∀pi ∈ P . Instead, with a multi-stage approach,
the most appropriate modulemi for eachpi is used and they
collaborate to solveP .

For example, in STAN4(Fox & Long 2001), an enhanced
version of the automatic TIM utility is used to detect if a
problem is of a generic transportation problem. In that case,
an abstract planning problem is solved where operators and
preconditions of the identified sub-problem are removed,
and solution is combined with the result of specialized sub-
problem solver. In Realplan(Srivastava et al 2001), planning
is considered to comprise of causal reasoning and resource

reasoning and the latter is handled in a separate scheduling
phase. The details about resources is omitted during causal
reasoning and an abstract plan is obtained. The scheduling
phase concretizes the plan by solving the resource allocation
sub-problem with discrete resources as a Constraint Satis-
faction Problem (CSP) problem. Moreover, the planner and
scheduler can interact either in a master-slave or peer-peer
manner repeatedly. The LPSAT planner (Wolfman & Weld
1999) solves planning problems with goals of achievement
and metric resources (P ). It transformsP into an assign-
ment problem for discrete state variables (p1) and continu-
ous state variables (p2) and solve it by satisfiability (m1) and
a simplex-based linear program (LP) solver (m2).

Multi-module planners mainly need advice on how to de-
tect the sub-problems and how to effectively invoke the nec-
essary modules. In some cases like metric quantities, it is
quite clear from the domain description syntax but identifi-
cation of a generic class of sub-problem or resources is diffi-
cult. Durative actions can give early feedback about whether
a subsequent module (processing at a lower level of detail)
needs to be invoked.

Temporal Advice in Competition
While extending PDDL to handle temporal constraints in
PDDL2.1, a fear has been raised that the semantics of de-
tailed modeling of time may serve as advice to the plan-
ner(Fox & Long 2002). We saw that the concern is not
unfounded because usage of HTN schema reductions, an
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advice mechanism, can be interpreted to provide duration
bounds for actions. But modeling time is also important
because it provides the much needed expressivity to tackle
richer and more complex problems in planning.

Going forward, we suggest that planning competition
should have:
• Planning domains where only essential temporal advice is

defined as part of the domain specification in a standard
formalism (e.g., temporal logic). This would allow for
richer planning scenarios to be considered in the competi-
tion which is more important than the strict abhorance of
advice.

• The standard formalism for advice be independent of the
nature of the planner. Hence, it could be translated into
control knowledge or reduction schemas based on the
working of the planner. The requirement is in line with
PDDL where the planner decides how it will use the stan-
dard domain description.

• Participants stay free to incorporate any automated do-
main analysis (i.e., automatically generated advice) as be-
fore.

• Continuation of the current theme(McDermott 2000) that
pre-canned programs cannot be embedded to compete in
a plan synthesis competition.

Conclusion
In this paper, we argued that the distinction between physics
and advice in practical planning is not as important as the
need to conciliate physics with advice in the interest of com-
petition in challenging problems in emerging and interesting
domains. We investigated temporal constraints from a prac-
tical perspective and outlined how temporal sematics/advice
could be incorporated in future planning competitions.
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Abstract 
In this paper we present a formalism for explicitly 
representing time in HTN planning. Actions can have 
durations and intermediate effects in this formalism. 
Methods can specify qualitative and quantitative temporal 
constraints on decompositions. Based on this formalism we 
defined a planning algorithm TimeLine that can produce 
concurrently executable plans in the presence of numeric 
state variables. We state and prove the soundness of the 
algorithm. We also present the experimental results of the 
TimeLine implementation that shows the feasibility of our 
approach. 

Introduction   
Actions with different durations, simultaneous action 
execution and reasoning with metric quantities are three 
characteristic of real-world planning problems. Recently 
studies on artificial intelligence planning concentrated on 
developing formalisms for representing time and creating 
temporal plans. The planning domain definition language 
(PDDL 2.1) for AIPS 2002 planning competition can 
define actions with durations, and address the concurrency 
issues in the presence of numeric state variables. 
  The difficulty aroused with concurrency is to control 
the overlapping action executions. The problem gets more 
complicated when there are limited number of shared 
resources. When  resources are identified and resource 
needs for every action  are explicitly defined, then two 
actions with conflicting resource requirements can be 
defined as mutually exclusive. In this approach the search 
space can be pruned effectively if it’s accompanied by 
good resource management techniques. The more general 
case is when there are numeric state variables that can be 
updated concurrently. Numeric state variables can be used 
to represent resources but not every numeric variable can 
be seen as a resource.  
  Numeric computations and time can be handled easily by 
HTN planners. For this reason HTN planners are 
conveniently used for practical applications.  In this paper 
we present a formalism for explicitly representing time in 
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HTN planning. Actions can have durations and 
intermediate effects in this formalism. Methods can specify 
qualitative and quantitative temporal constraints on 
decompositions. Based on this formalism we defined a 
planning algorithm that can produce concurrently 
executable plans in the presence of numeric state variables. 
We state and prove the soundness of the algorithm. We 
also present the experimental results of the implementation 
that shows the feasibility of our approach.  

Formalism 
Performing numerical computations is an important issue 
for real-world problems. Some HTN planners like SHOP 
have already incorporated this functionality. Resources 
generally represent some features in the domain that are 
limited in number, like space available in a truck. Even 
though numeric state variables can be used to represent 
these resources, the opposite need not to be true. For 
example, let’s say the distance between two cities A and B 
is 6 units and there is a truck T that has a speed of  2 units 
per unit time.  If T is at A and will travel to B then as T 
moves, the distance between A and the current location of 
T increases ( see dist(A,T) in Figure 1 ). Similarly travel 
time left to B is a numeric variable (see timeTo (T,B) in 
Figure 1). We believe these two numeric variables do not 
represent any resources. Therefore, instead of identifying 
the resources and defining operations on these resource, we 
will go with the more general way and define concurrent 
update rules for numeric state variables. 
 
 
 
 
 
 
  
 
 

Figure 1 Dist(A,T) is distance between A and current location of 
truck T, TimeTo(T,B) is time left to reach B 

The value of a numeric variable can be assigned to a 
constant, decreased or increased by constant amount. We 
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define assignment operations on the same variable at the 
same time, as mutually exclusive updates. Therefore we 
don’t allow two assignment operations on the same variable 
at the same time, even though the assigned values are same. 
Concurrent increase and decrease operations on the same 
numeric variable  can be permitted as long as the value of 
the variable stays in the defined range in all intermediate 
states produced by any permutation of these operations. 
Since addition and subtraction are commutative operations, 
the result of the any permutation will be the same. To 
ensure that the value always stays in the range, it is enough 
to check pessimistic cases in which all increase or all 
decrease operations are performed first. 

State, Agenda, Operator 
Definition 1: State is a collection of positive ground atoms 
of the form  (p  t1 t2 ..tn ) where p is the predicate name and 
t1 to tn are argument terms. Value of a numeric state 
variable is represented by an atom of the form (=  variable 
value) where variable is the numeric state variable and 
value is the value of the variable in this state. A valid state 
can not contain both (= variable value1) and (= variable 
value2). 
 Main elements of HTN planning are simple tasks and 
composite tasks. Operators define a set of changes in the 
current state in order to achieve simple tasks. Composite 
tasks can be achieved by decomposing them into subtasks 
and then achieving these subtasks. Methods define 
decompositions for composite tasks. 
 Classical HTN operators have a precondition to hold in 
the state just before the operator is applied. Operators have 
effects which will be true in the next state of the world. We 
extend this definition to represent operators that may have 
a duration of more than one unit time. We do not require 
the precondition of an operator to hold through out the 
execution. Effects of an operator  can not change the state 
in which it’s precondition is evaluated. We eliminated 
instant effects  because they make it hard to trace the 
deleted precondition interactions. This way we always 
evaluate the preconditions in a stable state. We let the 
operators have effects at intermediate  time points, not only 
at the end so the operators may represent gradual changes  
in the successor states. Effects are the promises that will be 
true in a successor state. Effects may assign a value to a 
numeric state variable, increase or decrease the value of  a 
numeric state variable, add or delete an atom in or from the 
state.  
Definition 2: An operator has the following form 

(:operator head   precondition   effect-list ) 
where head is a simple task, precondition is a conjunctive 
expression and effect-list is a list of timed effects. Timed 
effects can be in one of the following forms: 
    ( [time1]  ( e1….en ) ) or  ( [time2,time3]  ( e1….en ) )  
where ei’s are effects and the intended meaning of first 
form is ei’s will be true at (start time of operator + time1 ). 
The intended meaning of the second form is ei’s will be 
true in the states associated with inclusive time interval 
[start time + time2, start time + time1 ].  In this notation 

time1, time2 and time3 should be positive integers or 
numeric expressions. If the result of the numeric expression 
is not an integer we take the ceiling of the result. More over 
time3 should be greater than or equal to time2.  
  
(:operator (!drive ?truck ?loc-from ?loc-to)
;;PRECONDITIONS
( (not (moving ?truck ?dest))
(= (truck-user ?truck) ?user)
(call = ?user 0)
(truck-at ?truck ?loc-from)
(distance ?loc-from ?loc-to ?dist)
(assign ?duration (call ceil (call / ?dist 2))
))
;;EFFECTS
(([1]
((=(truck-user ?truck) 1)
(=(truck-arrives ?truck ?loc-to)

(call - ?duration 1))
(moving ?truck ?loc-to)
(not (truck-at ?truck ?loc-from))))

([2,?duration]
((-= (truck-arrives ?truck ?loc-to) 1)))

([?duration ]
((= (truck-user ?truck) 0)
(not (moving ?truck ?loc-to))

(truck-at ?truck ?loc-to))))

) 

Figure 2 Drive operator for  extended logistic domain 

Figure 2 shows drive operator we defined for logistic 
domain in which we added some numeric state variables. 
The precondition of the operator states that number of users 
that are working on this truck should be zero and truck 
should not be in motion. Assign statement in the 
precondition simply binds the value of its second term to its 
first term. In this case ?duration is assigned to travel time 
between ?loc-from and ?loc-to when the truck speed is 2.  
One unit time later the state and current location of the 
truck is updated  also the number of truck users for this 
truck is set to 1 and a counter  that shows the time left to 
arrive ?loc-to is initialized. After that at every clock tick 
this counter is decreased by one. Finally the state and the 
location of the truck is updated . We also decrease the 
number of users for this truck. One thing to notice is we  
assign the value of (truck-user  ?truck) to one at the 
beginning instead of increasing it by one. That is because 
we want two overlapping drive operations on same truck to 
be mutually exclusive.  
Definition 3: Two effects e1 and e2 are mutually exclusive 
if any of  the following holds: 
• if e1 and e2 are logical negations of each other 
• if e1 assigns a value to a numeric state variable  v and e2 

assigns or increases or decreases the value of v 
• if e1 decreases or increases the value of a numeric state 
variable  v and  e2 assigns a value to v. 
 
Since we have delayed effects that may appear sometime in 
the future we need a structure that remembers all of the 
promises toward future states. 
Definition 4: Agenda is a collection of pairs ( t, e ) where e 
is an effect and t is the time when e will be true in the state. 
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If in an agenda A every t is grater than T then A is an 
agenda after T. 
  An effect e1 that is promised to be true at time T is 
consistent with an agenda A iff A does not contain an effect 
e2 that is promised to be true at time T and e2 is mutually 
exclusive with e1.  
 Figure 3 shows the load operator we defined for our 
extended logistic domain. There may be a state that 
satisfies the preconditions of both load and drive operators. 
It is obvious that for a truck these two operators should not 
overlap on the timeline. To handle this case we should 
extend the definition of applicability for an operator, to 
include consistency with the current agenda. Therefore if a 
drive operator on a truck is scheduled at time T,  load 
operator on the same truck should not be applicable. We 
should allow concurrent load operators unless the 
cumulative numerical effects of these load operators lead to 
an out of range value for a numeric state variable in the 
future states. It is not always possible to detect these 
inconsistencies by looking at the agenda, since there may 
be additions to agenda and that can fix what seems to be a 
problem. However it is easy to check for the state just after 
the current one. Let’s say in the current state truck B has 5 
units of space available. If we schedule 6 concurrent 
loading into B now, we can immediately see that (given 
that all packages have positive sizes) one unit time later we 
will ran out of space. No unload operation can fix this 
problem because the value should always stay in the range 
no matter in what order these effects are carried on.  
  
(:operator
(!load ?obj ?truck ?loc)
( (not (moving ?truck ?dest))
(obj-at ?obj ?loc)
(truck-at ?truck ?loc)
(= (truck-space ?truck) ?space)
(volume ?obj ?vol)
(call >= ?space ?vol) )

(([1]((+=(truck-user ?truck) 1)
(-=(truck-space ?truck) ?vol)
(not (obj-at ?obj ?loc))))

([1,2]((truck-at ?truck ?loc)))
([2]((-= (truck-user ?truck) 1)

(in-truck ?obj ?truck)))))

Figure 3 Load operator for extended logistic domain 

Definition 5: Let S be the state for time T, A be an agenda 
after T, t1 be a simple task and O be an operator. Let mgu 
be the most general unifier that unifies with the head of O 
and t1. Then Omgu is an applicable operator instance for t1 
at time T in state S with agenda A iff the following holds  
• There is a satisfier α for the precondition of Omgu in S. 
• None of effects in effect-list of (Omgu )α with same time is 

mutually exclusive with each other. 
• All of the effects of  (Omgu )α  are consistent with A 
• All the numeric variables stay in the range at time T+1. 
Let S be the state at time T and A be the agenda in which all 
of the effects are after T. A simple task t1 is T-executable  if 
there exists an applicable operator instance for t1 in S with 
A.  

 The purpose of agenda is to keep track of changes that 
will be made to future states. Given the current time, state 
and the current agenda successor states can be generated by 
performing the effects in the temporal order.  
Definition 6: Let S be the state at time T and A be an 
agenda after T. Let e1..en be the effects in A that are 
promised for time T’ where T’ is T+1 then Exec(A,S,T’)  
creates a new state S’ in and a new agenda A’ with the 
following properties:  
• Let  p be  (= numeric-variable  ex-value) and S contains 

p. If there is an effect ei that assigns value new-value to 
numeric-variable then S’ does not contain p and S’ 
contains (= numeric-variable  new-value) 

• Let  p be  (= numeric-variable  ex-value) and S contains 
p. Let E+(numeric-variable) be subset of e1 to en such 
that every ei ∈  E+(numeric-variable) increases the value 
of numeric-variable. E-(numeric-variable) is defined 
similarly for the effects that decrease the value of 
numeric variable. Total increase is sum of the increase 
amounts of effects in E+. Total decrease is sum of the 
decrease amounts of the effects in E-. Then S’ does not 
contain p and S’ contains (= numeric-variable  new-
value) where new-value is equal to ex-value + total 
increase – total decrease. If  ex-value + total increase or 
ex-value– total decrease is not in the range defined for 
numeric-variable then S’ is an invalid state. 

• Let p be an atom of the form (p-name  arg1 arg2 .. argn  )  
and p-name is not +=, -= or =. If p is in S and there is  an 
ei such that ei is (not p) then  S’ does not contain p, if 
there is no such ei  S’ contains p. If there is an ei such 
that ei is p then S’ contains p. 

• A’ is same as A  except A’ does not contain effects e1 .. 
en. 

 Time Constraint, Task network, Method  
End points of a task t are the start and end times of t  which 
we represent as (start t) and (end t) respectively. End time 
of a simple task is the time of last effect in the operator 
instance that is chosen to achieve that task. Therefore once 
the operator is chosen, end time of the simple task is 
known. End time of a composite task is maximum of the 
end times of the subtasks in the decomposition of the 
method chosen to achieve this composite task.  End time of 
a composite task becomes known when all of its subtasks 
end times are known. We use the end points of tasks to 
define temporal constraints. We concentrated on 
constraining the start time of tasks explicitly. We can 
define both metric and qualitative constraints. For example 
if t1 and t2 are two tasks the following are the time 
constraints on start time of t1; (start t1) ≥ ((end t2) + 5) or  
(start t1) = ( (start t2) + 4) or (start t1) ≥ (start t2) While we 
are  handling the general  cases, there are some 
combinations that we don not allow in our time constraint 
definition.  For example if t1 and t2 are two tasks we do not 
allow  the following (start t1) < (end t2) or (start t1) ≥ 
((start  t2) - 3) or (start t1) =  (end t2 - 5). All of these 
constraints require t1 to start before some time that we do 
not know in advance and by the time these points become 
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known these constraints are either satisfied or not and there 
is no time point after that that can satisfy these constraints. 
We find these constraints hard to trace therefore do not 
make use of them. For similar reasons we do not define 
constraints on end time of  tasks for example (end t1) ≥ 
(end t2). 
   
Definition 7: Given a  task t1 and another task  t2 , a time 
constraint on start time of t1 is one of the following 
expressions:   
• (=  (start t1) bound) where bound can be either (start t2) 

or (end t2) or “now”, which means current time, or a 
nonnegative integer  c  or (+ base delay) in which delay 
is a nonnegative integer and base is either  (start t2) or 
(end t2) or “now”.  

• (>=  (start t1) bound) where bound is as defined above 
• (>= (start t1) (max bound1 bound2 .. boundk) where 

boundi is as defined above. This is a short hand notation 
for a list of time constraints of (>=  (start t1) boundi) 
where i is in [1,k] 

Time constraints of the first type are called equality 
constraints where as second and third types are called 
greater than constraints. The following time constraints are 
satisfied at time T  
• (=  (start t1) bound) where bound is either “now” and 

current time is T or a nonnegative integer  c  that is equal 
to T.  

• (>=  (start t1) bound) where bound is either “now” and 
current time is T or a nonnegative integer  c  that is less 
than or equal to T.  

• (>=  (start t1) (max bound1 bound2 ..boundk) where for 
every i, boundi is nonnegative integer that is less than or 
equal to T.  

Given a set of time constraints U on start time of task t1, U 
is satisfied at time T if all of the following holds; 
• U contains at most one equality constraint C, and C is 

satisfied at T. 
• All of the greater than constraints in U are satisfied at T.   
Definition 8: Task Network is a list of tasks ( t1..tn ) and a 
list of time constraints on the start time of these tasks such 
that end points of a task referenced in a time constraint is in 
the list of tasks t1..tn. 
Definition 9: A method has the following form  

   (:method head  precondition  subtasks    ) 
where head is a composite task, precondition is a 
conjunctive expression and subtasks is a task network. 
 Figure 4 includes two, methods we defined for our 
extended logistic domain. First method decomposes  air-
deliver task into two subtasks which are labeled as t1 and t2. 
According to the time constraints t1 should start 
immediately and t2 can start after t1 ends. The second 
method decomposes the task  unload-airplane-at into two 
subtasks. There is no time constraint for t3 but t4 should 
start when t3 ends. 
 
(:method (air-deliver ?obj ?airport-from ?city)
;;PRECONDITION
((obj-at ?obj ?airport-from)
(in-city ?dest ?city)

(airport ?dest)
(= (airplane-space ?plane) ?space)
(volume ?obj ?vol)
(call >= ?space ?vol))

;; SUBTASKS
((:t1 (load-airplane ?obj ?plane ?airport-from)
:t2 (unload-airplane-at ?obj ?plane ?dest))
((= (start t1) now) (>= (start t2) (end t1))))
)

(:method load-airplane ?obj ?plane ?airport)
;;PRECONDITION
((not (moving ?plane ?dest))
(airplane-at ?plane ?somewhere)
(different ?somewhere ?airport)
(= (airplane-user ?plane) ?user)
(call < ?user 1)
)
;; SUBTASKS
((:t3 (!fly-airplane ?plane ?somewhere ?airport)
:t4 (!load-airplane ?obj ?plane ?airport ))
((= (start t4) (end t3) ) ) )

)

Figure 4 Method for air-deliver task in extended logistic domain 
  
Definition 10:  Let S be the state at time T, t be a 
composite task and M be a method. Let mgu be the most 
general unifier that unifies the head of M and t. Then Mmgu 
is an applicable method instance for t in state S at time T if 
the precondition  of Mmgu is satisfied in S. If α is a list of 
bindings for the free variables in  precondition of Mmgu  
such that precondition of Mmgu is satisfied then 
(subtasksmgu)α is a reduction of t at time T. 
 The idea behind reducing a task network is to replace a 
task in the network with one of its reductions and update all 
the time constraints that refer to the old task to include 
references to new tasks. Figure 5 gives an example task 
network R which is reduced to R’ using the method for 
load-airplane task defined in Figure 4. 
 
R =((:t1 (load-airplane package plane airport1)

:t2 (unload-airplane package plane airport2))
((= (start t1) now)(>= (start t2) (end t1))))
)

r =((:t3 (!fly-airplane plane airport3 airport1)
:t4 (!load-airplane package plane airport1))
((= (start t4) (end t3) ) ) )

R’=((:t2(unload-airplane package plane airport2))
:t3 (!fly-airplane plane airport3 airport1)
:t4 (!load-airplane package plane airport1))
((>= (start t2) (max (end t3) (end t4)))
(= (start t4) (end t3) ) ) )

Figure 5 Example for reducing a task network 
 
Definition:  Let R be a task network and  t be a task in R. 
Let r be a task network with tasks t1..tn then reduce( R, t, r, 
timestart, timeend ) is a new task network R’ satisfying the 
following: 
• R’ contains all tasks in r and all tasks in R except t 
• R’ contains all time constraints in r and in R except the 

constraints that are on start time of t and those refer to 
end points of t. 
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• If C is a time constraint in R and C refers to (start t), then 
R’ contains a  constraint C’ such that C’ is same as C 
except (start t) is replaced with timestart . 

• If C is a time constraint in R and C refers to (end t1) then 
R’ contains a  constraint C’ such that C’ is same as C 
except (end t1) is replaced by timeend. 

 
When we are talking about a simple task we can easily  
point the start and end time of it. Basically the time when 
matching operator is applied is its starting time and the 
time for the last effect of that operator is the end time. 
However this can not be directly applied to composite 
tasks. What happens if at time T a composite task t is 
decomposed into n subtasks using an applicable method 
and none of its subtasks start at time T. In such a case it is 
does not make sense to say that starting time for t is T. On 
the other hand if at least one of its subtasks can start at T 
then we can safely say that starting time of t is T. This leads 
to the definition of T-executable reduction. 
 
Definition : Let S be the state at time T and  A be an 
agenda after T. Let t be a composite task, r be a reduction 
of t at time T and ti be a task in r such that time constraints 
on start time of ti are satisfied at time T, then T-executable 
reduction R for t is defined as:  
• If ti is a simple task and it is T-executable in S with A 

then R is equal to r and R has an additional time 
constraint C (= (start ti) T) if r does not contain C. 

• If ti is a composite task and it is R’ is a T-executable 
reduction of ti that with tasks ti1..tin then  R is equal to 
reduce(r ,ti, R’, timestart, timeend) where timestart is equal to 
T  and timeend is equal to (max (end ti1) (end ti2) .. (end 
tin) ). 

Let T be the time and S be the state at T  and A be an 
agenda after T. A composite task t is T-executable at time 
T in state S with A if there exists a t-executable reduction 
for t. 

Plan and  Planning Problem 
We now define what is a plan, a planning problem and 
what is a solution to the planning problem. 
Definition : Let T be the time, S be the state at T and A is 
an agenda after T. The effect of achieving a progress task 
at time T is defined as Exec(A,S,T+1) 
Definition : A plan is a list of  (task1 [timestart, timeend]) 
where task1 is a ground simple tasks and timestart and timeend 
are the start and end times of task1. 
Definition : A planning problem P is a tuple (N,A,S,T) 
where N is a task network, A is an agenda after T, S is a 
state and T is the current time. 
Definition:  Let P be a planning problem (N,A,S,T) then  a 
solution Π of problem P is defined as follows: 
• Case 1:  If both N and A are empty then Π is an empty 

list. 
• Case 2: If there exists a task ti in N such that the time 

constraints on start time of ti are satisfied at T and there 
exists an equality constraint for start time of ti and 

 • Case 2.1: ti is a simple task. Let O be an applicable     
operator instance of ti and timeend be the time of  latest 
effect in O. Let A’ and N’ be defined as: 

             A’ = A ∪  effects of O  
             N’ = reduce(N ,ti, empty task network, T, timeend) 
    Let Π’ be the solution to the problem (N’,A’, S, T) then 

Π = ( ti [T, timeend ]) + Π’   
   • Case 2.2: ti is a composite task. Let R be an T-

executable reduction of ti and ti1 .. tin are the tasks in R. 
Let timeend be(max (end ti1) (end ti2) .. (end tin)) Let N’ be 
reduce(N ,ti, R, T, timeend) then  Π is the solution to the 
problem (N’,A, S, T).   

• Case 3: If A is empty and there is no task t in N such that 
the time constraints on start time of ti are satisfied at 
T’>T. Then let ti be a task in N such that ti’s time 
constraints are satisfied at T.  

   •   Case 3.1: ti is a simple task. Then  Π is defined as in 
Case 2.1   

     •  Case 3.2: ti is a composite task. Then  Π is defined as 
in Case 2.2   

• Case 4: Let ti be the progress task or a task in N such 
that time constraints on its start time are satisfied. Then 

   •   Case 4.1: ti is progress task. Then  let S’ and A’ be 
defined as 

           (S’,A’) = Exec(S,A,T+1) 
     If S’ is a valid state then Π is a solution to problem 

(N,A’,S’,T+1);   
•  Case 4.2: ti is a simple task. Then Π is defined as in Case 

2.1   
•  Case 4.3: ti is a composite task. Then Π is defined as in 

Case 2.2   

Algorithm 
We now define the TimeLine algorithm that finds a 
solution to the planning problem (N,A,S,T) as defined in 
pervious section. The pseudo-code for the algorithm is 
presented in Figure 6. TimeLine is non-deterministic 
straight forward implementation of the solution defined for 
a planning problem in the previous section. 
 
TimeLine (N, A, S, T)

1 If N and A are empty
2 return empty plan;
3 else
4 if there is a task t such that time constraints
on start time of t is satisfied at T

5 If t is a simple task
6 Choose applicable operator instance o for t
7 end_time = time of the latest effect in o’s

effects
8 A’=A ∪ effects of o
9 N’=reduce(N,t,empty tasknetwork,T,end_time)
10 Π’ = TimeLine(N’,A’,S,T)
11 return (t [T, end_time])+ Π’
12 else if ti is a composite task
13 Choose a T-executable reduction R for t,

R contains subtasks t_1 to t_n
14 end_time=(max(end t_1)(end t_2)..(end t_n))
15           N’ = reduce(N, t, R, T, end-time)
16 return TimeLine(N’,A,S,T)
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17 end if
18 else
19 if A is empty and there is not a task t

such that time constraints on start time of t
is satisfied at T’ > T

19 Chose a task t such that time constraint on
starting time of t is satisfied at T.

20 Go to line 5
21 else
22 Choose ti be the progress task or a task in

N such that time constraints on its start
time are satisfied.

23 if ti is the progress task
24 (S’,A’) = Exec(S,A,T+1)
25 if S’ is a valid state
25 return TimeLine(N,A’,S’,T+1)
26 end if
27 else
28 Go to line 5
29 end if
30 end if
31 End TimeLine

Figure 6 Pseudo code of  TimeLine algorithm 

Theorem 1: If one of the non-deterministic traces of 
TimeLine(N,A,S,T) returns a solution Π, then Π is a 
solution to the planning problem (N,A,S,T). 
Proof :  TimeLine returns a solution at  
• Line 2:  This line is executed when both N and A are 
empty and returned solution is  an empty plan. This is Case 
1 of the definition for solution planning problem.  
• Line 11:  If line 5 is executed after line 4 this case 

corresponds to Case 2.1 of solution definition. If line 5 is 
executed after line 20 this case corresponds to Case 3.1 
of solution definition. If line 5 is executed after line 28 
this case corresponds to Case 4.2 of solution definition);   

• Line 16:  If line 12 is executed after line 4 this case 
corresponds to Case 2.2 of solution definition. If line 12 
is executed after line 20 this case corresponds to Case 
3.2 of solution definition. If line 12 is executed after line 
28 this case corresponds to Case 4.3 of solution 
definition;   

•  Line 25: The solution returned in this line corresponds to 
Case 4.1 of solution definition. ! 

Implementation and experiments 
We have implemented deterministic version of TimeLine 
algorithm. We have tested our implementation on the 
Logistic domain which is naturally concurrent and easily 
extendible to include numeric state variables. 
The problems we used in our experiments were based on 
30 problems  used in AIPS98 planning competition. 
Basically we tried to create same set up that is defined in 
(Kvarnstrom, J. and Doherty, P. 2001). We set the space 
capacity for trucks to 5 and for airplanes to 25. We 
randomly generated the package sizes between 1 and 3. We 
also randomly defined distance between two locations in 
the range 1 to 25. We have create 20 random instanced for 
each of the 30 problems. We ran TimeLine on 20 problems 
instances then take the average and we did this for 30 
problems.  

We ran the experiments on a Pentium III-600 machine with 
128 memory and Windows 98 operating system running on 
it. We compared our results with the published results of 
TAL planner and verified the  feasibility of our approach. 
In fact most of the cases TimeLine performed better than 
TAL planner. Considering the configuration differences 
between the machines (TAL planner experiments 
performed on Pentium II-333 ) and the problems, this 
performance difference may not illustrate a great deal.  As 
we can see from the preliminary results our approach is 
feasible and worth for future study. 
 
No TaL Planner TimeLine  No TaL Planner TimeLine 
1 270 591  16 10004 1455 
2 811 644  17 2895 1248 
3 2063 1165  18 21080 5047 
4 5889 1412  19 18466 4649 
5 541 601  20 37815 6317 
6 6729 1877  21 39436 3224 
7 1061 643  22 71402 20107 
8 5658 1163  23 2434 3354 
9 9594 2303  24 39096 1455 
10 5738 3731  25 146921 10559 
11 911 646  26 83960 22369 
12 14871 1084  27 72814 9388 
13 16524 2016  28 670284 24974 
14 6800 2218  29 34550 21261 
15 1512 3850  30 312099 9023 

Table 1 Planning time in milliseconds  for 30 extended 
logistic problems. 

Related Work 
Allen’s interval algebra defines the relations on two tasks 
using their end points. Our approach does not define 
explicitly any constraints on end time of a task, so it can 
not express all of the relations in Allen’s algebra. On the 
other hand we believe our approach is easier to track and 
expressive enough for many practical problems.  
 Dechter and Meiri can reason about metric time 
constraints and  propose an algorithm that can solve simple 
temporal constraint satisfaction problems in polynomial 
time.  
 Bacchus suggested a simplistic approach to generate 
plans  that include actions with same time stamp but in fact 
the plans are sequential because the ordering of the actions 
with same time stamp is important. The actions in this 
approach can have instant effects that are used to control 
concurrency and delayed effects to represent the actions 
that have a duration greater than one. 
 TaL planner  is extended to reason about time, 
concurrency and  resources. It prunes the search space 
using control rules written in temporal logic. They define 
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two actions as mutually exclusive if the effects of them 
conflict at some point that these two actions overlap. Tal 
planner can perform concurrent numeric computation only 
on resources. 
 Smith and Weld extends the definition of mutual 
exclusion for actions that can have durations. TGP uses a 
more generalized planning graph that can handle actions 
with durations and employs the extended mutual exclusion 
reasoning when searching for a plan. TGP actions have 
preconditions that hold through out the execution and 
effects that are guarantied to be true at the end of action. 
TGP does not allow intermediate effects. One can argue 
that preconditions holding during the actions may be too 
restricted. 

Conclusion 
In this paper we have presented a formalism to explicitly 
represent time in HTN planning. Based on this formalism 
we defined TimeLine a sound and complete  HTN planner 
that can reason about time. Our experiments concluded  
that our approach is feasible and worth future study. 
 The formalism we present is expressive enough to 
represent most of the practical problems and yet still not 
complex. We do not require the specification of  any 
resource usage in any level of the task abstraction. Instead 
we define concurrent update rules for numeric state 
variables that can represent these recourses. 
 A future study may concentrate on reducing the 
backtracking  points in the implementation. Number of 
backtracking becomes a  real problem as the problem size 
and concurrency level increases. A better implementation 
may be backtracking to representative time points instead 
of backtracking all time points. 

Acknowledgements 
This work was supported in part by the following grants, 
contracts, and awards: Air Force Research Laboratory 
F306029910013 and F30602-00-2-0505, Army Research 
Laboratory DAAL0197K0135, and the University of 
Maryland General Research Board. Opinions expressed in 
this paper are those of authors and do not necessarily 
reflect opinion of the funders. 

References 
Allen,J. 1983. Maintaining knowledge about temporal 
intervals. Communication of the ACM 26(11):832-843 
Simith D.,Weld, D. 1999. Temporal Planning with Mutual 
exclusion reasoning. (IJCAI-99) 
Kohler,J. 1998. Planning under resource constraints.(Proc. 
ECAI-98) 
Karlsson, L..Gustavfsson, J., Doherty, P. 1998. Delayed 
effects of Actions .( ECAI-98) 
Fox, M.,Long, D. 2001. PDDL2.1: An Extension to PDDL 
for expressing Temporal Planning Domains. 

Kvarnstrom, J., Doherty, P. 2001. TAL planner: A 
Temporal Logic-based Forward Chaining Planner. Annals 
of Mathematics and Artificial Intelligence. 
Erol, K., Hendler, J., Nau, D. 1994. Semantics for 
Hierarchical Task-Network Planning. Tech. Report CS TR-
3239, UMIACS TR-94-31, ISR-TR-95-9, University of 
Maryland, March, 1994a. 
Erol, K., Hendler, J., Nau, D. 1994. UMCP: A Sound and 
Complete Procedure for Hierarchical Task-Network 
Planning. In Proc. Second International Conf. on AI 
Planning Systems (AIPS-94), June, 1994b, pages 249-254. 
Munoz-Avila, H., Aha, D., Breslow L., Nau, D. HICAP: an 
interactive case-based planning architecture and its 
application to noncombatant evacuation operations. In 
IAAI-99,1999, pages 870-875. 
Dechter, R,;Meiri, I.; and Pearl, J. 1991.Temporal 
constraint networks. Artificial Intelligence 49:61-95 
Koehler, J. 1998. Planning under resource constraints. 
(ECAI -98) 
Rintanen, J., Jungholt, H. Numeric state variables in 
constraint-based planning. 
 
 
 

81      



One Stepon the Left, One Stepon the Right and Back to the Middle :
Exploring Temporal Domainsin a POPFashion

Romain Trinquart, SolangeLemai and StephaneCambon
LAAS-CNRS

7 Av. duColonelRoche
Toulouse31000France�

lastname� @laas.fr

Abstract

In this paperwe presentrecentadvancesin the context of
a framework for planningin temporaldomains,namelythe
IxTeT system.This systemis a lifted partial order planner
relying on a functional and CSP-basedrepresentation.The
paperis intendedto constituteboth an introductionto the
specificityof thesystemanda moredetailedpresentationof
recentresults.Two contributionsaremorespeciallystressed
out.Thefirst oneis relatedto resourcehandling: wepropose
algorithmsto dealwith allocatedresourcesandtheusageof
variablequantitiesof resources.Thesecondconsistsin aheu-
ristic estimatorto control the explorationof the plan space
througha reachabilityanalysis.

INTRODUCTION
Long confinedto ”toy” domains,planningsystemsnow

exhibit impressiveperformanceandcandealwith very large
problems.Suchcapabilitieshave givena new impulseto the
developmentof plannerswhich aim at reasoningon more
realistic descriptions.Several systemshave recentlybeen
proposedwhich handlenumericfeaturessuchastime and
resources.They takeadvantageof the ideasthat turnedout
to be successfulin the classicalplanningparadigm,such
assearchin the statespaceguidedby heuristics.However
thesesystemsput restrictive assumptionson the domains
they considerandtheplansthey producearesomehow over-
constrained.Thesecriticisms are motivatedby the actual
goal pursuedwhen extending the scopeof planning pro-
blems: realworld applicationssuchasrobotcontrol or au-
tonomousspacecraft,wherebothflexibility andconcurrency
arerequired.For instance,let us considera probleminvol-
ving a 2-armsrobot which hasto graspan object.Unless
strictly required,a flexible plancouldleave up to theexecu-
tion systemthe choiceof which armto useandwhennext
actionsshouldstart.

In thispaper, weexposeaframework for planningin tem-
poraldomainswhichaimsat gettingrid of suchlimiting as-
sumptions.Someprinciplesof this framework arecommon
to several existing systems- seefor instance(Muscettola
1994),(Rabideauetal. 1999),(El-Kholy & Richards1996).
However this paperfocuseson the IxTeT system(Ghallab
& Laruelle1994)thatwe areextendingto matchthe issues
herebydiscussed.

First we discussthe rangeof temporaldomainsthat we
addressandtheformalismonwhichwerely to capturethem.

Themainfeatureof this representationis a detaileddescrip-
tion of the distribution of the effectsof actionsover time,
whichallowscomplex actionsinterleaving.Thenweanalyze
the algorithmsinvolved in the productionof plansin such
domains.Thechoiceof thesemethods,namelylifted partial
orderplanningrelyingonCSPs,wasguidedby theneedfor
flexibility . Howeverit raisesspecificdifficultieswhenconsi-
deringresourceswhicharediscussesin a dedicatedsection.
We concludewith a look at thecrucialproblemof control-
ling theplansearchandweproposea new heuristicestima-
tor basedon anoriginal structure: thePlanSpacePlanning
Graph.

REPRESENTATION IN THE IXTET
FORMALISM

Classicalplanninghasabstractedaway timeandresource
in statetransitionsystems.Suchanapproachhasseveredraw-
backsin expressivenesswhich limit its use in real appli-
cations.In the real world, actionshave differentdurations,
needsomeresource,theirstartpointsdonotnecessarymeet,
someactionsdo notonly changetheenvironmentbut might
alsoenforcesomeof its characteristicsto remainconstant
and,lastbut not least,effectsmightdependon time.

Fromtheseremarks,we draw theconclusionthattempo-
ral planninginvolvesmoving aheadof global,still pictures
of the entireworld, i.e. states,and their associatedtransi-
tions.Actionsshouldbeconsideredaspartialspecifications
of evolutionswhichspreadovertimeandwhichcanbecom-
bined.The considereddescriptionshouldkeeptrack of the
waythesecomposedoccurrencesaffect theworld, represen-
ting bothlocalchangesandpersistencein orderto providea
consistentbaseto decidewhatcanandcannotbedone.

Thetemporalrepresentationwe areinterestedin herefo-
cuseson local individual evolutions of stateand resource
variables.A statevariableis a functionof time which des-
cribesthe evolution of a characteristicof the domainover
time. A resourcerepresentsa substanceor a setof objects
whoseavailability inducesconstraintson theactionswhich
useit. Thefollowing paragraphsgive detailsaboutthedes-
criptionof domainsandtheunderlyinglogic.

Statevariables: attrib utesof the domain
As saidabove, a statevariable,or attribute is a partially

specifiedfunctionof timewhoseevolutionover time is spe-
cified througha setof temporalpropositions.The rangeof
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valuesfor thesefunctionsareeithersetsof symbolicvalues
or disjunctions� of numericintervals.Attributesareparame-
terizedby a vectorof variablesvaluedin finite sets.For ins-
tance,in a domainwhereseveral robotsaremoving around,
wemightdeclarethefollowing statevariable:

�������
	���
��������
��	���	��
�����
����� ��
��� 	��!��"�#�"�$�%&'�)(�
*�+	��-, "�.0/+$+1'"324% �
In orderto describethedynamicof theworld andtheway

actionsaregoingto affect it, we needto specifyevolutions
of attributesbut alsopersistence.This is achieved through
a temporalpropositionallogic whosetwo corepropositions
are �5&)�5�6� , which tips up instantaneouslyat a given time-
point the valueof an attribute,and 7 ��(�8 , which maintains
thevalueof anattributebetweentwo giventime-points(see
Fig.1).

Consideringonly persistenceand instantaneouschange,
oneis limited to describeonly piece-wiseconstantfunctions
andthusis not ableto catchmuchof the real world dyna-
mic. The will to extendthe rangeof domainswhich might
behandledwithin IxTeT led us to introducea third propo-
sition: 9:7 �;�6<�� . It specifiesa linearevolutionof anattribute
over a temporalinterval.For instance,theopeningof anau-
tomaticgatewhichopensverticallycouldberepresentedby
the following proposition: 9�7 �=�6<>�'��"�?@���A	��6<B��"3
@�
C��������ED��F6GHF>IKJ>GHF'�:I5�L�5M'IN��O
�P� .Thenumericvaluesaretheinitial andfi-
nalheightsof thegateopening.Sucha representationoffers
the possibility to infer intermediatepositionsof the door.
Consequently, a robotcouldgo throughthegatealthoughit
is not completelyopen.So far, we consideredonly linear
changesbut in order to be exhaustive, we should extend
the formalism to representall type of functions.For ins-
tance,if thegateis openingwith anacceleration,thechange
mustfollow aquadraticfunction.Onemightarguethatmany
domains,including somewhich areclosely relatedto real
world applications,canbe describedwithout sucha repre-
sentation.But it is at thepriceof a highercomplexity of the
searchspaceandtherearesomeproblemswhich cannotbe
codedwithout thenotionof continuouschange.

t_change

Old_value

Old_value

New_value

Value

New_value

event (att (X1, .., X2) : (Old_value, New_value), t_change)

change (att (X1, .., X2) : (Old_value, New_value), (t_i, t_f))

t_i t_f

t_i t_f

hold  (att (X1, .., X2) : Value, (t_i, t_f))

FIG. 1 – Thethreetypesof temporal propositions

Resources
Contraryto statevariables,theevolution of thelevel of a

resourceis not explicitly described.Insteadtherepresenta-
tion focusesontherelativechangesthattheoccurrenceof an
actionwill causeon a resourcethat it uses.Resourceusage

canbedescribedthanksto threetypesof temporallyquali-
fied propositions: 
*�5� (borrowing over atemporalinterval),?*�
�
8;
 9 � and 9 �
�A��
@QR� (productionand consumptionat a
giventime-point).

First,we focusedonproposingefficienthandlingof para-
meterizedresources.Theseareresourceswhich aredefined
as instancesof a sameresourcetype which might be used
indifferentlyby actions.For instancea satellitemight store
a camerapictureeitheron its first or seconddisk aslong as
thereis a disk with enoughavailablememory. A resource
type �S����TU� is definedby its initial capacityanda domain
for its parameter: �
�5���

*� 9 �V/W�
QX���
����� ��
��� 	��-�W"3#�"�$�%

9 ��?@� 9 	L��YSZ[O>% �
Anotherimportantnew featureof the formalismis thepos-
sibility to specifytheuseof a variablequantityof resource
by an action: onecould expressthat storinga camerapic-
ture might usebetween200and300ko of memorydepen-
ding on the selectedtarget.This variablequantitycanthen
beconstrained,eitherby othervariablesor action’sduration.
Suchresourceusagesarespecifiedthroughpropositionsof
thefollowing forms:
@���)���S����T\��D'�
];I�^ ��_�I���`Na�� (borrowing),?@�
�
8;
 9 �'���S����T\�VD'�
];I���b;� (production),9 �
�A��
@QR�'���c����T\�+D'�
];IN�Pd�� (consumption)
where �
] is a variablequantitywhosedomainis aninterval^H]:egf�hAIK]�e�iKj�a , ��_ , ��` , ��b and � d aretime-points.

Linking partial descriptionsthrough constraints
All thesetemporalpropositions(on resourcesandon at-

tributes)canbelinked with eachothersthroughconstraints
on time-points,variablestateparametersor values.Thedes-
criptionsof both actionsandthe world consistin conjunc-
tionsof suchtemporalpropositionsandconstraints.
Applying an action- a taskin IxTeT’s vocabulary - means
integrating its propositionsand constraintsinto the worl-
d’s conjunctionin a consistentway. Consistency checking
takesinto accountthe explicit constraintsnetworkbut also
themoreimplicit constraintslinked to thesemanticof state
variables,whicharefunctionsof time.

Thisnotionof actionsasconjunctionsof local evolutions
offersasufficientgranularitytoexpresscomplex actionscon-
currency (seeFig. 2).

Theextensive useof constraintsto link temporalproposi-
tions alsoprovidessupportto oneotherspecificityof tem-
poralplanning: influenceof actions’durationsover theiref-
fects.For instance,the distancecoveredby a robot will be
proportionalto the durationof its ”Move” action.This is
achieved by expressingconstraintsthat mix the valuesof
statevariablesanddurations.

Thislastfeature,amongothers,hasbeenavoidedby seve-
ral systemsbecausea straightforwardcodingmight leadto
infinite branchingfactors.On thecontraryit fits quitenatu-
rally into our representationsinceusingungroundedactions
prevent us from consideringindividually all possibledura-
tions.

Thenext subsectioninsistsonotherspecificaspectsof the
representationandprovidesgroundto efficient encodingof
domains.
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        hold(Position(?Obj):?Arm2,(t2,end));
        event(Position(?Obj):(?Arm2,?To),end);

        event(Position(?Obj):(?From,?Arm2),t2);

        use(Available(?Arm2):1,(t2,end));

        hold(Position(?Rb):?From,(start,t1));
        event(Position(?Rb):(?From,moving),t1);
        hold(Position(?Rb):moving,(t1,t2));
        event(Position(?Rb):(moving,?To),t2);
        hold(Position(?Rb):?To,(t2,end));

        event(Position(?Obj):(?From,?Arm1),start);
        hold(Position(?Obj):?Arm1,(start,t1));
        event(Position(?Obj):(?Arm1,?Rb),t1
        use(Available(?Arm1):1,(start,t1));

Intertwining Actions For 2 Robots

start’ t2’t1’ end’
Move(Object2,Robot2, L1) (start’, end’)

start t2 endt1
Move(Object1,Robot1,L2) (start, end)

        ?distance = speed*(t2 − t1);
        (end − t2) in [00:03:00,00:03:30];

        (t1 − start) in [00:03:00,00:03:30];

State Variables Table

endt2t1start

?From moving ?To

?From

Position(?Rb)

?Arm1 ?Rb ?Arm2

1 1

1 0

?To

0

??

??

1

Available(?Arm1)

Available(?Arm2)

Position(?Obj)

}

        ?Obj in Objects;
        ?From in PLACES; ?To in PLACES;
        ?From != ?To;

task MOVE(?Obj,?Rb,?From,?To)(start,end) {

        ?To in {L2} => ?Arm2 in {A2}
        ?From in {L1} => ?Arm1 in {A1};

?distance = dist(?From,?To);

FIG. 2 – A TaskExamplein theIxTeTFormalism

Efficient useof constraintsand attrib utes
Theformalismwe aredealingwith offersinterestingfea-

tures,suchasanexplicit representationof somemutex infor-
mationthroughtheuseof functionsof time insteadof predi-
cates.However, asis trueof otherrepresentations,adomain
can be describedin many ways,someof which being by
far harderto solve by theplanner. The context of the 2002
InternationalPlanningCompetitionlead us to study more
preciselydomainencoding,with thegoalof realizinganau-
tomatictranslationtool from PDDL 2.1 specifications(Fox
& Long2002)to IxTeT’s formalism.
Throughthis work we identified two importantprinciples
to obtaindescriptionswhich canbeefficiently usedby our
planner. They couldbesummarizedasfollows:

– donot write rigid attributes(i.e. constantpredicates),

– translatepredicatesinto functionsasmuchaspossible.

Thefirst rule is closelyrelatedto thefact thatourplanner
is a lifted partialorderplanner. It constitutesashift towarda
moreactive handlingof theconstraintsinducedby constant
predicates.A constantpredicatewith one argumentis re-
placedby a domainconstraintover a variable.A constant
predicatewith two argumentsis translatedinto a setof de-
pendency constraintsbetweenthetwo arguments.

Thesecondrule is simplyanadviceto hand-codeevident
mutualexclusioninformation.For instance,apredicate���
��	���	��
�����
���
IK��(�� 9 � shouldbe translatedinto an attribute

�3�
�5	L��	��
� with oneparameter�
��� andvaluedinto thesetof
locationsfor whichthepredicateis interpretedastrue.Once
againit is of specialinterestin the context of ungrounded
operatorssinceit reducesthedomainsof variables.

Applying asmuchaspossiblethe secondrule might in-
volve more thansimply translatingonepredicateinto one
attribute: therearecaseswherethis is not possiblebut fur-
ther domainanalysisdetectsthat merging two predicates
into onestatevariableis valid. Examplesof suchpredicates
canbefoundin (Edelkamp1999).Basedonthepropositions
of thisarticle,we developeda domainanalyzerwhich auto-
maticallyperformssuchtranslationsandmerging.

HANDLING TIME IN A POP
FRAMEWORK

Aswaspreviouslypointedout,realapplicationsrequireto
keepflexibility in planssoasto minimizethecostof adap-
ting to thepossiblegapbetweentherealworld andtheavai-
lable model.Searchin the planspace,with only necessary
orderingconstraintsandpartially groundedoperators,pro-
videsan elegantsolutionto the needfor flexible planning.
In this sectionweexposeanadaptationof theclassicalplan
spaceschemato theformalismexposedin thefirst section.

POP in the ClassicalSetting
Thepurposeof planningis to find a sequenceof actions

betweenan initial stateanda final stategivenby the user.
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The classicPartial Order Planningalgorithmsearchesthe
solutionk plan into thepartial planspace.A partial plan is a
tuple �LlmIKn!Ipo+IpqWIKn�rsI�t�qg� where l is a setof potentially
ungroundedactions,n a setof constraintswhich order l ,o a setof constraintsover thevariablesfiguring in elements
of l and q is a setof causallinks (i.e.a link betweenanac-
tion which establishesonepreconditionof anotheraction).
Thedescriptionof apartialplanis completedby two setsof
flaws: n3r , a setof openconditions,andt�q , a setof unsafe
links (threats).A partialplanstandsfor a family of plans.It
is consideredto bea valid solutionif all of theseplansare
consistent.This impliesthatthesetsn�r and t�q areempty.
An openconditionfiguresa non-explainedpreconditionof
oneof theactionsbelongingto l . A threatappearswhenan
action �>u explainsa precondition? of anaction �;v while a
third action �)w mightcausethecancellationof thisprecondi-
tion, i.e �A�:�5�x?*� is aneffectof � w and � w mightoccurbetween�6u and �;v withoutviolatingany of theconstraintsin n .

Thealgorithmstartsits searchfrom a partial planwhich
containsonly two virtual actions.The first actionhasonly
effects: it establishesthe initial state.The secondonehas
onlypreconditions:it initializestheopenconditionswith the
desiredfinal state,thusrequiring the plannerto refinethis
initial node.

Stepby step,thePOPalgorithmis goingto try to resolve
all theflaws of thepartialplan.A stepconsistsin selectinga
flaw andchoosinga resolvent.In thecaseof anopencondi-
tion wehavethechoicetoexplainit eitherby insertinganew
actionwhoseeffectscontainthis openconditionor by esta-
blishing a new causallink with an actionwhich is already
partof theplan.To resolve a threat,it is necessaryto over-
constrainactionsso as to ensurenon-overlappingbetween
thethreateningactionandthethreatenedlink. This is achie-
vedby postingtemporal(promotion/demotion)or atemporal
(inequalities)constraints.

If thesearchreachesa nodewhichcontainsoneflaw with
nopossibleresolvent,it hasgoneinto a dead-endbranch: it
hasto backtrackononeof its previouschoices.

Usingthis shortsummaryasa background,we now turn
to the full context of IxTeT, consideringlifted actionswith
explicit representationof timeandresource,andexplainhow
thenotionsof flaws andresolventsareextendedto this for-
malism.

Extensionto IxTeT’sLogic

Thefirst stepto ensurethesoundnessof the searchcon-
sistsin transposingthenotionof flaws,includingboththreats
(or unsafelinks) andopenconditions,to theconsideredtem-
poralpropositions.

Flawsaresplit into two clearlydisjointsets,with theiras-
sociateddetectionandresolutionmodules: thoseconcerning
statevariablesandthoseconcerningresources.Thispartfo-
cusesonstatevariables,whereasthenext oneis dedicatedto
the”ResourceConflictsDetectionandResolution”module.

Within theIxTeT’s frame,thenotionof threatsandopen-
conditionson statevariablesencodesthe semanticof attri-
butesasfunctionsof time.Thesetof propositionsonanat-
tributeshoulddescribea consistentsequenceof transitions
andensurethatatnotimetwodifferentvaluesareassociated
with thesameattribute.

In orderto build consistentsequencesof transitionsonan
attribute,twosourcesof open-conditionsareconsidered: as-
sertionsof persistenceandevent propositions.A 7 ��(�8 pro-
positionrequiresthe statevariableto reachthe maintained
valuebeforeit comesinto effect. In thesameway, an ��&'���6�
propositionrequiresthestatevariableto beatits initial value
beforeit happens.

Establishersare event propositionswhosefinal value is
goingto matchtheonerequiredby theopencondition.They
areeitherlookedfor within thecurrentpartialplanor within
new tasksto insert.

The otherkind of flaw on attributes,namelythreatsare
definedsoasto checkthatmappinganattributeto its value
at any time is deterministic.Threatsaredefinedthatinvolve
two 7 ��(�8 propositionsor one ��&'���6� andone 7 ��(�8 proposi-
tions.Two 7 ��(�8 shouldnot overlapunlessthey maintainan
attributeto thesamevalueor theattributesthey constraincan
bedifferentiatedby separationconstraintson their parame-
ters.An �5&)�5�6� shouldnot occurduring a 7 ��(�8 proposition
unlessseparationconstraintscanbe postedto differentiate
their respective attributes;if an ��&'���6� is boundto meeta7 ��(�8 at startor end,theirvalueshouldbeunifiedto obtaina
consistentevolution of theattribute,or onceagaintheattri-
butesshouldbeseparatedby constraintsonparameters.

Throughthe definition of flaws in IxTeT, two specifities
of theconsideredtemporalcontext arise.Thefirst oneis the
ambivalenceof the ��&'���6� propositions,whichcanbeconsi-
deredaseffects(establishers)or preconditions(opencondi-
tion) atthesametime.Thesecondoneis thatit reliesheavily
onCSPs,mostof theresolventsconsistingin eitherordering,
binding or inequalitiesconstraints.The next subsectionis
dedicatedto themodulein chargeof handlingvariablesand
enforcingan importantpart of the consistency of a partial
plan.

A Framework relying on CSPs: Expressiveness
and Flexibility

CSPsmanagersplay a centralrole in Partial OrderPlan-
ning. It is trueeven in theclassicalplanningsincea partial
plan can be seenas a set of constraintsdefining a family
of candidatesolutions.In our temporalframework, efficient
propagationof constraintsto computeaccurateminimaldo-
mainsfor variablesis essential.First, as explainedabove,
thenotionsof flaws andresolventshave beentransposedin
a quitestraightforwardmannerto temporalpropositionsbut
at the price of an increasedcomplexity pushedon the re-
queststo theCSPhandlers.Furthermore,severalof thefea-
turesdiscussedin the first sectionarehandledthroughde-
dicatedconstraints.Themostrepresentative exampleis the
expressionof actionswith effects dependingon durations.
This involvesconstraintssuchas �
8!Zy�3z0�L�P{S|}� f � which
mix time-points( � { and �Pf ) andvariables( �
8 ) - see(Trin-
quart& Ghallab2001)for details.

Initially disregardingsuchcouplingconstraints,the sys-
tem was developedwith two disjoint CSPmanagers: the
Variable-Mapon onehand,which combines2-consistency
andforwardcheckingto handleatemporalvariables,andthe
Time-Map on the otherhand,which implementsa Floyd-
Warshall-likepropagationschema(Dechter, Meiri, & Pearl
1989).Thelink betweenthesetwo modulesis achievedby a
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supervisorwhich transfersinformationfrom oneCSPto the
other~ whenrequired.While thisclassof CSPis known to be
NP-complete,preliminarytestsindicatethatactualplanning
problemsleadto tractableinstances.

RESOURCECONFLICTS DETECTION
AND RESOLUTION

Theproblemof ensuringconsistency of thesetof resource
propositionsat eachstepof the searchconsistsin ensuring
that thereis no over-consumptionof a resource.The diffi-
culty lies in the impossibility to computethe actual level
of a resourcebecausetheorderon propositionsis only par-
tial andsomevariablesmightbenon-instantiated.Thecom-
plexity is evenworsenbythefactthatvariablesmightappear
in temporalpropositionson resourcesasparametersandas
borrowedquantities.

This sectiondetailsthe modulewhich is responsiblefor
this aspectof consistency. It is basedon an extensionof
an efficient clique-searchalgorithmon a possibleintersec-
tion graph.Resolventsarechosenamongresourceproduc-
tion (taskinsertion)or separation(temporalorderingsor va-
riablesinequalities).Thereagainthedesiredexpressiveness
entailsahigh numberof resolventsandconsequentlya high
branchingfactor. We finish thissectionwith theproposition
of a criterium to discriminateresolvents leadingto dead-
ends,thuspruningoutuselessbranchesasearlyaspossible.

Detectionof potential resourcecontentions

Theresourceanalysisis dividedinto twophases: first find
for eachresourceattribute over-consumingsetsof poten-
tially overlappingpropositionsandthenproposea disjunc-
tion of resolventsfor eachconflict.

To detectconflicts,any potential intersectionshouldbe
considered,whereasto besureto solve a conflict,a produc-
tion shouldnecessarilyprecedesthe setof involvedpropo-
sitions.

In (Ghallab& Laborie1995),theauthorsreasononborro-
wing propositionsandthensuggestto translateany produc-
tion ?@�
�
8;
 9 �'��/�������D'];IN��� , where/������ is anon-parameteri-
zedtypeand ] afixedquantity, into anincrementof thecapa-
city of /������ by ] anda borrowing proposition
*���'��/�������D];INa�|c��IKF�a�� .Thusconsideringpotentialintersectionsonly is
still valid. Extendingthis ”trick” to parameterizedresources
with variablequantitiesraisesdifficulties. Let us consider
a proposition?*�
�
8=
 9 �)��/������c����T\�}D��
];I���� . The first point
is that if ��T is not instantiated,it is not possibleto decide
which resource’s capacityshouldbe increased.Second,�
]
might alsobenon-instantiated,thusit is not possibleto de-
cidehow to incrementdirectly thecapacityof a resource.In
orderto solve thesetwo problemsandto keepdetectingre-
sourcecontentionby searchingthroughpossibleintersection
sets,we proposethe following rewriting rule for a produce
proposition.?@�
�
8;
 9 �'��/������S����T\��D'�
];IN��� ( ]��4^ ] eVf�h IK] e�iKj a )
is transformedinto two propositionsanda capacityincre-
ment:


>�P` { Z�
*�5�)��/������c����T\�+D']:e�iKj@I�^HF>IN��a�� ,
@i {5� Z�
*�5�)��/������S����T\��D;]�e�iKj;|+�
];I5^ �5IK����^H�
and .V�Kh d�� Z�]:e�iKj .

t

qmax

qmin

0 t

qmax−?q
Ubef

Uaft
CIncr

0
(a) (b)

FIG. 3 – Equivalentresource profile for a produceproposi-
tion (a), andfor its translation � 
 �P` {@IK
 i {5�KI�. �Kh d��+� (b).

. �Kh d�� will betakeninto accountin thedetectionof any po-
tential overconsumptioninvolving 
 �P` { . Figure 3 presents
this rule in a graphicalway. 9 �
�A�5
*Q!�)��/������c����T\��D'�
];I���� is
simply transformedinto 
*���'��/������S����T\��D'�
];I�^ �5I�����^H� .

Onceall produceand consumepropositionshave been
translatedinto their equivalentborrowing propositionsand
capacityincrements,conflictdetectioncomesdownto search
for Minimal Critical Sets. Actually, asno subsetof a MCS
canleadto a conflict, a MCScanbe completelysolvedby
the insertionof one resolvent. TheseMCSaredetectedas
minimal over-consumingcliquesin a PossibleIntersection
Graph.

A PIG is associatedto eachresourcetype �c���
�
� (whose
initial capacityis denotedby .���?@�)� below). The vertices
of the grapharepropositionson � in the partial plan,and
its edgesarethe pairsof propositionswhich may intersect
in somelinearizationof theplan.Theresourceparameter�
�
is takeninto accountin thecomputationof cliques(i) andin
thecriterionto detectover-consumption(ii) :
– (i) theparametersof all propositionsof a clique r canbe

unifiedin a variable�
��� .

– (ii) thecapacitycorrespondingto eachclique r is calcu-
latedby:
.���?*�@��r����
� � �p� Z�.3�5?*�)�!� �

�'���������
.�1)� 9 �;��
 �P` {*���
�
�P�

where �
� and �
� � canbeunified.

Considera unifiedclique r�Z � 
�u����
�
u��:I5G�G�G�IK
6�=���
���'� �
with 
6f aborrowingof aquantity�
]�f in ^H]�eVf�hB��
>f���IK]:e�iKj>��
>f���a .r is a MCSif : �

�;���
]:e�iKj*��
*�V�[.���?@�*��rA�

and ��;���
] e�iKj ��
@�s|4 !¡�¢�;�5� � ] e�iKj ��
*� ��£ .���?@�*��rA�

Resolventscomputation
Thesecondphaseof theanalysisis thecomputationof all

possibleresolvents.A MCS can be solved by postingone
of the following usualresolvents: promotion/demotion and
parametersseparation. But aswe areconsideringvariable
resourceusagewe needto proposean additionalresolvent
to guaranteethe soundnessandcompletenessof the search
process: reductionof the resource usageso as to nullify
the overconsumption.This resolvent is applicablein case¤ �;��� ]:eVf�hA��
@� £ .���?@�*��rA� holds.It consistsin postinga
constraint:

¤ �;¥���� �
];��
>f�� £ .���?*�@��rB� . Sucha constraint
respectstheleastcommitmentstrategy.

The last possibleresolvent is the insertionof an action
containingaproposition
)b@���
�Pb)� producingaquantity�
];��
)b;�
suchthat: �
];��
)b=�§¦ ¤ � ¥ ��� �
];��
6f��s|¨.���?@�*��rB� .
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(u1)

(u2)

(u5)

consume(R(?x2) : ?q2, t2);
...
consume(R(?x5) : ?q5, t5);

?x1, ?x2, ..., ?x5 in {r1, r2};

?q1, ?q2, ..., ?q5 in [1,2];

consume(R(?x1) : ?q1, t1);

PARTIAL PLAN

task PROD(?x){

...}

produce(R(?x) : ?qP, t);

resource R(?x){

Capacity = 2 ;}
?x in {r1, r2};

DOMAIN

FIG. 4 – Resourcecontentionexample.

The result of sucha resourceanalysisis the set of the
smallestMCSandtheirassociateddisjunctionof resolvents.
This canleadto a quite importantbranchingfactor. Hope-
fully it is possibletodetectanddiscardearlyduringthisana-
lysisphaseresolventswhichwill leadtodead-endsbranches.

Considerfor instancethesimplepartialplandescribedin
figure4 andcontainingfive consumepropositionson there-
sourceattribute �S���
©*� . The resourceanalysisprocesswill
detectandproposeresolventsfor all conflictsof theminimal
size(i.e. 2 propositions).The MCS 
 u IK
 v for instancecan
besolvedby ��© u�ªZ�© v �s«}���
] u �W�
] v £ O'�¬«­������"�®E���
©*�P� .
But the two first resolventsappearto be uselessas the to-
tal resourcecapacityis 4 whereastheminimalconsumption
in theplanis 5. Therefore,separationanddomainreduction
canbediscardedfromthedisjunctionof resolventsin certain
cases.

We implementedsucha strategy by doinga pre-analysis
for eachresourceattribute.Usingthesamealgorithmasfor
MCS detection,but without consideringresourceparame-
ters,we searchfor type-conflictscorrespondingto cliques
suchthatnoprecedenceconstraintis possibleand:

�
�;���

]:egf�h¬��
@�§�[.���?@� � zg�A� � _ d `�� �
� ����� �
¯A° iKh

.�1'� 9 �;��
>�P` { �

Then during the conflict detectionprocess,we test if the
MCS is includedin at leastone type-conflict. In that case,
the setof resolventsis reducedto a deterministicone: ac-
tion insertion.

Thisnotionof type-conflictsis awayto decreasethebran-
chingfactorby discardingresolvents.However it is notsuf-
ficient to prevent the searchfrom gettinglost in the search
space.In thenext section,weproposeanew heuristiccontrol
to choosefrom resolventsandenforcethe efficiency of the
search.

SEARCH CONTROL: INTRODUCING THE
PLAN SPACE PLANNING GRAPH

In theprevioussections,westressedouttheadvantagesof
IxTeT, mainly the expressivenessofferedby the formalism

it canhandleandtheflexibility of theplanit produces.Ho-
wever oneimportantdrawbackof thesystemhasalsobeen
raisedat someplaces: the importantbranchingfactorit en-
countersat eachstepof thesearchprocess.

To choosefrom the differentwaysof refinementwhich
aredeterminedby the”Flaws andResolventsAnalysis”mo-
dule,IxTeTreliesondifferentheuristicfunctionswhichmix
means-endsanalysisandleastcommitmentevaluation.The
cost of insertingan action into a partial plan is computed
throughthelimited developmentof aregressiongraphto es-
timatethecostof thenew subgoals.In addition,thecostof
any orderingor bindingconstraintis estimatedin termof the
portionof theplanspacewhich is prunedout of thecandi-
datesfor refinement.This is a measurementof leastcom-
mitmentwhich is supposedto maximizechancesto find a
plan-solutionaslong asthedistributionof solutionsis uni-
formedover theplanspace.

Thissetof costfunctionshasprovento beusefulin alarge
set of domains(Laborie 1995). However, additionalhand
control is neededto balancethesedifferentheuristicesti-
matorsin order to scale-upto larger problemssuchasthe
benchmarksfrom IPC2002.

In thissectionwediscussrecentadvanceswemadein de-
fining anappropriatedomain-independentheuristicfor gui-
ding the searchin the plan space.First we will presentthe
inherentdifficultiesof estimatingcostsin apartiallyordered
/ boundedcontext, basingourdiscussionontheideasexplai-
nedin (Nguyen& Kambhampati2001).Fromthis analysis,
we will thenproposea new structure,derivedfrom the no-
tion of the planninggraph,to estimatedistancewithin the
PlanSpace.

RePOP:Bringing back POPto light

RePOPis a partialorderplannerwhich explorestheplan
spaceusinggroundedactionsto refinepartialplans.It inte-
gratesseveral ideasto reducethesearch,but theonewhich
is mostoften referredto is the useof a heuristicobtained
thanksto a planninggraph: it hasproven that, wheneffi-
ciently guided,a partialorderplannercoulddealwith large
problemsandproduceplansof goodquality. Giventhis sta-
tement,we naturallyturnedto this systemto seehow such
ideascould be adaptedto a temporalcontext. And we met
difficultieswhichpreventedusfromdirectlytransposingthis
solutionto outframework,butwhichalsogaveustheground
to furtherinvestigations.

To understandwhy RePOP’s heuristiccannotbe usedin
our framework, one shouldfirst rememberthat the useof
an informative heuristicis only oneof the propositionsin
(Nguyen& Kambhampati2001).Oneotherimportantfea-
tureof thissystemis theway it handlesorderingconstraints
over actionsin adisjunctiveway. Whenconsideringathreat
betweenacausallink andanaction,RePOPdoesnotchoose
betweenresolvingthethreatby demotionor promotion: ins-
teadit refinestheplanwith adisjunctiveorderingconstraints
ensuringthe non-overlappingof the causallink andthe in-
volvedaction,without committingto oneof thealternative.
This hasanimportantconsequencewith respectto theheu-
ristic choice:thesystemdoesno longerhave to choosebet-
weenthreatresolventsoropen-conditionestablishers.It only
hasto estimatethe costof establishingopen-conditionsby
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causallinks with new actionsor elementsof thecurrentpar-
tial plan.±

Is it possibleto usesuchdisjunctiveconstraintsto reduce
the branchingfactor in the temporalframework of IxTeT?
To answerthis question,let us detail the constraintsconsi-
deredin RePOP. In the classicalsetting,with groundedac-
tions,a threatinvolvesa causallink of the form /³² b # ,
which meansthat the action / establishestheprecondition? of theaction # , andathird action . whoseeffectscontain�A�:�5�x?*� andwith suchorderingconstraintsthat / � . � #
is consistent.RePOPsolvessuchathreatby postingthedis-
junctive constraint. � /��
��#´�µ. . If we transposethis
for instanceto a threatinvolving two propositions��&'���6�5�/����5����T\�\D+��&�f�IK& { �:I���`K� and 7 ��(�8*��/����5����TE¶��EDg&
·*I����PfPIN� { �p� ,
theassociateddisjunctiveconstraintsis of theform � ` � � f�
�S� { �¸��` . Sucha constraintcannotbe translatedinto a
distancebetweentwo time-pointswith a disjunctive range.
Thusencodingit into the Time-Mapmentionnedin a pre-
vioussectionactuallyboils down to handlingtwo matrices
of distances.Furthermore,whereasRePOPmakesthe as-
sumptionto useonly groundedoperators,IxTeT alsohasto
considera third alternativeto PromotionandDemotion: pa-
rametersseparation.Integratingthesethreealternativesinto
onedisjunctiveconstraintto separatetwo propositionshasa
hugecostin termsof CSPconsistency checking.Sofar we
preferredto keepthesealternativesinto separatedbranches
of thesearchtreeandelaboratea satisfactoryheuristicesti-
matorto choosefrom theserefinements.

The PS-PG: estimatingdistanceswithin the Plan
Space

Our goal is to keepleastcommitmentas a principle to
build plans,for instancethroughtheuseof ungroundedac-
tions,but not aspartof thechoicecriteria.Thuswe have to
provideaheuristiccontrolto choosefromasetof variousre-
finementsincludingtaskinsertion,temporalconstraintsand
constraintsovervariables.Thisraisesconflictingissues: the
computationof the heuristicshouldtake into accountthe
wayorderingconstraintsmightaffectfurtherrefinementsbut
it shouldalsobecomputedquickly. Usinga planninggraph
to estimatethe costof the remainingrefinementsto obtain
a solutionhasbeenusedsuccessfullyin differentplanning
schemas,but the previous subsectionexposesour reasons
notto useit directly. Moreover, amoresubjectivereasonnot
to reuseRePOP’sheuristicis thatit doesnotseemsonatural
to exploretheplanspaceandestimatedistancesin thestate
space.

In this lastsection,weproposeto build a structurewhich
is relatedto the planninggraphstructurebut accountsfor
reachabilitywithin the plan space.We thenproposea heu-
ristic estimatorderived from this structureto guide IxTeT
within its searchtree.

A Plan SpacePlanning Graph structure First introdu-
cedin (Blum & Furst1995),thePlanningGraphis a com-
pactrepresentationof the statespaceportionwhich canbe
reachedfrom agiveninitial node.It is built asanalternation
of propositionsandactionslayers,which areboth disjunc-
tivestructures.Severalheuristicfunctionshave beenpropo-
sedwhich rely on thecomputationof sucha graphin a re-
laxeddomainto estimatedistancesto reachablesolutions.

Leaving asidesomespecificitiesof constructionproposed
by Blum andFurstandconsideringaplanninggraphsimply
asa compactrepresentationof thepartof anorientedgraph
accessiblefromagivennode,it seemsappropriatetoadaptit
to aspecialtypeof orientedgraph: PlanSpace.Heuristices-
timatorsderivedfrom theplanninggrapharebasedonsome
estimationsof thenumberof transitionsin thegraphneeded
to reacha solutionnode.In statespace,this correspondsto
thenumberof actionsto addto theplan to reacha solution
state.In the planspaceit will correspondto the numberof
resolventsthatwill leadto a solutionplan.

A key featureof thePlanningGraphstructureis disjunc-
tivity : both propositionsandactionslayersaredisjunctive,
they collapseinto onenodepotentiallymutually exclusive
descriptionsof theworld. Compactingtheplanspacein the
sameway involveshandlingdisjunctivelayersof resolvents
andlayerswith disjunctivepartialplans.This is of particular
concernsincethecostof maintainingconsistency in apartial
planwasalreadyconsideredasa drawbackof partialorder
planning.

Thespecificdifficulty of handlingdisjunctivepartialplans
with ungroundedactionsis to avoid abusive propagations
of constraints(bothtemporalandatemporal)acrossdisjoint
components.Insteadof explicitly putting disjunctionsinto
the CSPs,we proposea ”rewriting” rule to transforman
openconditionintoasmany establishedpropositionsasconsi-
deredresolvents.For instance,if anassertion¹ Z 7 ��(�8*� -/����5����T\��D'&
·*I����PfKI�� { �p� canbeexplainedeitherby ��&'���6�5��/���� -����ºc��D@� I�&
·)��IN��`�� or by �5&)�5�6�5��/����5���=��D*� IK&
·'�:I��P¶ ` � , wewill
replace ¹ by 2 propositions7 ��(�8*��/����5����ºc�»DW&
·6I5�L�Pf�IN� { �p�
and 7 ��(�8*��/����5���;�EDg& · I���� f IN�P{=�p� andaddthe corresponding
causallinks to thepartialplan.

The remainingopenissueto transposea planninggraph
structureinto a plan spaceis the way layersareexpanded.
Whenbuilding a planninggraphin thestatespace,eachac-
tions layer is developedby addingapplicableactionswith
respectto the previous propositionslayer. Neglecting mu-
tualexclusions,anactionis consideredto beapplicableif all
of its preconditionsarecontainedby thepropositionslayer.
Thusanactionslayercontainsall thevalid transitionsfrom
the setof statesfiguredby the previouspropositionslayer.
In theplanspace,nodesarepartialplansandtransitionsare
refinements.Contraryto whathappensin statespace,where
thegraphis somehow built in a blind forwardmanner, it is
notnecessaryto keepall possiblerefinementsof aplan:it is
possibleto restrictthegraphexpansionto refinementswhich
areresolventsof flaws in theconsideredpartialplansandto
limit thesizeof theportionof theplanspacecapturedby the
planninggraph.Moreover, in thesameway mutexescanbe
ignoredto decidewhichactionsshouldbeincludedin anac-
tionslayer, weonly considerresolventsfor open-conditions
duringtheinitial developmentof thegraph.

Beforemoving on to thediscussionof theheuristicfunc-
tion we proposeto derive from this structure,we will turn
backto oneof theinitial requirementsweput on a heuristic
estimatorin a lifted POPcontext : theability to choosefrom
variousresolventssuchascausallink, task insertion,tem-
poralconstraintsor inequalitiesover variables.This implies
that the PlanSpacePlanningGraph(PS-PG)enablesus to
catchthedifferencebetweentheaccessiblepartsof theplan

88      



spaceinducedby posting,for instance,eitherpromotionor
demotion¼ constraints.It is achieved by revising along the
searchwhich refinementsareactuallyapplicableto a given
partialplan.

More precisely, therearetwo differentphasesin thema-
nagementof thePlanSpacePlanningGraphduringtheplan
searchprocess.Thesearchstartsby developinga complete
PS-PGwhich is built from the initial partial plan.Thenat
eachstep,resolventsareinsertedin thepartialplanandthe
constraintsthat they bring into theplanarealsopropagated
in thePS-PG.Having chosena resolventwhich establishes
an open-conditiondiscardsalternative resolventsand thus
reducesuncertaintydueto disjunctions.Postingconstraints
overtime-points(Promotion/Demotion)orovervariables(in-
equalitiesor upperboundariesto solve resourceconflicts)
might over-constrainthe partial plan in such a way than
someresolventsarenow impossibleandthusalsoleadsto
reducethereachablepartof thePlanSpace.

Thanksto this propagationmechanism,it is possibleto
adaptthe PS-PGaccordinglyto the informationcarriedby
eachresolvent.Thusit canbeused,ateachstepof thesearch,
asgroundfor theevaluationof thepossibledifferentrefine-
mentsof the partial plan. In the next sectionwe proposea
heuristicwhich usesthis structureto estimatethe cost of
a refinementin termsof the numberof resolventswhich
shouldbefurtherinsertedto reacha solution-plan.

Extracting a heuristic estimation Our main motivation
to usesuchastructureasthePS-PGis to enhancethesearch
processin IxTeTthroughabettercontrol.Weaimatkeeping
themethodsof plananalysisandresolventscomputationun-
changedandat usinga uniqueestimatorto rankall thepos-
sibleresolventsof theflawsin thecurrentpartialplanateach
stepof thesearch.

In thecontext of a l-½ searchalgorithm,we wantto rank
resolventsby measuringtheminimaldistancebetweenaso-
lution plan and the partial plan that would result from the
insertionof a resolver in thecurrentpartialplan.In theplan
space,distancesarenumbersof refinementsteps.Whenre-
fining a partial plan into a solutionplan, two typesof re-
finementscan be done: insertionof the establisherof an
open-conditionandinsertionof a conflict resolvent.Using
the PS-PG,we will only countestablishersto approximate
thedistancebetweena partialplanandasolutionplan.

The formulaspresentedbelow, which definetheway the
costsof partial plans(i.e distancesto solution)arecompu-
ted, are inducedby the interpretationof the PS-PGas an
AND/OR structure: all theopen-conditionsin a partialplan
shouldbe establishedto reacha solution and eachopen-
conditioncanbeestablishedin differentways.In the follo-
wing equations,¾ denotesa partialplan, n3r�� ¾ � thesetof
open-conditionsin ¾ , ? a temporalproposition,¿ �K�5�À?@� the
setof possibleestablishersof ? whichappearin thePS-PG,¿ a taskandfinally n�r�� ¿ � is thesetof open-conditions¿
would introducein theplan.

(1) 9 �
�Á�5� ¾ ��Z �b ��Âs�;ÃxÄ�Å 9
�
�Á�5�x?@�

(2) 9 �
�K�5�À?@��Z  !¡�¢Æ � Æ _ � Ã b Å 9 �
�Á�5� ¿ � if ¿ �K�5�À?@� ªZ�Ç>I
� otherwise

(3) 9 �
�Á�5� ¿ �3ZÈM � �b �
Â¬�>Ã Æ Å 9
�
�Á�5�x?*�

Althoughtheseequationsmightseemquitecommon,a few
commentsshouldbestatedwith respectto thePS-PGstruc-
ture. Two relatedissuesshouldbe payedattentionto: the
costsassociatedto establishersby (2) andthemeasurement
of actionsreuse(positiveinteractions).

In thePS-PG,two kindsof establisherscanoccur: simple
causallinks with elementsof the partial plan and causal
links with elementsof new tasksinsertedin the plan.The
first point thatshouldbestressedout is thatcausallink es-
tablishmentsareexplicitly measured:they aretransitionsin
theplanspacewhich inducenon-nulldistancebetweenpar-
tial plans.The secondpoint is that we chooseto associate
the samecost to the two consideredtypesof establishers.
Onceagainthis shouldbelinked to theinterpretationof es-
tablishersastransitionsin theplanspace.
More over, this secondchoice is also supportedby some
considerationson positive interactionsmeasurement.Since
establishmentthrougha causallink with an elementof the
currentplanis associatedwith anon-nullcost,thereuseof a
taskis notcostless.Howeverit shouldbetakeninto account.
Let usconsideranexamplewheretwo open-conditions� 9 M
and � 9 O appearat the samelayerof the PS-PGandcanbe
explainedby thesameaction / . Thecostof establishing� 9 M
and � 9 O shouldbeequalto thecostof inserting/ in theplan
andlinking it to � 9 M plus thecostof linking / to � 9 O . The
difficulty comesfrom thewaythePS-PGis expanded: both� 9 M and � 9 O will beexplainedin thesamelayerandthere-
sultingcostwill betwo timesthatof inserting/ andlinking
it to oneof � 9 M and � 9 O . This alsoleadsus to associatethe
samecostto thetwo kindsof establishment.

Finally,equation(2) indirectlyraisesthequestionof when
to stopthedevelopmentof theplanninggraph.Contraryto
what happenswhendevelopinga classicalplanninggraph,
the sizeof thesetopen-conditionsdoesnot decreasealong
theconstructionof thePS-PG.Howeverequation(2) allows
us to stopdevelopingthe PS-PGassoonasa layer is rea-
chedwhereeachopen-conditionhasat leastoneestablisher
with a non infinite cost. In addition,we limit the develop-
mentof thePS-PGto amaximumdepth,consideringthatan
open-conditionwhichhasnot beenestablishedsofar hasan
infinite cost.

Looking at a simpleexample TheFig. 5 illustratesa PS-
PG built for a simpleproblem.We considerto actions¿ ���
and #��;É>� definedasfollows:

���;�5É ¿ ���5��� 9 ����Ê����;�:�5I ¿ �A8;� ���&'���6�5� ¿ ����������� 9 ��D>� IN���

@����I ¿ �A8;��%��&'���6�5� ¹ �;&)�'��� 9 ��D>�����

*�)I�Ë*�)(��5����I ¿ �A8;��% ����;�5ÉS#��;É>�)��� 9 �:��Ê����;�:�5I ¿ �A8=� ���&'���6�5� ¹ �;&)�'��� 9 ��D>��Ë*�)(����'IN���

@����I ¿ �A8;��% �
The initial situationstatesthat onecookie is availableand
theplanshouldleadto eatonecookieandhaveanotherone.
From this initial situation,the PS-PGis developeduntil it
reachesa layer thatsupportsa non-nullcostfor eachopen-
condition in the initial layer. Let us describethroughthis
examplehow it is usedto choosewhich resolvent to insert
in thepartialplan.
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unexplained hold(Eaten(?x):true,(t,end))
unexplained hold(Have(?y):true,(t,end))

E1
E2
H1
H2

event(Have(Cake1):(false,true),start)
event(Have(Cake2):(true,false),start)

unexplained event(Have(?x):(true,false),Ee)
unexplained event(Have(?y):(false,true),Eb)

hold(Have(?y):true,(t,end))
hold(Eaten(?x):true,(t,end))

hold(Have(Cake1):true,(t,end))

E1
E2
E3
H1
H2
H2b
E4
E5

event(Have(Cake1):(false,true),start)
event(Have(Cake2):(true,false),start)
event(Eaten(?x):(_,true),Ee)

unexplained event(Have(?y):(true,false),Ee2)
unexplained event(Have(?x):(false,true),Eb2)

event(Have(Cake1):(true,false),Ee)
event(Have(Cake2):(false,true),Eb)

E1
E2
E3
H1
H2
H2b
E4
E6
E5
E4b
E5b
E7
E8

event(Have(Cake1):(false,true),start)
event(Have(Cake2):(true,false),start)
event(Eaten(?x):(_,true),Ee)

hold(Have(?y):true,(t,end))
hold(Eaten(?x):true,(t,end))

hold(Have(Cake1):true,(t,end))

event(Have(?y):(false,true),Eb)

event(Have(?x):(true,false),Ee)
event(Eaten(?y):(_,true),Ee2)

E1 −> H2 : 1

E1 −> E4 : 1
E2 −> E5 : 1

Eat(?y) −> E5 : oo
Bake(?x) −> E4 : oo

Bake(?y) −> H2 : 2
Eat(?x) −> H1 : 2

Cost(P) = 3

FIG. 5 – A PS-PGin a simpledomain

On thefirst stepof the search,theonly flaws in theplan
areopen-conditionsandtheresolventsarethethreeestabli-
sherson thefirst layerof thePS-PG.

If thecausallink ¿ M-² ¹ O is insertedin theplan,then
thePS-PGwouldbemodified: theestablisher#3�=É6�'���
Y'� on
the first layer is no longerconsidered,H2 andE5 aredis-
cardedfrom thesecondlayer, the insertionof ¿ ���5���
Y'� and
thecausallink ¿ O�² ¿�Ì arealsoremovedfrom thesecond
layer, aswell asthecausallink ¿ M+² ¿0Í since ¿ M already
contributesto ¹ O . So the only establisherfor E4 is the in-
sertionof Bake(?y)which is associatedwith aninfinite cost
in thePS-PG.

On the contrary, if the task #3�=É6�'���
Y'� is insertedin the
plan, thenthe causallink ¿ M-² ¹ O is discardedfrom the
first layerandH2b is removed from thePS-PG.Therestof
the structureis left unchangedandthe resultingestimation
is 4.

CONCLUSION AND FUTURE WORK

In this paperwe presenteda formalismfor temporaldo-
mainsandarelatedplanningframework.Wepointedoutthe
greatexpressivenessit providesand the adequacy of plan
spacesearchto solve temporalproblems.Beyond its func-
tionalandCSP-basedrepresentation,thesystemwedescribe
distinguishesitself by a stronginterleaving betweenplan-
ning andschedulingandby greatpossibilitiesin termsof
resourcehandling.

Suchfeaturesentail a high complexity in solving pro-
blems.This is especiallya critical issuesincePartial Or-
derPlanningin classicaldomainswasalreadycriticizedfor
looseresultswith respectto searchcontrol.Beingawareof
thisweaknessof mostof thepartialorderplannersproposed
sofar but convincedof thepossibility to guideefficiently a
searchprocessin theplanspace,wefocusedontheheuristic
controlandproposeda new methodto computeestimations
of thedistancesbetweenpartialplansandsolutionplans.

Thisnew heuristicfunctionreliesonanoriginalstructure:
thePlanSpacePlanningGraph,which is a transpositionto
PlanSpaceof theplanninggraphinitially proposedby Blum
andFurstandwhichhasbeensuccessfullyusedfor heuristic
purposeseversince.Implementationis still anon-goingpro-
cessandwe hopeto validateour propositionin thecontext
of the2002InternationalPlanningCompetition.
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  Abstract

 

There has been considerable work in AI on decision-
theoretic planning and planning under uncertainty.
Unfortunately, all of this work suffers from one or more of
the following limitations: 1) it relies on very simple models
of actions and time, 2) it assumes that uncertainty is
manifested in discrete action outcomes, and 3) it is only
practical for very small problems. For many real world
problems, these assumptions fail to hold. A case in point is
planning the activities for a Mars rover. For this domain none
of the above assumptions are valid: 1) actions can be
concurrent and have differing durations, 2) there is
uncertainty concerning action durations and consumption of
continuous resources like power, and 3) typical daily plans
involve on the order of a hundred actions. We describe the
rover problem, discuss previous work on planning under
uncertainty, and present a detailed, but very small, example
illustrating some of the difficulties of finding good plans.

 

The Problem

 

Consider a rover operating on the surface of Mars. On a giv-
en day, there are a number of different scientific observa-
tions or experiments that the rover could perform, and these
are prioritized in some fashion (each observation or experi-
ment is assigned a scientific value). Different observations
and experiments take differing amounts of time and con-
sume differing amounts of power and data storage. There
are, in general, a number of constraints that govern the rov-
er’s activities:

• There are time, power, data storage, and positioning
constraints for performing different activities. Time con-
straints often result from illumination requirements – that
is, experiments may require that a target rock or sample be
illuminated with a certain intensity, or from a certain an-
gle. 

• Experiments have setup conditions (preconditions) that
must hold before they can be performed. For example, the
rover will usually need to be at a particular location and
orientation for each experiment and will need instruments

turned on, initialized, and calibrated. In general, there may
be multiple ways of achieving some of these setup condi-
tions (

 

e.g.

 

 different travel routes, different choice of cam-
eras).

• The amount of power available varies according to the
time of day, since solar flux is a function of the angle of
the sun.

Given these constraints, the objective is to maximize scien-
tific return for the rover – that is, find the plan with maximal
utility. Unfortunately, for many rover activities, there is in-
herent uncertainty about the duration of tasks, the power re-
quired, the data storage necessary, the position and
orientation of the rover, and environmental factors that influ-
ence operations, 

 

e.g.

 

, soil characteristics, dust on the solar
panels, ambient temperature, etc.

For example, in driving from one location to another, the
amount of time required depends on wheel slippage and
sinkage, which varies depending on slope, terrain rough-
ness, and soil characteristics. All of these factors also influ-
ence the amount of power that is consumed. The amount of
energy collected by the solar panels during this traverse de-
pends on the length of the traverse, but also on the angle of
the solar panels. This is dictated by the slope and roughness
of the terrain.

Similarly, for certain types of instruments, temperature
affects the signal to noise ratio and, hence, affects the
amount of time required to collect useful data. Since the
temperature varies depending on the time of day and the
weather conditions, this duration is uncertain. The amount
of power used depends upon the duration of the data collec-
tion. The amount of data storage required depends on the ef-
fectiveness of the data compression techniques, which
ultimately depends on the nature of the data collected.

In short, this domain is rife with uncertainty. Plans that do
not take this uncertainty into account usually fail miserably.
In fact, it has been estimated that the 1997 Mars Pathfinder
rover spent between 40% and 75% of its time doing nothing
because of plan failure.

 

1. Research Institute for Advanced Computer Science (RIACS).

2. QSS Inc.
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One way to attack this problem is to rely on real-time or

 

reactive

 

 replanning when failures occur. While this capabil-
ity is certainly desirable, there are several difficulties with
exclusive reliance on this approach:

• Spacecraft and rovers have severely limited computa-
tional resources due to power limitations and radiation
hardening requirements. As a result, it is not always feasi-
ble to do timely onboard replanning.

• Many actions are potentially risky and require pre-ap-
proval by mission operations personnel. Because of the
cost and difficulty of communication, the rover receives
infrequent command uplinks (typically one per day). As a
result, each daily plan must be constructed and checked
for safety well in advance.

• Some contingencies require anticipation; 

 

e.g.

 

, switch-
ing to a backup system may require that the backup sys-
tem be warmed up in advance. For time critical operations
such as orbit insertions or landing operations there is in-
sufficient time to perform these setup operations once the
contingency has occurred, no matter how fast the planning
can be done.

For these reasons, it is sometimes necessary to plan in ad-
vance for potential contingencies – that is, anticipate unex-
pected outcomes and events and plan for them in advance.

The problem that we have just described is essentially a
decision-theoretic planning problem. More precisely, the
problem is to produce a (concurrent) plan with maximal ex-
pected utility, given the following domain information:

• A set of possible goals that may be achievable, each of
which has a value or reward associated with it.

• A set of initial conditions, which may involve uncer-
tainty about continuous quantities like temperature, en-
ergy available, solar flux, and position. This
uncertainty is characterized by probability distribu-
tions over the possible values.

• A set of possible actions, each of which is character-
ized by:

– a set of conditions that must be true before the
action can be performed. (These may include metric
temporal constraints as well as constraints on
resource availability.)

– an uncertain duration characterized by a probability
distribution.

– a set of certain and uncertain effects that describe
the world following the action. Uncertain effects on
continuous variables are characterized by probabil-
ity distributions.

Decision-theoretic planning is already known to be quite
hard both in theory [18] and in practice. However, there are
some characteristics of this domain, which, when taken to-
gether, make this planning problem both difficult and differ-
ent from the kinds of problems that have been studied in the
past:

•

 

Time

 

 – actions take differing amounts of time and con-

currency is often necessary.

•

 

Continuous outcomes

 

 – most of the uncertainty is as-
sociated with continuous quantities like time and pow-
er. In other words, actions do not have a small number
of discrete outcomes.

•

 

Problem size

 

 – a typical daily plan for a rover will in-
volve on the order of a hundred actions.

While we have described this scenario for a rover, this kind
of problem is not limited to robotics or even space applica-
tions. For example, in a logistics problem, travel durations
are influenced by both traffic and weather considerations.
Fuel use is likewise influenced by these “environmental”
factors. There are temporal constraints on the availability
and delivery of cargo, as well as on the availability of both
facilities and crew. There are also constraints on fuel loading
and availability, and on maintenance operations.

 

Previous Work

 

There has been considerable work in AI on planning under
uncertainty. Table 1 classifies much of this work along the
following two dimensions:

•

 

Representation of uncertainty

 

 – whether uncertainty
is modeled strictly logically, using disjunctions, or is
modeled numerically, with probabilities.

•

 

Observability assumptions

 

 – whether the uncertain
outcomes of actions are not observable, partially ob-
servable, or fully observable. 

We do not discuss this work in detail here. A survey of some
of this work can be found in Blythe [5]. A more detailed sur-
vey of work on MDPs and POMDPs can be found in Boutil-
ier, Dean and Hanks [7]. Instead we will focus on why this

 

Disjunction Probability

Non-Observable

 

CGP [31]
CMBP [9, 1]

C-PLAN [13, 8]
Fragplan [16]

Buridan [17]
UDTPOP [23]

 

Partially-
Observable

 

SENSp [12]
Cassandra [25]
PUCCINI [14]

SGP [34]
QBF-Plan [27]

GPT [6]
MBP [2]

C-Buridan [10]
DTPOP [23]

C-MAXPLAN [19]
ZANDER [19]
Mahinur [22]
POMDP [7]

 

Fully-Observable

 

WARPLAN-C [33]
CNLP [24]

JIC [11]
Plinth [15]
Weaver [4]

PGP [3]
MDP [7]

 

Table 1: 

 

A classification of planners that deal with uncertainty.
Planers in the top row are often referred to as 

 

conformant

 

planners, while those in the other two rows are often referred to as

 

contingency

 

 planners.

92      



 

January 24, 2002 3

work is generally not applicable to the rover problem and
what can be done about this.

There are a number of difficulties in attempting to apply
existing work on planning under uncertainty to spacecraft or
rovers. First of all, the work listed in Table 1 assumes a very
simple model of action in which concurrent actions are not
permitted, explicit time constraints are not allowed, and ac-
tions are considered to be instantaneous. As we said above,
none of these assumptions hold for typical spacecraft or rov-
er operations. These characteristics are not as much of an ob-
stacle for Partial-Order Planning frameworks such as
SENSp [

 

12

 

], PUCCINI [

 

14]

 

, WARPLAN-C [

 

33]

 

, CNLP [

 

24

 

],
Buridan [

 

17

 

], UDTPOP [

 

23

 

], C-Buridan [

 

10

 

], DTPOP [

 

23

 

],
Mahinur [

 

22

 

] and Weaver [

 

4]

 

. In theory, these systems could
represent plans with concurrent actions and complex tempo-
ral constraints. The requirements for a rich model of time
and action are more problematic for planning techniques
that are based on the MDP or POMDP representations, sat-
isfiability encodings, the graphplan representation, or state-
space encodings. These techniques rely heavily on a discrete
model of time and action. (See [30] for a more detailed dis-
cussion of this issue.) Although semi-Markov decision pro-
cesses (SMDPs) [26] can be used to represent actions with
uncertain durations, they cannot model concurrent actions
with complex temporal dependencies. The factorial MDP
model has recently been developed to allow concurrent ac-
tions in an MDP framework. However, this model is limited
to discrete time and state representations. Moreover, existing
solution techniques are either too general to be efficient on
real-world problems (

 

e.g.

 

 Singh and Cohn [28]), or too do-
main-specific to be applicable to the rover problem (

 

e.g.

 

Meuleau 

 

et al.

 

 [20]).
A second, and equally serious, problem with existing

contingency planning techniques is that they all assume that
uncertain actions have a small number of discrete outcomes.
For example, in the representation popularized by Buridan
and C-Buridan, a rover movement action might be character-
ized as shown in Figure 1. In this representation, each arrow

to a propositions on the right indicates a possible outcome of
the action, along with the associated probability of that tran-
sition.

 

3

 

 To characterize where a rover could end up after a
move operation, we have to list all the different possible dis-
crete locations. We would need to do something similar to

characterize power usage. For most spacecraft and rover ac-
tivities this kind of discrete representation is impractical –
most of the uncertainty involves continuous quantities, such
as the amount of time and power an activity requires. Action
outcomes are distributions over these continuous quantities.
There is some recent work using models with continuous ac-
tion outcomes in both the MDP [29, 21] and POMDP [32]
literature, but this has not yet been applied to SMDPs and
has primarily been applied to reinforcement learning rather
than planning problems.

Ultimately, the state that results from performing an
action determines the future actions that will be taken, so in
this sense an action's outcomes are discretized. However,
this discretization is not a static property of the actions–
instead, it depends on what goals or subgoals the planner is
trying to accomplish. For example, suppose that the rover is
trying to move to a certain location. If the objective is to
place an instrument on a particular rock feature, then the
tolerance in position is quite small. In contrast, if the objec-
tive is to take a picture from a different vantage point, then
the tolerance can be significantly larger.

A third problem with conventional contingency planning
technology is that it does not scale to larger problems. Part
of the problem is that most of the algorithms attempt to ac-
count for all possible contingencies. In effect, they try to
produce 

 

policies

 

. For spacecraft and rover operations, this is
not realistic or tractable – a daily plan can involve on the or-
der of a hundred operations, many of which have uncertain
outcomes that can impact downstream actions. The resulting
plans must also be simple enough that they can be under-
stood by mission operators, and it must be feasible to do de-
tailed simulation and validation on them in a limited time
period. This means that a planner can only afford to plan in
advance for the “important” contingencies and must leave
the rest to run-time replanning. Of the planning systems dis-
cussed above, only 

 

Just-In-Case

 

 (JIC) contingency schedul-
ing [11] and Mahinur [22] exhibit a principled approach to
choosing what contingencies to focus on. We will discuss
this approach in more detail later.

 

A Detailed Example

 

In order to illustrate the problem further, in this section we
give a detailed example of a very small rover problem. Fig-
ure 2 shows a “primary” plan and two potential branches.
The primary plan consists of approaching a target point (Vi-
sualServo), digging the soil (Dig), backing up (Drive), and
taking spectral images of the area (NIR). One potential alter-
nate branch consists of replacing the spectral image with a
high-resolution camera image of the target (Hi res). A sec-
ond potential branch consists of taking a low-resolution pan-
orama of the area (Lo res), performing on-board image
analysis to find rocks in the panorama (Rock finder), and
then taking spectral images of the rocks found (NIR). For
this example, we assume that energy is only being depleted.
(More generally, a rover would also be receiving energy in-
put from charging.

 

Figure 1:  

 

A C-Buridan action for movement.

 

3. We have omitted some details here. For each transition, there is
a condition that the rover must be at location [1,1] to start with,
and that the rover is no longer at [1,1] for each outcome.

Move([1,1],[4,4])

At([3,3])

At([3,4])

At([4,3])

At([4,4])

…

.5
.1

.1

.05
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Precedence constraints are denoted by arrows in the fig-
ure; for example, since HiRes can only be performed after
Drive, there is an arrow from Drive to HiRes. For each ac-
tion, there may be preconditions, expectations, and a local
utility; in the figure, these appear above the plan actions. The
preconditions specify under what conditions execution of
the action may start. The expectations describe the expected
resource consumption of the actions (in terms of mean and
standard deviation); the relative width of distributions is il-
lustrated graphically as well. The local utility is the reward
received when the action terminates successfully: in this ex-
ample, this will be when the preconditions are met and when
the energy resource is non-negative at the end of execution.

In the example, consider the HiRes action. It has an ener-
gy precondition E > 0.02 Ah and a time precondition of 9:00

 

≤

 

 t 

 

≤

 

 16:00. The expected energy usage is 0.01 Amp-hours
(Ah) with a standard deviation of 0 Ah (so in this case there
is no uncertainty in the model). The expected duration is 5
seconds with a standard deviation of 1 second. The local
utility of the action is v=10.

 

Approaches

 

There are several possible ways of attacking this problem of
planning with continuous uncertain variables. In this sec-
tion, we briefly discuss some of these, and the issues that
arise.

 

Computing the Optimal Value Function

 

Figure 3 shows the optimal value function for the problem in
Figure 2. The figure was computed by working backwards

from all possible activities that have positive reward and us-
ing dynamic programming to construct the optimal plan.
The curved hump where there is lots of power and time
available corresponds to the primary plan, while the rectan-
gular block corresponds to branching to the Rock finder plan
and completing the NIR. The tail of the curved hump is a
branch after the drive action to the HiRes plan. The flat sur-
face with value 5 is again an immediate branch to the Rock-
Finder plan, but in this area there is not enough power or
time to complete the plan, and only the LoRes reward is re-
ceived. Figure 5 shows a cross-section through this surface
for power equal to 11, showing how the various branches
contribute to the overall plan. Note that the utility of the
overall plan is higher in some places than the value of any
original branch. This is because future branch points allow
us to wait and see whether a particular plan will succeed, and
if it is unlikely to succeed, we can take an alternative branch.

Given a detailed contingent plan and the distributions for
time and resource usage, it is relatively straightforward to
evaluate the expected utility of the plan. If the distributions
are very simple, it may be possible to compute this quantity
exactly; more generally, this will have to be done with sto-
chastic simulation. Thus, if we could generate all possible
contingent plans for a problem, we could evaluate each of
them and choose the one with highest utility. Of course this
is completely impractical for problems of any size, partly
because it is impossible to enumerate the conditions for con-

 

Figure 2:  

 

A detailed rover problem. A “main” plan, and two
possible alternative branch plans are shown. Probability
distributions for time and energy usage are shown for each action.
Time and energy constraints for actions are shown in bold.

Dig(60) Drive(-2) NIRVisualServo(27 13)

Lo res NIRRock finder

Hi res

µ = 1000 s
σ = 500 s

µ = 60 s
σ = 1 s

µ = 40 s
σ = 20 s

µ = 5 Ah
σ = 2.5 Ah

E > 10 Ah
µ = .05 Ah
σ = .02 Ah

E > .1 Ah
µ = .2 Ah
σ = .2 Ah

E > .6 Ah
µ = 2 Ah
σ = .5 Ah

E > 3 Ah

µ = 600 s
σ = 60 s

t ∈∈∈∈  [10:00, 14:00]

µ = 120 s
σ = 20 s

µ = .01 Ah
σ = 0 Ah

E > .02 Ah
µ = .1 Ah
σ = .01 Ah

E > .12 Ah
µ = 2 Ah
σ = .5 Ah

E > 3 Ah

µ = 600 s
σ = 60 s

t ∈∈∈∈  [10:00, 13:50]

µ = 5 s
σ = 1 s

t ∈∈∈∈  [9:00, 16:00]

µ = .01 Ah
σ = 0 Ah

E > .02 Ah

µ = 5 s
σ = 1 s

t ∈∈∈∈  [9:00, 14:30]

v = 100

v = 10

v = 50v = 5

time

energy

energy

time

energy

time

 

Figure 3:  

 

Optimal value function for the example in Figure 2.The
left axis is increasing energy from 0 to 20. The right axis is start
time from 14:30 down to 13:20. Vertical axis is expected utility.
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ditional branches. The dynamic programming approach we
took above is an alternative, but it too is computationally ex-
pensive, and it fails completely when resource availability is
not monotonically decreasing (because optimization can no
longer be performed through a single backward pass).

 

Heuristic Approaches

 

One possibility is to try to plan for the worst case scenario.
Thus, in the example from the last section, we could assume
that the drive operation requires time and power that is one
or perhaps even two standard deviations above the mean.
The trouble is, this approach is overly conservative and
leads to plans with less science gain than is typically possi-
ble. In the example from the previous section, if plan execu-
tion was expected to begin at 13:45, this approach would
lead us to build a “safe” primary plan that replaces NIR
with the HiRes action, with expected utility of 10 in all
cases, instead of the more ambitious current primary plan,
with expected utility of 0 in the worst case, but 32 in the
average case and 100 in the best case. 

A more ambitious approach to the problem would be to
build an initial plan based on the expected behavior of vari-
ous activities and then attempt to improve that plan by aug-
menting it with contingent branches. This is the approach
taken by Drummond, Bresina and Swanson with their Just-
in-Case (JIC) telescope scheduling [11]. This approach is in-
tuitively simple and appealing, but extending it to problems
like the one we have outlined is non-trivial. The primary dif-
ficulty is to decide where contingent branches should be
added to a plan. In JIC scheduling, branches were added at
the points with the greatest probability of plan failure. Given
the distributions for time and resource usage this is relatively
easy to calculate by statistical simulation of the plan. Unfor-
tunately, the points most likely to fail are not necessarily the
points where useful alternatives are available. The points of
maximal failure probability may be too late in the plan to
have enough time or power left for any useful alternative.

Unfortunately, the problem of finding “high utility”
branch points is non-trivial. Figure 5 shows the expected

utility over time of the possible plans with a single branch,
for a fixed starting energy of 11. Note that at earlier start

times, the plans with the highest expected utility are those
that postpone the decision to later in the primary plan, where
the possibility of receiving the 100 reward for the NIR action
can be more accurately assessed. In a small region, the ex-
pected utility of the full RockFinder plan makes that plan
more valuable. As time advances, the probability of succeed-
ing in either the primary plan or the full RockFinder plan di-
minishes, and the HiRes branch becomes the dominant plan.
Without the HiRes branch, the early branch to the RockFind-
er plan (slightly) dominates the other branches late in the
time window, since delaying that branch may, with small
probability, cause a failure due to energy, resulting in no util-
ity. 

 

Finding the Branch Conditions

 

Once we've decided to add a branch to a plan, there is still a
problem of deciding under what conditions to take the
branch. Once again, we could use dynamic programming to
compute the optimal conditions, but this suffers from the
problems we described above. In addition, as Figure 3 illus-
trates, the optimal conditions can be extremely complex and
hard to represent. The flat surfaces of utility 5 and 55 corre-
spond to branching to the RockFinder plan before the first
step of the primary plan. The primary plan (along with the
later possible branch to the HiRes plan) is of higher expected
utility where the surface is curved. The conditions for the
branch point at the beginning of the primary plan are thus the
boundaries between the curved surfaces and the flat surfac-
es. The boundaries are in this case discontinuous, corre-
sponding to a disjunctive condition

It is important to bear in mind that the boundaries are
generally places where the values of two different branches
are equal, which means that approximate solutions will usu-
ally be acceptable here. One possibility is to treat the contin-
uous dimensions of the problem as independent, which
results in rectangular regions. This works well in most cases,
but the boundaries must be chosen with care where there are

 

Figure 4:  

 

Slice of the optimal value function for energy = 11 Ah,
along with the component curves that contribute to the overall
utility.
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Figure 5:  

 

Utility for a single branch at different possible branch
points with energy = 11.
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abrupt edges in the value function. This approximation may
also fail if there are dependencies between the dimensions,
for example when the energy used for driving is dependent
on the actual time spent, rather than being treated indepen-
dently as in our example.

 

Conclusions

 

For a Mars rover, uncertainty is absolutely pervasive in the
domain. There is uncertainty in the duration of many activi-
ties, in the amount of power that will be used, in the amount
of data storage that will be required, and in the location and
orientation of the rover. Unfortunately, current techniques
for planning under uncertainty are limited to simple models
of time, and actions with discrete outcomes. In the rover do-
main there is concurrent action, actions of differing dura-
tion, and most of the uncertainty is associated with
continuous quantities like time, power, position and orienta-
tion. 

For any non-trivial problem, it seems unlikely that exact
or optimal solutions will be possible. Nor do we have good
heuristic techniques for generating effective contingent
plans. It seems that new and dramatically different ap-
proaches are needed to deal with this kind of problem.
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