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Technologies for Dynamic Scheduling

Stephen F. Smith

The Robotics Institute

Carnegie Mellon University

sfs@cs.cmu.edu

The practical goal of scheduling is to orchestrate an optimized behavior of some resource-limited
system or organization over time. This goal is complicated in dynamic domains, where evolving
execution circumstances tend to force changes to planned activities, and hence plans and schedules
have a limited lifetime. In such domains, the problem becomes more than a classical optimization
problem, and the design of e�ective solutions must address several additional complications. For
example:

� How to manage solution change - As execution events (e.g., unexpected outcomes, new re-
quirements) signal the need for reassessment and revision of the current solution, there is
usually also contradictory pressure to keep things the same. Once wheels have been set in
motion there is generally a cost in changing course, and this fact must be accounted for during
any re-optimization e�ort.

� When to optimize and when to hedge - though optimized performance is the goal of advance
planning and scheduling, highly optimized plans/schedules tend to be very brittle. On the
other hand, the construction of plans/schedules that hedge against uncertainty and ensure
executability typically guarantee very little in the way of optimized system behavior. How
does one get an optimizing behavior while avoiding jitter and keeping pace with execution?

� When to plan and when to react - Similarly, depending on the level of unpredictability in
the operating environment, it may be more or less productive to plan and schedule in ad-
vance. However, event-based execution policies are susceptible to sub-optimal (and sometimes
chaotic) decision-making.

In this talk, I will describe ongoing research aimed at answering these questions in di�erent ap-
plication contexts and, in the process, developing core techniques and tools for dynamic scheduling.
For the past several years, we have been developing search procedures and heuristics for controlled,
incremental solution change. These techniques have been embedded in a now-operational tool for
day-to-day management of airlift and tanker missions at the USAF Air Mobility Command; and
another current project is integrating the same core technology with a commercial Manufacturing
Execution System for use as a dynamic shop-oor control system. I will summarize the principles
underlying this approach and indicate current research toward complementing this incremental
change framework with capabilities for retaining execution exibility. I will also discuss other re-
cent ideas and work toward the development of so-called self-scheduling systems, which rely on
local but adaptive scheduling policies to achieve globally optimizing behavior. Along the way, I
will give my views of the principal challenges that remain.
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Abstract

Many real-world optimization problems change over time
and require frequent re-optimization. We show that in these
cases the overall system performance can be improved by
anticipating the necessity to adapt a solution in the future.
Therefore the optimization algorithm should search for solu-
tions that are not only good, but also flexible, i.e. easily ad-
justable if necessary in the case of problem changes.
For the example of a job shop with jobs arriving non-
deterministically over time, we demonstrate that the incor-
poration of a flexibility term as secondary goal into the evo-
lutionary algorithm used for scheduling can greatly enhance
performance.

Introduction
Many real-world optimization problems are dynamic and
stochastically change over time. One standard approach to
deal with such a dynamic problem is to constitute and solve
a new deterministic sub-problem every time the problem
data changes. However, considering the sub-problems as be-
ing completely independent disregards the impact a solution
may have on the system’s state, and thus on the problems en-
countered in the future. In this paper, we make the following
conjecture:

If a problem requires sequential decision making under
an uncertain future, and if the decisions impact the future
state of the system, an optimization algorithm should antic-
ipate future needs. This can be done by not just focusing on
the optimization criterion at hand, but by additionally try-
ing to move the system into a flexible state, i.e. a state that
facilitates quick adaptation if necessary.

We are going to examine this conjecture, considering
a minimum summed tardiness job shop scheduling prob-
lem with new jobs arriving non-deterministically over time.
Clearly, the scheduling decisions influence the shop floor’s
future state, e.g. its work in process, the interdependencies
between jobs, or the distribution of machine idle times.

As we will demonstrate, the state’s flexibility in a job shop
is largely determined by machine capacity, and can be ef-
fectively preserved by avoiding early idle times. Therefore
the evolutionary algorithm used in this research integrates a

secondary goal, penalizing early idle times, into the objec-
tive function. We then show empirically that such an antic-
ipatory scheduling can greatly improve the system’s perfor-
mance when applied in a dynamic shop floor environment.

For an early investigation of scheduling with a rolling
time horizon on a minimum summed tardiness job shop
problem see (Raman & Talbot 1993). The shorter the
rescheduling-interval is chosen, the more responsive the ap-
proach becomes as information is taken into account earlier.
Previous work (Adam & Surkis 1980; Farn & Muhlemann
1979; Muhlemann, Lockett, & Farn 1982) suggests that an
increasing rescheduling frequency can improve the schedul-
ing performance. (Yamamoto & Nof 1985) propose event
triggered rescheduling, i.e. deterministic sub-problems are
created as soon as new jobs arrive in the manufacturing sys-
tem. (Church & Uzsoy 1992) have demonstrated the ad-
vantages of event triggered rescheduling over interval based
rescheduling. (Fang & Xi 1997) propose a combined tech-
nique which performs event based rescheduling in case of
machine breakdowns and interval based rescheduling to
cope with the arrival of new jobs.

If either the problem changes so quickly that the re-
quired frequency for generating global schedules becomes
prohibitive, or if the problem changes so drastically that no
meaningful information can be obtained from pre-schedules,
priority based dispatching offers a serious alternative. Be-
cause only up-to-date local information is taken into account
priority based dispatching is an obvious candidate for dy-
namic scheduling problems (Panwalkar & Iskander 1977;
Morton & Pentico 1993). On the other hand, this approach
is limited by the lack of a global goal function used for op-
timization. As a remedy (Kutanoglu & Wu 1998) suggest to
combine global optimization with local dispatching by de-
termining job priorities on a global level beforehand, while
deferring the priority driven dispatching as long as possible.

None of the approaches described so far anticipates fu-
ture changes. Anticipating future events is required when
searching for robust schedules, i.e. when a schedule’s ex-
pected quality in an uncertain environment is optimized.
Examples include the work by (Leon, Wu, & Storer 1994)
who derive an explicit measure for robustness, or (Jensen
2001), who uses a stochastic evaluation as part of an evo-
lutionary algorithm. (Mehta & Uzsoy 1998) produce ro-
bust schedules by inserting idle-times in anticipation of ma-
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chine breakdowns. But while robustness is required for so-
lutions that are assumed to persist unchanged, in this pa-
per we seek flexibility, i.e. we assume the necessity of re-
peated adaptations of a solution (Branke & Mattfeld 2000;
Branke 2001). These two aspects are not necessarily unre-
lated, as (Jensen 2001) has observed that robust solutions are
often also flexible.

Only recently, the authors have proposed to penalize ma-
chine idle-times in the objective function of the scheduling
algorithm in order to maintain flexibility with respect to the
arrival of future jobs (Branke & Mattfeld 2000). This ap-
proach tends to exhaust machine capacity and withholds ma-
chine idle-time in anticipation of future demand. An attempt
to make the penalty term subject to evolutionary optimiza-
tion has been made by (Snoek 2001), with limited success.
In this paper, we discuss our approach much more thor-
oughly, with more empirical evidence and from a fresh and
clearer perspective. We show that anticipatory scheduling
provides excellent scheduling performance in an inexpen-
sive and immediate way.

Dynamic Job Shop Scheduling
We consider a dynamic job shop problem where n jobs are
to be processed on m machines. The processing of a job on a
certain machine is referred to as operation. Processing times
are deterministic such that the processing times of opera-
tions belonging to job i add up to the job’s total processing
time pi. Every job is processed in a prescribed technological
order which does not necessarily cover all machines. A job
can be processed by one machine at a time only and one ma-
chine can process just one job simultaneously, preemption is
not allowed.

Due-dates di indicate the point in time at which a job
should be completed, the actual time ci of completing job i,
however, is subject to optimization. The spread between the
actual and desired completion time is taken into account by
minimizing the mean tardiness T � 1

n ∑n
i � 1 max

�
ci � di � 0 � .

Jobs become known non-deterministically over time
which implies that job i cannot start before its release at
arrival time ri. The inter-arrival times of jobs in the man-
ufacturing system affect its workload, i.e. the number of op-
erations in the system which await processing. The mean
inter-arrival time λ can be determined by dividing the mean
processing time of jobs P by the number of machines m and
a desired utilization rate U , i.e. λ � P ��� mU 	 . A utilization
rate of U � 0 
 7 represents a relaxed situation of the manu-
facturing system. A moderate load is produced by U � 0 
 8
whereas a utilization rate of U � 0 
 9 corresponds to a heavy
workload. We simulate a simplified manufacturing system
as follows:
� The manufacturing system consists of 6 machines.
� Each job passes 4 to 6 machines resulting in 5 operations

on average.
� Technological orders are generated from a uniform prob-

ability distribution.
� Processing times of operations are uniformly distributed

in the range of � 1 � 19  resulting in a mean processing time

of P � 5 � 10.
� Relatively tight due-dates are generated by di � ri � 2 � pi.
� Inter-arrival times are exponentially distributed with

mean λ.

A problem instance consists of 500 jobs. In order to cir-
cumvent distortion effects we discard jobs 1 to 100 as well
as jobs 401 to 500 from being evaluated (Bierwirth & Mat-
tfeld 1999). Consequently, the empirical results presented
in this paper are calculated as T observed for job 101 to job
400 averaged over 30 different problem instances.

Evolutionary Algorithms for Dynamic
Scheduling

Most EA approaches to scheduling problems (and also the
one we are using in this paper) encode solutions by priori-
ties for operations (Cheng, Gen, & Tsujimura 1999). In or-
der to determine the fitness of an encoded solution, a sched-
ule builder constructs a schedule by consecutively inserting
operations along the time axis. Whenever two or more oper-
ations compete for a machine, the conflicts are resolved by
the encoded priority scheme.

A schedule builder operates by iteratively considering ma-
chine M � with the earliest possible starting time t � of an oper-
ation. For non-delay schedules one of the operations queued
in front of M � is picked for dispatching which can start at
t � t � , i.e. a machine is never kept idle when there is an op-
eration that might be started. To produce active schedules,
an operation is determined on M � with a minimal possible
completion time c � � . Here, an operation is dispatched on M � ,
which can start in the interval t ��� t � c � � . Furthermore we
can think of hybrid schedules, simply by considering the in-
terval t ��� t � t � � � c � � � t ��	 δ with δ ��� 0 � 1  defining a bound
on the time span a machine is allowed to remain idle (Storer,
Wu, & Vaccari 1992).

Active schedules allow for additional machine idle-time
and therefore the set of active schedules is larger compared
to the set of non-delay schedules. It is possible to scale
the size of the set of hybrid schedules by means of δ. On
one hand, the additional possibility of inserting idle times
in active schedules may be beneficial, e.g. when a machine
is deliberately kept idle for a short time to wait for an ur-
gent job. On the other hand, for regular measures of per-
formance, additional idle time often reduces the quality of
the schedule, and there is evidence that non-delay sched-
ules perform much better on average (Norman & Bean 1997;
Bierwirth & Mattfeld 1999). Concerning the optimal so-
lution, it is known that there is at least one optimal active
schedule, while there is not necessarily an optimal non-delay
schedule.

As default we use a schedule builder that generates ac-
tive schedules (δ � 1 
 0) while the effect of hybrid sched-
ule builders is examined in Section . Besides the above de-
scribed components, standard EA settings are used in this
research. Selection is based on inverse proportional fitness,
the recombination probability is 0.6 and the mutation proba-
bility is set to 0.1. We use generational reproduction with an
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Figure 1: Assuming the performance of both schedules being equal, the schedule depicted in Gantt-chart (b) may be favored
because it preserves idle-time of machine M2 longer.

elitist strategy which ensures that the overall superior solu-
tion always survives to the next generation. An EA run con-
sists of 100 generations with a population size of N � 100.

To apply an EA, the problem is decomposed into a series
of static sub-problems on the basis of a rolling time horizon
with event-triggered rescheduling. When new jobs arrive
at time t, operations already scheduled to start before t are
considered as implemented and are consequently discarded
from further consideration. Since non-preemptive schedul-
ing is assumed, the set of already implemented operations
includes the ones currently processed.

For the new problem to be constructed, release times of
jobs ri are re-set to t or, in case of a currently processed
operation, to its prospective completion time. Additionally,
the time of the earliest availability of machines a j (1 � j �
m) is re-set to t, or if it is currently busy, to the completion
time of the associated operation. Finally the newly arrived
jobs are added to the problem.

A Flexibility Measure for Job Shop Problems
In this section, we describe the implementation of an antici-
pation term. According to the conjecture made in the intro-
duction, schedules derived in a rolling time fashion should
not only obey a prescribed performance criterion but should
additionally take into account a flexibility measure. The so
generated flexible schedules should be easier to adapt after
the arrival new jobs, resulting in an improved performance
over time (Branke & Mattfeld 2000).

Consider the simple example depicted in Figure 1: Let
the due date for both jobs be at t � 9, i.e. the two alterna-
tive schedules (a) and (b) yield the same tardiness of 1 time
unit. Nevertheless, the schedules differ in their distribution
of machine utilization. When a new job arrives, it is likely
that schedule (b) will be able to integrate it more easily, as
machine M2 becomes available earlier than in schedule (a).

Thus, by taking into account the times when the operations
are processed, the system’s flexibility may be increased.

With this introductory example in mind, we are going to
reason what measurable aspects of a manufacturing system’s
state can have an impact on the system’s flexibility, before
we are going to integrate these aspects by modifying the ob-
jective function of the optimization algorithm.

Let us first review and comment on some aspects dis-
cussed with respect to the relationship between static and dy-
namic vehicle routing. Among other topics (Psaraftis 1988)
argues that in the dynamic case (1) time dimension is es-
sential, (2) resequencing decisions may be warranted, (3)
near-term events are more important, and finally, (4) queu-
ing considerations become important. In the following we
discuss (1)–(4) in the context of dynamic scheduling in or-
der to derive methodological implications.

1. We can identify a subtle difference between static and
dynamic scheduling with respect to the consideration of
time. In the static case, the problem is fully defined and
the solution quality is fully described by the performance
measure under consideration. In other words, machine
idle-times are inserted as desired in order to obtain a
schedule of optimal performance. In the dynamic case,
the problem and thus the perception of what constitutes a
good solution changes over time. In fact, there is no war-
ranty that a sequence of optimal static schedules yields
optimality also for the overall dynamic problem, there-
fore measures leading to an improved solution quality of
the static problem will not necessarily be beneficial from
a global perspective. The insertion of idle-times may lead
to a waste of machine capacity, potentially causing future
bottlenecks.

2. Whenever new jobs arrive in the dynamic case, the system
benefits from rescheduling as it integrates new informa-
tion as early as possible. We construct the next static prob-
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lem from the the newly arrived jobs and from the backlog
present at the current state of the system. The backlog
is actually re-scheduled, although its dedicated machine
idle-times may have already been partially implemented.
Thus rescheduling might make the original reason for in-
serting idle-times obsolete, leading to a further potential
waste of machine capacity.

3. In a non-deterministic shop floor environment the opera-
tion of a certain job on a machine may be re-scheduled
many times, but events scheduled early have a higher
probability of being actually implemented before the next
change, and are thus more certain than events scheduled
later. Whenever machine idle-times are implemented,
they are in danger to become a waste of machine capac-
ity. Therefore, early machine idle-times should receive
particular attention.

4. Because of the missing time horizon in static schedul-
ing, a priori no machine utilization rates or queue lengths
are considered. In dynamic scheduling the arrival process
of jobs determines the long-term machine utilization, ap-
proximated by the ratio of processing times of jobs ar-
rived and the time of machine availability in the arrival
span considered. The already discussed waste of machine
capacity due to the implementation of machine idle-times
increases work in process which in turn decreases flexi-
bility.

The above discussion reveals important differences be-
tween static and dynamic scheduling: Idle times in general,
but early idle times in particular, may have a substantially
negative effect on a system’s flexibility. Clearly, when there
is a choice between two schedules with equal quality accord-
ing to the static goal, but unequal distribution of idle times,
the schedule with less early idle time should be preferred.

We take a rather pragmatic approach to implement the
above ideas: in addition to the standard quality measure (in
this case mean tardiness of jobs T ), we introduce an idle
time penalty S. Since we expect “early” idle-times to be of
particular importance for dynamic scheduling, the penalty
decreases linearly with the time t of its occurrence in the
schedule, i.e.

w j � t 	 �
�

max
�
0 � 1 � t ��� β � a j 	 � : β � a j

0 : otherwise

evaluates idle-time on machine j at time t � a j with
weight 1.0 and idle-time at time t � β with weight 0.0, where
β is a user-defined parameter denoting the length of the in-
terval considered. We calculate S by summing up weighted
idle-times over the machines 1 � j � m.

An appropriate scaling of T against S can hardly be de-
rived analytically. Fortunately, the evolutionary algorithm
used for optimization always maintains a population of so-
lutions, which can be used to normalize both terms inde-
pendently to the interval � 0 � 1  on the basis of minima and
maxima observed in the population. As the evolutionary al-
gorithm’s population changes over time, the normalization
adapts accordingly. The fitness fk of schedule/individual
k (1 � k � N) is constructed from a convex combination

of both normalized terms with the parameter α being the
weighting factor:

fk � � 1 � α 	 T̂ � αŜ

with

T̂ � � T k � minl � T l �
maxl � T l ��� minl � T l � : maxl

�
T l ��� minl

�
T l �

0 : otherwise

Ŝ � � Sk � minl � Sl �
maxl � Sl ��� minl � Sl � : maxl

�
Sl ��� minl

�
Sl �

0 : otherwise

With α � 0 
 0 the schedule’s idle-time is not considered at
all, whereas with α � 1 
 0 the tardiness does not contribute
to fk.

In this section we have argued that the insertion of ma-
chine idle-times can decrease flexibility in many cases. In
Section we have pointed out that the insertion of idle-times
also can increase efficiency. The remainder of this paper
is devoted to a computational investigation on the role of
machine idle-times in dynamic scheduling. We investigate
whether an increase of flexibility without loss of efficiency
is possible and furthermore whether an increase of flexibility
can even improve scheduling efficiency.

Maintaining Flexibility by Anticipatory
Scheduling

In this section, we evaluate the benefits obtainable by the
suggested anticipation term. We examine its robustness with
respect to several parameters. Furthermore we show how
modifications effect the work in process, i.e. the average
number of operations in the production system.

The anticipation term suggested is parameterized by the
length of the time interval considered (β), and the empha-
sis on idle time (α). In order to examine the interaction
between α and β, as well as their impact on the system
performance under different load conditions, we run experi-
ments for three different load conditions U � �

0 
 7 � 0 
 8 � 0 
 9 � ,
in each case varying α � �

0 
 000 � 0 
 125 � 
 
 
 � 0 
 750 � and β ��
10 � 30 � 
 
 
 � 130 � . The largest β value of 130 approximately

corresponds to the mean time of 10 job arrivals for U � 0 
 7,
which seems to be a reasonable upper bound. For each com-
bination of U , α and β the average over 30 different problem
instances is reported. Together, a total of 3 � 7 � 7 � 30 � 4410
runs are performed.

The results observed are given in Figure 2. In order to
focus on the mean tardiness while varying α and β, the per-
centage of improvement over T observed for α � 0 
 000 is
reported, i.e. for the reference parameterization idle-times
are not considered at all and consequently the setting of β is
of no matter. The plots on the left side of Figure 2 show iso-
lines in steps of 10% for U � 0 
 7 and steps of 5% for U � 0 
 8
and U � 0 
 9. Since β is of no concern for α � 0 
 000, all so-
lutions along the y-axis represent the reference setting with
zero improvement.

The shape of the iso-line plots resemble each other for
the different U considered. The solution quality of the most
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Figure 2: The effect of α and β on the improvement of the solution quality T in percent over the result obtained for α � 0 
 0
(left), and the work in process (WIP) depicted as the average number of operations involved in deterministic sub-problems
(right). Idle-times occurring in � a j � β  are penalized with linear decreasing weight.
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Table 1: Percentage of T improvement over EA with α � 0 
 000 and δ � 1 
 00.
U δ α

0.000 0.125 0.250 0.375 0.500 0.625 0.750
0.00 10 16 21 22 7 -27 -31
0.25 11 25 32 31 11 -24 -29

0.7 0.50 15 39 40 41 19 -19 -28
0.75 16 37 38 43 21 -13 -24
1.00 0 34 42 33 23 -5 -19
0.00 9 15 18 20 17 -5 -12
0.25 13 21 22 27 21 -2 -11

0.8 0.50 12 21 26 30 25 3 -6
0.75 5 19 26 30 23 5 -5
1.00 0 14 20 25 21 9 -3
0.00 14 17 23 27 26 17 6
0.25 12 20 25 26 26 15 7

0.9 0.50 8 16 22 23 28 15 8
0.75 6 14 21 22 27 16 7
1.00 0 10 11 19 24 17 9

improving parameter setting is indicated by a gray dot. The
improvements that can be obtained by penalizing early idle
times are impressive and range from 24% for U � 0 
 9, over
25% for U � 0 
 8, to 42% for U � 0 
 7.

The area of significant improvements is rather broad,
meaning that the approach is quite robust with respect to
setting the parameters α and β. Only extremely high val-
ues of α and β (which basically means to completely ignore
tardiness) lead to decreasing solution qualities. Of course,
extremely low values of either α or β also eliminate the ef-
fect of anticipation.

Parameter α should be increased with increasing U , be-
cause the more often the schedule is turned over by newly
arriving jobs, and the more congested the shop floor sys-
tem gets, the more important the avoidance of idle-times be-
comes. As a simple guideline, α may be set to 0.25 in cases
where machine capacity is readily available and it should not
exceed 0.5 even in a congested shop floor.

Generally an appropriate length of the β interval depends
on the degree of distortion caused by the arrival of new jobs.
With regard to the problem at hand β can be fixed at 110
for all U considered. The relatively long time span of β
approximates 8 to 12 job arrivals (depending on U). This
indicates that a long term consideration of idle-times is im-
portant, even if the corresponding part of the schedule will
overturn for several times until its eventual implementation.

The right hand side of Figure 2 shows the effect of the
parameter variation on the average number of operations per
sub-problem. A large U imposes a small interarrival-time
which in turn leads to a large number of operations per sub-
problem. It can be observed, that an increasing α clearly
decreases the problem size. Here, the idle-time penalty leads
to a more effective utilization of machine capacity which in
turn results in shorter job flow times and finally in a smaller
number of operations per sub-problem.

However, although the problem size continues to shrink
with increasing α, beyond a certain α value the solution
quality deteriorates. That means that the observed im-

provements are not due to the smaller problem sizes, but
rather that the reduction in problem size is a side-effect of
the focus on increasing flexibility. Summarizing, anticipa-
tory scheduling is a robust and easily implemented method,
yielding remarkable improvements in solution quality.

The Effect of the Schedule Builder
Schedule builders are distinguished by generating either ac-
tive or non-delay schedules. Although optimality conditions
with respect to regular measures of performance suggest to
search the set of active schedules, heuristics may benefit
from a confinement towards non-delay scheduling

The concept of anticipatory scheduling suggests an ad-
ditional viewpoint: Non-delay schedule builders implicitly
avoid machine idle times whenever possible. Moreover
“early” idle-times are specifically avoided at the expense
of later idle-time insertions occurring due to the existence
of precedence constraints. Hence for dynamic scheduling
a non-delay schedule builder might be particularly advan-
tageous because it implicitly follows the proposed idea of
anticipatory scheduling. It might even be possible that non-
delay scheduling renders an explicit consideration of flexi-
bility in the objective function unnecessary.

To examine the interdependencies between the sched-
ule builder and the anticipation term we conduct another
set of experiments and vary the schedule builder’s ten-
dency to build active schedules by means of δ. Ex-
periments are carried out for U � �

0 
 7 � 0 
 8 � 0 
 9 � with all
combinations of α � �

0 
 000 � 0 
 125 � 
 
 
 � 0 
 750 � and δ ��
0 
 00 � 0 
 25 � 
 
 
 � 1 
 00 � . Parameter β is set to 110, which

has already been identified as appropriate for all U consid-
ered. Table 1 lists the percentage of improvement in solution
quality (T ) over the EA parameterized with α � 0 
 000 and
δ � 1 
 00 (no anticipation and active scheduling).

As can be observed in the first column (α � 0), δ alone has
a noticeable effect on the resulting tardiness values. How-
ever, the benefits that can be obtained from tuning δ are sig-
nificantly smaller than those that can be obtained from tun-
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ing α, i.e. non-delay scheduling is certainly no alternative
to introducing a flexibility term into the objective function.
But although not as powerful as a variation of α, δ can def-
initely lead to a further improvement of peak performance.
In accordance with the results reported by (Bierwirth & Mat-
tfeld 1999), the higher the utilization is, the smaller are the
appropriate δ values. Except for U � 0 
 7, where δ close to
1.00 seems to be a reasonable setting anyway, additional im-
provements in solution quality of 5% for U � 0 
 8 and 4% for
U � 0 
 9 are obtainable.

For a closer examination of the interaction effects of α
and δ, we run an analysis of variance (ANOVA) on the data
set with T as dependent variable and α and δ as independent
variables. Since U has an obvious impact on the fitness ob-
tained, U is considered as covariate in the statistical experi-
ment. As one might expect, there is a strong significance of
the F-Test for α. For δ we still observe a weak significance
of 0.057. For the interaction of α and δ no significance at all
can be observed.

The above results confirm that α has a major influence on
T obtained. The role of δ is less significant, but ANOVA
confirms our observation that T partially depends on δ re-
gardless of other parameter settings. Analyzing Table 1
more closely we observe a strong δ-dependency for small α
values, whereas for larger α values the dependency vanishes
with increasing U . For example, for a congested shop floor
with U � 0 
 9 and α � 0 
 5 we no longer recognize an influ-
ence of δ, which explains the weak significance reported by
ANOVA.

The insignificant interaction between α and δ imply that
the parameters can be tuned almost independently of each
other. However, T improvements with regard to α and δ are
not additive. This indicates that α and δ can substitute each
other to a certain extent.

Unfortunately, the impact on the EA of searching a
smaller search space and the supposed implicit flexibility
due to non-delay scheduling can hardly be separated from
each other. For instance, in case of a congested shop floor
the EA may benefit from a decreasing δ because of the re-
sulting smaller search space. At the same time the decreas-
ing δ may lead to an increased flexibility by avoiding early
machine idle-times. Both effects would positively contribute
to the overall solution quality. Therefore, we can conclude
that the potential benefit of increased flexibility through non-
delay scheduling is even smaller than the figures in Table 1
suggest. Overall, it is obvious that non-delay scheduling is
no substitute for introducing a flexibility term into the ob-
jective function.

Conclusion
Many real-world optimization problems change over time
and require repeated optimization as new information be-
comes available. A standard approach to deal with these
dynamics is to use a rolling time-horizon. The problem is
decomposed into a series of static sub-problems, which are
then solved independently.

In this paper, we have argued that, if the decisions at one
stage influence the problems encountered in the future, fu-
ture changes need to be anticipated by searching not only for

good solutions, but for solutions that additionally influence
the state of the problem in a favorable way. We have identi-
fied these solutions as being flexible, i.e. easily adjustable to
changes in the environment.

To validate this conjecture, we have considered a dynamic
summed tardiness job shop scheduling problem, with jobs
arriving non-deterministically over time. For this particular
application, we concluded that the avoidance of early idle
times can support the flexibility of a solution.

As a consequence, we suggested to extend the goal func-
tion by an anticipation term which penalizes early idle times.
This algorithm showed impressive improvements in solution
quality of up to 58% in comparison to an advanced priority
rule based approach. Short-term efficiency-losses due to a
flexibility term added to the scheduling algorithm lead to
significant long-term gains.
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Abstract
The need for spacecraft mobile robots continues to grow.
These robots offer the potential to increase the capability,
productivity, and duration of space missions while
decreasing mission risk and cost. Spacecraft Mobile Robots
(SMRs) can serve a number of functions inside and outside
of spacecraft from simpler tasks, such as performing visual
diagnostics and crew support, to more complex tasks, such
as performing maintenance and in-situ construction. One of
the predominant challenges to deploying SMRs is to reduce
the need for direct operator interaction. Teleoperation is
often not practical due to the communication latencies
incurred because of the distances involved and in many
cases a crewmember would directly perform a task rather
than teleoperate a robot to do it. By integrating a mixed-
initiative constraint-based planner with an executive that
supports adjustably autonomous control, we intend to
demonstrate the feasibility of autonomous SMRs by
deploying one inside the International Space Station (ISS)
and demonstrate in simulation one that operates outside of
the ISS. This paper discusses the progress made at NASA
towards this end, the challenges ahead, and concludes with
an invitation to the research community to participate.

Introduction

In order to robustly achieve increasingly ambitious mission
goals for longer periods with less ground support than
traditionally required, we expect future space flight projects
to increasingly require advanced onboard autonomy to
support both manned and unmanned missions. Moreover,
autonomously-controlled mobile sensors and manipulators
(that can be encapsulated in a SMR) can provide additional
capabilities and productivity that would otherwise require
greater mission cost or risk.

Sensing Tasks
Generally, sensing tasks are viewed as more readily
achievable than tasks that require sensing and
manipulation. As such, the systems that we are initially
developing are spacecraft robots restricted to mobile
sensing and this paper is restricted to discussing planning
and execution of such robots. Consider a SMR (a mobile
robot with a variety of sensors) that can operate within a
spacecraft such as the International Space Station (ISS).

Figure 1: International Space Station I llustration

Such a robot could potentially perform a number of tasks
such as:

• Measuring and localizing toxic gases.  In former Russian
MIR space station, there was concern that batteries might
leak sulfur dioxide.  During a fire on MIR, toxic gases
were released.  In both cases it would have been helpful
to have a SMR measure and, if necessary, localize the
source of such gases.

• Measuring changes in pressure and ratios of nominal
gases, e.g., oxygen and carbon dioxide.  The first crew of
the Salyut 1 station all tragically died by suffocation
when a valve failed on its return vehicle.  Fixed sensors
can also fail or not be available during a crisis such as
happened on MIR when a collision caused a loss of cabin
pressure down to ~600mb, far below the safety level.  A
SMR can provide early warning of anomalies and be a
redundant, portable system during a crisis.

• Validate fixed environmental sensing systems.  In event
that an anomaly is detected by the ISS life support
system, there exists the possibility that the problem is a
fixed sensor and not the environment.  A SMR can be
autonomously deployed or controlled by Mission Control
to validate if the sensor is defective or not.  If the sensor
is defective, the SMR can act as a virtual sensor until the

11      



fixed sensor is replaced. If not, the SMR help isolate the
source of the anomaly.

• Visually validate regions of the spacecraft.  Multi-
spectral cameras on a SMR can provide crew members,
Mission Control, and scientists a visual record of
anything from a piece of equipment, to a crew activity, to
a science experiment, without tying up a crew member to
perform the task.

• Perform time-consuming special monitoring tasks.
Specially-equipped SMRs can be deployed to specific
tasks such as measure or localize certain sounds.
Detecting unusual sounds is a method often used by
people to diagnose a failing piece of equipment.  Also,
small leaks can be detected by the sound they emit.  An
autonomous SMR can isolate and localize particular
sounds that human ears cannot detect.

An example of a task for a SMR operating outside a
spacecraft is:

• Detecting external spacecraft damage. Astronaut EVAs
are risky and time consuming.  As a result, monitoring
tasks such as checking the Shuttle for tile damage prior
to reentry and looking for micrometeorite damage on ISS
are not routinely performed. Once extended to remote
spacecraft, failure assessment alone is of enormous
value. Extraordinary effort is made to determine failure
causes often with low confidence due to lack of data.

SMR and Terrestr ial Mobile Robot Compar ison
Although there are many similarities between SMRs that
operate in engineered dynamic environments that may
include people, and mobile robots that operate in natural
terrains other than Earth, there are also striking differences
that present challenges for SMRs including:

• Operates in close range in complex, dynamic, structured
environment in 3 dimensions.

• Recognizes, and in some cases manipulates, many
engineered objects

• Observes nominal and diagnoses off-nominal situations

• Interacts with people in a number of ways:
- People are commanders (at various levels of authority

to command at various levels of autonomy)
- People are agents instructed by robot to achieve goal
- People are dynamic obstacles to avoid
- People are dynamic objects to track
- People are peers to collaborate on achieving joint

goals

These tasks and the operational environment levy a number
of requirements on the planner(s) used to achieve such
tasks over an extended period:

• Mixed-initiative task planner/scheduler

• Mixed-initiative path planner

• Local obstacle avoidance path planning

• Resource management
- Power & Energy
- Momentum
- Thermal power management
- Battery-life

• Multi-agent state estimation and control (people, SMRs,
in-situ systems)

• Reactive planning and adjustably autonomous control

• Real-time planning and execution

Spacecraft Mobile Robots at NASA

NASA has begun to address the need for SMRs and the
above challenges. Currently, two spacecraft mobile robots
in particular are under development at NASA, the Personal
Satellite Assistant (PSA), and the Sprint AERCam. This
paper will focus on the PSA all many of the issues and
technologies are relevant to both.

Personal Satellite Assistant (PSA)

Figure 2: PSA Prototype depicted in ISS Node M ockup

The PSA is being designed as a softball-sized flying
robot that operates autonomously onboard manned and
unmanned spacecraft in micro-gravity, pressurized
environments, and in particular onboard ISS. PSA’s
hardware architecture is being designed to accommodate a
wide range of components that enable a broad set of
mission support scenarios.  Environmental sensors for gas,
temperature, and pressure provide the ability for the PSA to
monitor spacecraft for abnormal conditions, e.g.,
overheating equipment, payload and crew conditions.
Video and audio interfaces will provide support for
navigation, remote monitoring and video-conferencing.  A
radio frequency identification tag reader/writer and/or bar-
code reader on the PSA will enable it to recognize specific
objects and update their location in an inventory control
system.  Ducted fans/blowers will provide propulsion and
batteries will provide portable power.  An auto-docking
locker will enable the PSA to autonomously recharge its
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batteries and provide a secure storage location when not in
flight.  The PSA will be connected by a wireless network to
a laptop computer that will provide a user interface with the
crew and to a server for additional information processing
capacity, primarily for PSA planning.  A speech interface
and dialogue management system for the PSA will permit
spoken language commanding and data queries of the PSA
and databases that the PSA has access to via its wireless
network.  A long-range goal for the PSA is to connect it via
the wireless network to the spacecraft’s avionics data,
payload networks, and uplink/downlink communications.

The main benefit PSA is expected to provide is for it to
act as a crew work-force multiplier by performing intra-
vehicular activities on behalf of the crew. Current
spacecraft are constrained in terms of crew size, power,
volume, and computing resources.  Crew time on the
International Space Station is one of the most constrained
resources and is projected to cost hundreds of dollars per
minute per astronaut. The crew will have to maintain
complex critical ISS systems, perform dozens of major
simultaneous payload experiments, and perform general
housekeeping.  Enhancing the crew's ability to perform
their duties is critical for successful, productive, and safe
space-based operations.  Moreover, PSA can enhance crew
safety by performing monitoring tasks that might endanger
a crewmember or not otherwise be performed.

The PSA’s autonomy capabilities are expected to
significantly improve productivity by directly supporting
flight crews, ground controllers, and the principle
investigators of science experiments.  The biggest benefits
to those users will come from its ability to monitor the
environment, e.g., detect abnormal concentrations of CO2,
act as a mobile camera/camcorder/data terminal, and track
inventory using advanced inventory micro-tags.  For
example, when the PSA detects a sharp pressure drop while
performing an inventory audit, it would then notify the
crew of the abnormal condition and attempt to localize it.
If however, a fixed sensor on ISS detected a pressure drop,
the PSA could be used to validate the reading. If the sensor
is diagnosed as defective, the PSA could act as a temporary
replacement sensor.  We expect this entire activity could be
conducted without the need for human intervention or be
initiated by the ground operators, onboard crew, or the
spacecraft itself.

The PSA will provide an additional side-benefit by
acting as an autonomy and mobile robot testbed for
researching intra-vehicular robots that eventually will be
used for long-term missions, e.g., operating onboard a crew
return vehicle orbiting Mars for two years while the crew
explores the surface.

PSA Operational Requirements
In order to support the development of suitable
autonomous control system for the PSA, the following
subset of operational requirements were defined:

1. Achieve set of 10 commands in an optimal sequence
where each command is to take a picture and

environmental sensor reading at a global <x, y, z, yaw,
pitch, roll> specified immediately prior to execution.
Perform in each of the following ISS Node environments:
Environment A: uncluttered, static
Environment B: known clutter, static
Environment C: unknown clutter, static
Environment D: unknown clutter, dynamic

2. Validate two environment fixed-sensors. For example,
go to the location of a fixed sensor indicating high
temperature and measure environment.  If the fixed sensor
is accurate, localize the source of the heat.  If the fixed
sensor is not accurate, station-keep at the fixed sensor
location transmitting temperature readings until the fixed
sensor readings are accurate then return to base locker.

3. Demonstrate mixed-initiative planning for both path and
deliberative planning. This shall include:
a. Adding temporary constraints to change an existing plan
b. Adding goals to an existing plan
c. Rejecting goals in an existing plan
d. Rejecting goals from a plan that fails to converge

4. Demonstrate mixed-initiative execution. Includes
allowing human interrupts and command additions,
retractions, & modifications as well as asking humans or
other agents for assistance during execution.  Levels of
autonomy to be demonstrated:
a. High-level teleoperation
b. Guarded & guided teleoperation
c. Dynamic commanding of PSA by human
d. Dynamic commanding of PSA by another agent
e. Dynamic commanding of human by PSA
f. Dynamic querying and modification of plan currently
being executed
g. Executing and modifying generated plan due to
environment uncertainty

5. Demonstrate teleconferencing. Includes face-tracking.

6. Demonstrate crew following. Includes body-tracking.

7. Demonstrate energy resource management including
dynamic auto-recharging.

8. Demonstrate leak isolation using acoustics and a leak
isolation expert agent.

9. Demonstrate spoken language commanding and status
reporting.

10. Demonstrate inventory sensing and location tracking.
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PSA Autonomy Control Architecture
A prototype autonomy control architecture, illustrated in
figure 3, has been developed to address the operational
requirements. The architecture implementation was
distributed over three processors as depicted by the dashed
boxes:

• Onboard flight processor for sensing and real-time
control. Software for localization to a global map, object
recognition, and obstacle avoidance using stereo vision
and other proximity and inertia sensors is executed here.

• User-interface laptop for commanding and displaying
information. This includes interfaces for interactively
creating and modifying the plan and teleoperation. Our
intent is for this interface to support operation at various
autonomy levels that can be dynamically changed and
range from teleoperation to high-level autonomous
control.

• Off-board docking bay processor for high-level
autonomous control including planning, scheduling,
command sequencing, and human and other agent
communication and coordination.

The high-level autonomous control system, depicted by the
top dashed box in figure 3, is a planning and execution
system in its own right based on the unified agent
framework described in [Muscettola et al. 2000]. This
agent is composed of the following subsystems:

• Plan Database
This is a temporal, constraint-based network of tokens that
defines the past, the present, and flexibly-defined future
states and actions of the system. Each token represents the
“state”  of a state variable for a period of time. The token
data structure is a tuple that specifies the state variable, the
procedure and its arguments that is invocated when the
token is “executed,”  and the token start and end time
bounds. The plan database supports multiple timelines with
constraints on and between tokens. If none of the
constraints are violated for a given instantiation of the plan
database, the database is defined to be consistent. The
current implementation uses a next-generation plan
database of the Remote Agent plan database described in
[Jonsson  et al. 2000], which was part of the Remote Agent
control system demonstrated on the Deep Space One
spacecraft in 1999 [Bernard et al. 1998].
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• Plan Runner  (command sequencer)
The plan runner is a process responsible for “executing”
tokens in the plan database at the appropriate time.
Executing a token involves calling the procedure with its
arguments defined by the token, updating the plan database
with the token return values when the procedure terminates,
constraining the plan database so that planners only have
limited ability to change the past, and calling planners,
described below, as needed to update the plan database.
The plan runner implemented is described in more depth in
[Muscettola et al. 2000].

• Planners
This architecture support the integrated use of a number of
planners so that planners can be specialized for various
functions depending on the domain requirements. For the
purposes of this paper, with the exception of the plan
runner, a planner is any process that modifies the plan
database or provide information to be added to the plan
database at the request of a planner. The planners in this
implementation include:

1. Declarative Planner
The declarative planner is based on the Remote Agent
Planner/Scheduler described in [Jonsson et al. 2000]. It is
responsible for generating a consistent, flexible plan in the
plan database given a start and end horizon time bound, an
initial state of the timelines at the start time, and a set of
goals. A flexible plan is loosely defined as a set of
timelines, each consisting of tokens on each timeline, token
order constraints that prevent overlapping tokens on the
same timeline, and token procedure variable constraints.
Plan flexibility is characterized by the set of decisions yet
to be made in a plan database that is consistent. The
declarative planner is called to initialize the plan database
and also is called during plan execution as specified by the
plan being executed. It is typically called to plan for a
period of significant duration sufficiently in the future such
that the deliberative planner will complete prior to the start
time of this period, but not so far in the future that the
initial state at the future start horizon is not known with
high confidence.

2. Reactive Planner
The reactive planner is also based on the Remote Agent
Planner/Scheduler described in [Jonsson et al. 2000], but
typically uses different heuristics. It is regularly called by
the plan runner to insure that the plan database is consistent
after token return values are posted to the database
(repairing the plan as necessary), to insure the database
contains a token on each timeline being executed or to
immediately start executing, and to remove any ambiguity
in whether a token is ready to execute and what its
procedural arguments are.

3. Goal Manager
The goal manager essentially acts as a meta-planner for the
declarative planner. As stated above, the declarative
planner requires a start and end horizon time bounds, an
initial state of the timelines at the start time, and a set of
goals. The goal manager interacts with the user to

determine this information. This may include negotiation of
goals when all goals are not achievable or supporting
mixed-initiative planning for hypothetical situations.

4. Route Planner Expert
The route planner expert is called by any one of the above
planners to determine the time, route, and energy required
to move between two points in the environment or to cover
a certain space. It has access to a global map that can be
updated with sensed obstacles. A route plan request is
typically made by the deliberative planner as part of
developing the initial plan, but may also be called by the
reactive planner to develop an alternate route if necessary,
e.g., the route is blocked or there is insufficient energy to
complete the current plan. In addition, a user may initiate a
request to answer a hypothetical question about a particular
goal.

• Spoken Language Interaction
A simplified abstraction of the spoken language interaction
system can be viewed as consisting of the following three
subsystems:

1. Dialogue Manager
The dialogue manager is responsible for acting as an
intelligent interface between a person speaking a restricted
natural language and the planner modules along with the
plan database. New goals can be inserted or removed in the
plan database, and queries can be made by spoken
commands.

2. Voice Recognition
The voice recognition subsystem essentially converts an
audio signal into a parsed text stream. In the past, we have
used commercial products to accomplish this. We
anticipate that we can continue to use such products,
upgrading them as improvements are made. However, it
may be necessary to filter the audio signal for noise.

3. Voice synthesis
Conversely, the voice synthesis subsystem essentially
converts text to speech. Similarly, we use a commercial
product for this purpose.

Current State of the PSA Project
The PSA project began in 1998 and according to the
current project schedule, the PSA begins flight operation in
2006. At this time, an oversized version of the flight model
has been developed and is being tested on a granite table
and is supported by a test stand with a compressor that
enables the prototype to float on a thin cushion of air. On
this test facility, we have demonstrated visual-servoing to
various locations as well as vision-based localization to a
global map. A 3D test facility that will house a full-size
station node mockup is nearing completion. With the aid of
a crane-like support mechanism and gimble, the PSA
prototype will be able to move in 6 degrees-of-freedom
(DOF), i.e., (X, Y, Z, yaw, pitch, roll) as if it were in a
micro-gravity environment. The facility will also enable
crewmembers to interact with the PSA in this environment
while being suspended by a sling. A next-generation
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version of the prototype is also under development and is
scheduled for testing in 2003.

In addition to the physical hardware for testing, a
simulator has been developed. The simulator primarily
reads the force commands generated by the controller and
moves the PSA in an ISS module accordingly. It also
provides simulated PSA sensors signals, e.g., vision,
temperature, at various fidelities depending of the required
tests. Although, the simulator is typically operated in force
mode, it can also be operated in velocity or position modes
when it is desirable to interact directly with high-level
control systems. The PSA motion along with dynamic
obstacles and in-situ crewmembers are rendered in 3D. The
simulator also supports multiple PSAs. In addition, the
simulator supports scripted environmental events, such as a
fire.

An initial version of the spoken language interaction
system has been developed and tested with a simplified
PSA simulation. The system has also been integrated with
the plan database such that the database can be queried and
modified in simple ways in response to spoken commands.

An initial version of the autonomous control system has
also been developed and deployed, although certain
modules, namely the goal manager and the route planner
expert have been stubbed at this time. Although currently
the reactive planner has been integrated and used by the
system to accomplish simple scenarios, scenarios involving
plan repair are not scheduled until later this year.

Spr int AERCam
In contrast to the PSA, the AERCam is being designed to
operate in unpressurized regions, essentially outside
spacecraft, primarily the ISS. However, in many other
respects the planning and execution challenges are similar
to those faced by the PSA.

Figure 4: Spr int AERCam dur ing 1999 Flight Test

The Sprint AERCam is a teleoperated, free-flying
spherical robot. It weighed about 35lbs and was 14”  in

diameter. It had 12 nitrogen-gas thrusters, each producing
about 0.08lbs of thrust, for propulsion and attitude control.
It was designed to operate for about 7 hours outside of and
near spacecraft at low velocities relative to the spacecraft,
less than 30cm/s. Its primary mission sensors are two color
video cameras. Its primary function is to provide video
supporting a crew extra-vehicular activity (EVA) or
perform reconnaissance in lieu of an EVA. The Sprint was
successfully flight-tested for about 30 minutes on the
STS87 space shuttle flight in 1999.

Two limitations of AERCam are its size and the
teleoperation requirement. In order to address these
limitations, a mini AERCam is being developed and efforts
have begun to develop an autonomous control system that
will enable it to be autonomously controlled at levels
varying from entirely teleoperated to entirely autonomously
controlled.

The PSA and AERCam projects are coordinated so that
they can leverage each others technologies, but it remains
to be seen the extent that the autonomy architectures will be
similar due to different operational requirements.

Challenge: Spacecraft Mobile Robot Scenar ios

In order to measure the system capabilities with reference
to the operation requirements and to identify the
challenging problems, several scenarios have been
developed. These scenarios were designed to be executed
both in simulation as well as with the prototype hardware in
the test facilities. The current scenarios that the system is
being designed to address are:

Scenar io A: Robust generation of an ISS node
environment map
Description:
PSA will create an environment map of the ISS node by
traversing the space in a serpentine path recording the
environment sensor readings along the way. During this
activity, its path will be blocked by static obstacles (some
of which are known of ahead of time) and moving
obstacles. At one point the PSA will be interrupted to be
teleoperated and then perform a station-keeping task at a
location specified by an ISS Rack Locker name, after
which it will complete its original environment-mapping
task.

Purpose:
· Demonstrate navigation to several waypoints in an

environment that has static and dynamic obstacles.
· Demonstrate mixed-initiative execution including

autonomous task interruption and resumption, guarded
teleoperation, and visual servoing by command.

· Demonstrate generation of a near-optimal 6-DOF route
plans

· Demonstrate obstacle detection and avoidance
· Demonstrate stereo vision-based 6-DOF localization and

map registration
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Scenar io B: Par ticipate in the diagnosis and
recovery of an ISS node fault
Description:
A fixed sensor in the ISS node signals a high temperature
to the Environmental Control Life Support System
(ECLSS). However, it is not known whether the sensor is
defective or the source or the heat. PSA is given a
command by ECLSS to go the fixed sensor location and
verify the temperature at that location. If PSA confirms the
fixed sensor is correct, PSA is to locate the heat source and
signal the source to ECLSS, will then power down the
locker at that location. Once PSA verifies that the
temperature has returned to normal, it returns to its docking
bay. If the fixed sensor is not correct, PSA is to stay at that
location until the fixed sensor is made operational. Once
PSA verifies the sensor, PSA returns to its docking bay.

Variation Summary:
1. Perform with faulty fixed sensor
2. Perform with overheating locker

Purpose:
· Demonstrate IVHM
· Demonstrate cooperative multi-agent planning and

execution
· Demonstrate generation of a near-optimal 6-DOF route

plans
· Demonstrate stereo vision-based 6-DOF localization and

map registration

Scenar io C: Fault Detection and Cooperative
diagnosis of an ISS node atmosphere leak
Description:
PSA is commanded to perform a routine task to monitor an
ISS locker. While en route, PSA detects a drop in pressure
in the node. It interrupts its current task and performs a set
of directional microphone sensor readings to determine the
cause is a leak to space and then PSA isolates the general
location of the leak. PSA reports this information to
ECLSS, which then dispatches and external SMR
(AERCam) to the general location outside station where it
images the region of the leak to get visual confirmation.

Purpose:
· Demonstrate autonomous IVHM
· Demonstrate dynamically changing plan to respond to

fault detected in the environment
· Demonstrate multi-agent cooperative diagnosis

Scenar io D: Cooperative Data Collection and
Crew Instruction for  Per forming Interactive
Mission Science Exper iments
Description:
Crewmember commands PSA to follow the crewmember to
an ISS rack where the crewmember will perform an

experiment. When the crewmember arrives, he/she
commands PSA to point at the locker where the
crewmember will work. The crewmember commands PSA
to start recording the video and audio. The crewmember
then commands PSA to brief him/her on experiment X then
instruct him/her on the first step of the experiment. Once
the crewmember completes that step, he/she requests the
next step and so on until all steps of the experiment are
completed. The crewmember then commands the PSA to
visually servo to his/her face to record a summary of the
experiment while the crewmember is moving. The
crewmember then instructs PSA to stop recording and
return to its docking bay, which it does.

Purpose:
· Demonstrate automated data collection
· Demonstrate human – autonomous system collaboration
· Demonstrate autonomous teleconferencing with face-

tracking
· Demonstrate person following
· Demonstrate automated task instruction
· Demonstrate spoken language commanding and

reporting

Scenar io E: Long-term mixed-initiative planning
and optimization including inventory tracking
Description:
PSA is given a list of visual servoing goals with time
constraints and is requested to generate a near-optimal plan
to achieve the goals. The goals will be such that it will be
necessary to schedule multiple battery recharges in order to
achieve them. The operator will dynamically change the
plan prior to its execution. During the execution, PSA will
monitor the location of inventory items it senses as it passes
by. PSA will encounter static and dynamic obstacles in the
environment. Due to an inaccurate battery model, PSA will
have to replan to prevent running out of power prior to
recharging at the docking bay. Once PSA has completed
the goal list, it given a list of inventory items to locate,
some of which it passed by. PSA responds with the
locations of the items it senses and then generates a plan to
explore the areas of the ISS node it did not previously
explore in order to locate the other items.

Purpose:
· Demonstrate near-optimal path plan generation
· Demonstrate resource planning
· Demonstrate static and dynamic obstacle avoidance
· Demonstrate mixed-initiative plan generation
· Demonstrate spoken language commanding and

reporting
· Demonstrate inventory item sensing and location

tracking
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Invitation to the Research Community
As previously discussed, as part of the development
process for the PSA, a simulation has been developed that
supports operating multiple PSAs in the ISS and interacting
with in-situ crew members and dynamic obstacles in 3D. If
there is sufficient interest by the research community in
exploring this domain, a version of this simulation,
including the simulated hardware and environment but
without the autonomy, control and spoken language
software, may be made available for distribution to the
research community in order to encourage research in this
area. Please email gdorais@arc.nasa.gov if you would be
interested in such a simulation and to signify support for its
release.

Summary

Spacecraft Mobile Robots, such as PSA and AERCam
provide a challenging domain for a number of planning and
execution problems. By developing a modular software
architecture and realistic simulator, a wide number of
planning and execution approaches can be analyzed.
Moreover, the overall system can be incrementally
improved as new planning technologies are developed.
Making the simulator, scenario definitions, and operation
requirements available to the research community is viewed
as one way to encourage the development of such
technologies that operate in a real-world environment.
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Abstract – This paper deals with predictable aperi-
odic scheduling of aperiodic tasks upon multiprocessor
production stages in a manufacturing system underly-
ing hard real-time constraints. The uniform multipro-
cessor scheduling algorithm presented is analyzed by
considering its performance when it is allowed to run
on faster machines. The predictability of the system is
proved through schedulability analysis techniques and
illustrated by an example.

Index Terms – Real-time Systems scheduling, Produc-
tion Planning and Control.

1 INTRODUCTION

The use of state-of-the-art real-time techniques in manufac-
turing planning and control is still rare. The lack of com-
petence in real-time theory among production engineers and
the lack of commercially available tools are the major rea-
sons for this.

Real-time manufacturing systems must be able to han-
dle not only periodic tasks, but also aperiodic tasks. Pe-
riodic tasks are used to implement off-line pre-planned re-
quests. While periodic tasks in real-time manufacturing sys-
tems have hard deadlines, aperiodic tasks may have soft,
hard or no deadlines at all. When aperiodic tasks have hard
deadlines, the goal of the system is to allow the production
of aperiodic tasks without jeopardizing the schedulability of
hard periodic tasks. This problem is illustrated in Figure 1.
Figure 1 presents a production line consisting of four pro-
duction stages (Broaching, Machining, Galvanic, and As-
sembly) designed according to the MFERT-model presented
by 12). This figure indicates a production stage to show that
not only pre-planned (periodic) tasks are schedulable upon
a uniform multiprocessor platform (using a production plan-
ning and control tool like OOPUS-DPS1) but also aperiodic
order requests.

1OOPUS-DPS is an object-oriented planning tool developed by the

Figure 1: The on-line scheduling problem of a production
planning and control system

To cope with various unexpected events in produc-
tion planning and control, production engineers adopt a
rescheduling policy (10). Such rescheduling policies yields
to the following drawbacks:

1. Rescheduling policies are feasible for small-sized and
simple manufacturing systems. As manufacturing sys-
tems grow in size and complexity, a rescheduling pol-
icy becomes impracticable.

2. Additionally, no rescheduling policy is made on-line,
in the sense that rescheduling policies are unfortunately
executed at the end of a production shift.

3. Furthermore, no prediction can be made concerning
unexpected arriving requests.

workgroup of Prof. Dr. habil. W. Dangelmaier at the Heinz-Nixdorf In-
stitute in Paderborn. For further information, please visit the web-page:
http://wwwhni.uni-paderborn.de/cim/projekte/oopus-dps.php3
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2 State-of-the-Art

The scheduling of real-time systems has been much studied,
particularly upon uniprocessor platforms. In multiprocessor
platforms, there are several processors available upon which
jobs may execute. Recently steps have been taken towards
obtaining a better understanding of real-time scheduling on
identical multiprocessors (11), (8), (1), and (2). However,
not much is known about real-time scheduling on uniform
or unrelated processors.

Furthermore, task scheduling in hard real-time systems
can be static or dynamic. A static approach calculates sched-
ules for tasks off-line and it requires the complete prior
knowledge of tasks’ characteristics. Although static ap-
proaches have low run-time cost, they are inflexible and
cannot adapt to a changing environment or to an environ-
ment whose behavior is not completely predictable. Several
uniprocessor on-line algorithms, such as the Earliest Dead-
line First algorithm (7) and the Least Laxity algorithm (9)
are known to be optimal in the sense that if a set of jobs that
can be scheduled such that all jobs complete by their dead-
lines, then these algorithms will also schedule these sets of
jobs to meet all deadlines. However, no on-line schedul-
ing algorithm in multiprocessor systems can be optimal: this
was shown for the simplest (identical) multiprocessor model
by (5) and the result from (5) can be directly extended to the
more general (uniform or unrelated) machine models. (11)
explored the use of resource augmentation techniques2 for
the on-line scheduling of real-time tasks. They considered
two problems in dynamic scheduling: scheduling to meet
deadlines in a preemptive identical multiprocessor setting,
and scheduling to provide good response time in a number
of scheduling environments. Using the resource augmenta-
tion approach, they established that several well-known on-
line algorithms, that prove poor performance from an abso-
lute worst-case perspective, are optimal for the problems in
question when allowed moderately more resources. (4) ex-
tended this method to be applied upon uniform parallel ma-
chines. However, results derived from their work are applied
to periodic task systems.

The idea of this paper is based on competitive analysis
theory, introduced by (6), in which the on-line algorithm
is allowed more resources than the optimal off-line algo-
rithm to which it is compared. Please note that in addition
to changeover time cost considerations, the results of this
paper are applied to hard periodic and hard aperiodic task
systems.

2A method of analysis introduced by (6) for uniprocessor scheduling,
comparing the performance of an on-line algorithm to the performance of
an optimal off-line algorithm when the on-line algorithm is given extra re-
sources.

3 The On-line Parallel Model

Based on the following assumptions and terminology, the
scheduling of hard real-time systems upon a uniform multi-
processor platform comprised of ����� ��� machines (there
is at least one machine) is considered.

�
	��������������������������� �"!#� �$� � � represents the � -
machine uniform multiprocessor platform in which
the machines have speeds or production capacities���������%������������� respectively; without loss of generality,
it is assumed that these speeds have positive values and
they are indexed in a decreasing manner: ��&(')�*&,+-�
for all . ��/�0 .21 � .

�
34�5�3�67!98:�;� � � A set of periodic tasks with hard
deadlines.

�=<>�?�<�&@! . �A� �B� A set of active aperiodic tasks
ordered by increasing deadline, <9� being the task with
the shortest absolute deadline.

� Each Job 3�6 or < & is characterized by an arrival time C 6 ,
a production time D 6 and a deadline E 6 , respectively C & ,
D & , E & . Whereas the arrival times, production times and
deadlines of the periodic jobs 3 6 are known in advance,
it is assumed that, for the aperiodic job set <�& , these
relevant information about the jobs are known when a
job arrives.

� The preemptive multiprocessor scheduling model is
considered. In the preemptive scheduling model pre-
sented in this paper, a job may be interrupted and sub-
sequently resumed with a penalty.F �G F &,H � ! . �I�$�J� ����� represents the switch time or
changeover time caused by the arrival of the part from
type . at the machine � . Changeover time is derived
by a static analysis on the machine.

�
K 6 � D 6ML*NO6 The utilization K 6 of a task is the ratio of
its execution requirement to its period. Without loss of
generality, the tasks in 3 and < are indexed according
to a decreasing utilization: KP67'GKQ6SRT/ for all 8 , /:08 1�U .

� In the context of uniform multiprocessor scheduling,
a work-conserving scheduling algorithm is defined to
be one that satisfies the following conditions (4): i)
no machine is idled while there are active jobs await-
ing execution and, ii) if at some instant there are fewer
than � (the number of processors in the uniform multi-
processor platform) active jobs awaiting execution then
the active jobs are executed upon the fastest machines.
More formally, at any instant V and for all WJXY. , if the
. ’th-slowest processor is idled by the work-conserving
scheduling algorithm, then the W ’th-slowest processor
is also idled at instant V .
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� Job preemption is permitted. That is, a job execut-
ing on a machine may be preempted, prior to complet-
ing execution, and its execution may be resumed later.
Unfortunately, state-of-the-art real-time multiprocessor
scheduling techniques assume that there is no penalty
associated with such preemption. It is obvious that dis-
regarding this assumption is inappropriate for manufac-
turing systems where changeover time overhead may
have a considerable time value.

� Job migration is permitted. That is, a job that has
been preempted on a particular machine may resume
execution on the same or different processor. The
penalty associated with such migration is unfortunately
not accounted for in the literature. Manufacturing sys-
tem applications necessitate that transport costs of a
part or product from one machine to another are re-
garded.

� Job parallelism is forbidden. That is each job may
execute at most one processor at any given instant in
time.

4 Total Bandwidth Server on Uniform Multiprocessors

Recall that the TBS server technique is used to schedule
jointly hard periodic and hard aperiodic tasks under dynamic
priority systems upon uniprocessor platforms. One main
benefit of this technique is that it guarantees both periodic
and aperiodic task sets. An extension of the TBS technique
to include changeover time costs is developed in (3). Each
aperiodic request receives a deadline

E & � C & R
� & R�� F &,H ����

where

C & �=���
	�� C & � E &�S� ��� &�P���
A TBS algorithm to be implemented upon uniform multi-
processor systems according to the following rules is defined
as follows:
� No machine is idled while there is an active job await-

ing execution.

� When fewer than � jobs are active, they are acquired
to execute upon the fastest machines while the slowest
are idled.

� Higher priority jobs are executed on faster processors.
More formally, if the . ’th-slowest processor is execut-
ing job <�� at time V under the TBS implementation, it
must be the case that the deadline of < � is not greater
than the deadlines of jobs (if any) executing on the� . R;/ � ’th-, � . R�� � ’th-, � . R�� � ’th-, ..., � ’th-slowest
machines.

� Whenever the . -th aperiodic task arrives at time V � C & ,
it receives a deadline

E &7� C & R
� & R F &,H �� �

where

C &7�=���
	�� C &�� E &�S������&�P� �
The utilization of the server

���
will de defined later.

Unavoidably, some additional notations are given in the
following.

Definition 1 (W(A, 	 ,I,t)). Let I denote any set of jobs,
and 	 any uniform multiprocessor platform. For any
algorithm � and time instant V '�� , let W(A, 	 ,I,t) denote
the amount of work done by algorithm A on jobs of I over
the interval [0,t), while executing on 	 .

Definition 2 ( � & ). Let 	 denote an m-processor uni-
form multiprocessor platform with processor capacities� � ��� � ����������� � ��� & ' � &,+#� for all j, / 0 .=1 � . � & is de-
fined as follows:� & � &� � � � � � �! C �#"$" . � /�0 . 0 �

Definition 3 ( %'& ). (4) Let 	 denote an m-processor
uniform multiprocessor platform with processor capacities� � ��� � ����������� � ��� & '4� &,+#� for all j, /�0 . 1 � . %'& is defined
as follows: %(& � )*,+.-& � � /10 � 2 � &,+#� � 2� & 3
The parameter %'& measures the ”degree” by which 	 differs
from an identical multiprocessor platform. Consequently%'& becomes progressively smaller as the speeds of the
processor differ from each other by greater amounts.

Lemma 1. (4) Let 	 denote an m-processor uni-
form multiprocessor platform with processor capacities���%�����%������������� ���*& ' � &,+#� , for all j, />0 . 1 � . Let	54 denote an m-processor uniform multiprocessor platform
with processor capacities �64 � ���74� �����������74� ���84& 'A�74&,+#� , for all
j, /T0 . 1 � . Let A denote any m-processor uniform
multiprocessor algorithm, and � 4 any work-conserving m-
processor uniform multiprocessor algorithm. If the follow-
ing condition is satisfied by 	 and 	94 :� 4� ' %(&.: � � � R � �

21      



then for any set of jobs � and at any time-instant V '��
� � � 4 �,	 4 � � � V � ' � � � �,	 � � � V �

Lemma 1 specifies a condition under which any work-
conserving algorithm � 4 (such as TBS) executing on 	94 is
guaranteed to complete at least as much work as any other
algorithm � (including an optimal algorithm) executing on	 , when both algorithms are executing on any set of jobs � .
This condition expresses the additional computing capacity
needed by 	94 in terms of the % & : parameter, and the speed of
the fastest processor in 	 . The smaller the value of % &.: (the
more 	54 deviates from being an identical multiprocessor),
the smaller the amount of this excess processing capacity
needed.

The processing of aperiodic tasks can be integrated into a
periodic environment by introducing one or more periodic
tasks to execute the aperiodic tasks. Therefore, we may deal
with aperiodic tasks in a similar way with periodic tasks.
As a result, the following theorem (4) uses Lemma 1 to
deduce whether a work-conserving algorithm can feasibly
schedule a task set: it states that any collection of jobs I that
is feasible on a uniform multiprocessor platform 	 will be
scheduled to meet all deadlines by algorithm TBS on any
platform 	54 satisifying the condition of lemma 1.

Theorem 1 Let I denote an instance of jobs that is feasi-
ble on m-processor uniform multiprocessor platform 	 . Let	54 denote another m-processor uniform multiprocessor plat-
form. Let the parameter % & : of 	54 be as defined in Definition
3: % &.: � )*1+ -& � � / 0 � 2 � &,+#� �742� 4& 3
If the condition of Lemma 1 is satisfied by platforms 	 and	54 : � 4� ' % &.: � ��� R � �
then I will meet all deadlines when scheduled using TBS al-
gorithm executing on 	 4 .
Thus, Theorem 1 characterizes a uniform multiprocessor
platform 	54 according to its parameter ” %'& : ” (as defined in
Definition 3), and relates the TBS-feasibility of a system,
known to be feasible on some platform 	 , to the cumulative
capacities of 	 and 	94 , the speed of the fastest processor in	 , and this parameter % & : of platform 	94 .

As an immediate result of Theorem 1, the results of
(11) concerning TBS-scheduling on identical multiproces-
sor platforms are obtained:

Corollary 1. TBS is a preemptive, � ��� �� � -speed algorithm
for hard real-time scheduling on parallel machines.

Theorem 2 Given a set of n periodic tasks with machine

utilization
���

and a Total Bandwidth server with machine
utilization

� �
, the whole set is feasibly scheduled if and only

if � � R ��� 0 � �
where � � � � ��� R � �	� R=������R � �	
� ���

,
� �	�

, ...,
� �	


are the periodic utilization of the 1st, 2nd,
..., m-th machine respectively , and� � � � � � R � � � R4������R � � 
� � �

,
� � �

, ...,
� � 


are the total bandwidth utilization of the
1st, 2nd, ..., m-th machine respectively.

5 Schedulability Analysis of Hybrid Task Systems on
Uniform Multiprocessors

In this section, the theory developed in Section 4 is applied
to study the deadline-based scheduling of hybrid (hard pe-
riodic and hard aperiodic tasks) task systems on uniform
multiprocessor platforms. Although scheduling hybrid task
systems is partly an ”on-line” problem in the sense that the
periodic task parameters are assumed known beforehand,
the results in section 4 concerning hybrid tasks nevertheless
turn out to be useful towards developing a framework for
scheduling hybrid task systems on uniform multiprocessors.

The method of analysis developed in this section proceeds
as follows:

1. an exact test for determining whether a given hybrid
task system is feasible on a particular uniform multi-
processor platform is developed and

2. this exact feasibility test along with the results obtained
in section 4 are used, to design a schedulability analy-
sis for determining whether a given hybrid task system
will be successfully scheduled by TBS on a specified
uniform multiprocessor platform.

(4) identified a uniform multiprocessor platform upon
which a given periodic task system 3 is schedulable. They
determine a sufficient condition for 3 to be successfully
scheduled by EDF on any given multiprocessor platform 	 4
(Theorem 3).

Theorem 3 (4) Let 	94B�� �74 � ���84� �����������84��� denote any m-
processor multiprocessor platform, and let % & : be as defined
in Definition 3:% & � )*,+.-& � � / 0 � 2 � &,+#� � 2� & 3
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Periodic task system 3 will meet all deadlines when sched-
uled on 	54 using EDF if the following condition holds:� 4� ' % & :�� ���
	 � KP��� � )��� R � )

Below we show how we can transform the problem of
scheduling periodic tasks on uniform multiprocessors to
the scheduling of periodic and aperiodic tasks. Whereas
EDF is a scheduling policy trying to schedule up to the
whole capacity of the multiprocessor platform, the TBS
algorithm upon multiprocessor platforms aims at using the
whole capacity of the system, while assuring that a fraction
of this capacity is dedicated to aperiodic requests. This
necessitates the computation of the server utilization of the
multiprocessor platform given by Theorem 4.

Theorem 4 Let 	94;� � �84 � ���74� �����������74� � denote any m-
processor multiprocessor platform, and let % &.: be as defined
in Definition 3:% 4& � )*1+ -& � � /,0 � 2 � &,+#� � 2� & 3
The aperiodic task system < has a utilization� 4� � %(& : � K � R � ) R � �� � � � 4� � %'& : � K � � � )

As a result, deadlines of aperiodic jobs may be computed
as defined in the following Corollary.

Corollary 3. The aperiodic jobs <�� C & � D & � of a m-
processor uniform multiprocessor platform are scheduled
using TBS and a total bandwidth as defined in Theorem 4
with a deadline

E & �4����	 � C & � E &�P� � R D &� �
Furthermore, the Corollary 4 follows directly from the re-

sults of (3) involving the changeover time costs in the TBS
algorithm and allowing resource reclaiming.

Corollary 4 Aperiodic jobs <�� C & � D & � of a m-processor uni-
form multiprocessor platform are scheduled using TBS and
a total bandwidth as defined in Theorem 4 with a deadline

E & � C & R
� & R�� F &,H �� �

where

C & �=���
	�� C & � E &�S� ��� &�P���

Theorem 4 is now illustrated by an example.

Example. Consider a task system 3 comprised of five
periodic tasks ( D 6 � N 6 )
3 �G
� /�� ��/8� � �8��� �	� � �7� /
�O� � � � �7��� ��/�� � �7� � ��/8� � �

and an aperiodic task ( C 6,� D 6 )
< �;
�� ��� � �

for this system, KS� �)/���� , KQ�2� � � � , K��2� � ��� , K��2� �9� � ,K��J���9� � . Suppose that 3 and < are to be TBS-scheduled
upon the uniform multiprocessor platform 	 4-� � �9��/ � � � � � -
will all deadlines be met?

By Definition 3, the value of % & : for the uniform multipro-
cessor platform 	94 is%(& : �=���
	 � / R �9���� � � � �/�� � /�
and the total computing capacity is� R4/ R � � ����� ���
The total computing capacity needed for 3 is

/���� R � � � R �9��� R � � � R �9� ��� � � �
and with the fastest processor having a computing capacity

��� �G/ � �
By theorem 4, the aperiodic requests < are feasible on the
3-processor uniform multiprocessor platform with a total
bandwidth of �O� �����9��� � /���� R �9� � R ����O� ����� � ��� R ������ ��� ��/��
The aperiodic job <G� 
���9� � � � is to be scheduled on the
3-processor multiprocessor platform with a deadline equal
to:

E & �4����	 ��9� � � R ��9��/�� �����
and 3 and < can consequently be scheduled by TBS to meet
all deadlines on 	94 with

� � ���9��/�� .

6 Conclusions

One of the most important properties, that differentiates
real-time systems from other conventional systems, is pre-
dictability. The system must be able to predict the conse-
quences of any scheduling decisison. If some task cannot
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be guaranteed within its timing constraints, the system must
notify this fact in advance, so that alternative actions can be
planned in time to cope with the event. This paper deals with
the problem of predictable aperiodic scheduling in manu-
facturing systems underlying real-time constraints. A pre-
dictable scheduling, based on the TBS algorithm, is adapted
upon a multiprocessor production shift. It is extended
to include the novel feature of accounting for changeover
time overheads. Schedulability analysis techniques are pre-
sented, in order to assure the predictability of the system.
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Abstract 
A major challenge in developing robotic applications for 
real-world problems is that many domains include tight 
resource and temporal constraints coupled with uncertainty 
in how much resource and time will be required to perform a 
task.  We have developed the CLEaR framework to address 
this challenge.  CLEaR unifies the planning and execution 
processes to increase the responsiveness of a robotic agent 
operating in these types of environments.  This unified 
approach is realized by extending the traditional three-tier 
robotic control architecture with an Execution-Time Plan 
Manager, an Atomic Resource Manager (ARM) and an 
Execution-Time Query (ETQ) capability.  Through the 
interaction of these components, CLEaR is able to (1) reduce 
the need to replan, (2) detect the need to replan earlier, and 
(3) replan before entering a failed state. 

Introduction 
Robotic agents performing under hard resource and time 
constraints in uncertain environments require careful 
balancing of both deliberative and reactive reasoning 
[Knight, et al, 2001].  As in most domains with uncertainty, 
a task may fail or produce unexpected results leading to plan 
failures.  If the robot is also under hard time deadlines and 
resource constraints, a task requiring a different time or 
resource allocation than planned could cause failure at 
future points in the plan.  In some cases, the robot may be 
able to retry a failed task, use more time or take up more of 
a resource without causing a problem.   

Consider for example, a Mars exploration rover that must 
pick up a rock.  If it fails on its first attempt, it may want to 
try again.  However, doing so could lead to other problems 
at later stages of the plan.  If the rover spends too much time 
trying to complete this task, it may miss another deadline, 
such as taking an image while the sun is in a particular 
position in the sky.  Or, it may use up too much of some 
resource, such as energy, resulting in the inability to perform 
other critical tasks.  The challenge is to determine whether 
or not a change in time or resource usage will cause a 
problem so that the rover can take appropriate action, and to 
identify and fix the conflicts in the plan without preventing 
the rover from meeting other deadlines.  In this example, a 
deliberator is used to project current resource and time 
usage into the future, detect problems and make repairs.  An 
executive uses more reactive reasoning to deal with 
unexpected events and perform low-level control.  The rover 
needs both of these capabilities to successfully operate in 
this environment. 

Most of the robotic applications in the literature have not 
been confined by hard resource constraints and strict time 
deadlines; consequently little work has been done in this 
area.  However, there has been a growing awareness of these 
issues in recent years.  At NASA, almost all the robotic 
space exploration domains involve uncertain environments 
with deadlines and tight resource constraints.  

In pursuit of developing high-level control software 
capable of addressing these issues, we have developed the 
CLEaR (Closed Loop Execution and Recovery) control 
software/framework.  CLEaR provides a unified framework 
for performing planning, scheduling and execution by 
balancing both deliberative and reactive reasoning.  In most 
related approaches to robotic control, the planning and 
execution components are treated as black box functions 
that do not interact in real-time.  Our approach differs in that 
both the planning and execution functionalities share the 
responsibility for decision-making and resource 
management. 

In our system the unified planning and execution 
responsibilities are realized through three means of 
increased interaction and information sharing between the 
deliberative and reactive functions: 

1. The executive provides soft-real-time state, 
resource and time updates enabling the deliberator 
to anticipate problems and replan if necessary.  

2. The deliberator provides rapid response to queries 
about time and resource usage variations, thus 
enabling the executive to manage a task that is 
behaving unexpectedly.  

3. The executive uses execution time resource 
knowledge combined with projected usages while 
managing tasks.  

By enabling the long-term deliberation and the short-term 
reactive execution functionalities to share information on a 
more frequent basis, the system can: (1) reduce the need to 
replan, (2) detect the need to replan earlier and (3) replan 
while continuing to execute valid portions of the plan 
without entering a failed state. In other words, the system 
can circumvent as many failure situations as possible 
without impacting plan execution. By achieving these 
capabilities we are able to produce a robotic agent control 
system capable of goal-based commanding in an uncertain 
environment while adhering to hard resource and time 
constraints.  

Our framework for balancing deliberation and reaction 
has been motivated by several NASA space exploration 
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domains.  The most significant influence has been Mars 
surface exploration with autonomous rovers, especially the 
proposed Mars Smart Lander mission.  In the next section 
we will describe this mission and illustrate how the mission 
provides challenging time and resource constraints for an 
autonomous robot.  We will describe how we have designed 
CLEaR to deal with these types of challenges and then 
present a case study illustrating how CLEaR will enable a 
rover to successfully deal with these challenges. 

2009 Mars Smart Lander Rover scenario  
In 1997, JPL successfully completed the first mission to 

explore Mars’ surface with a mobile robotic platform 
(Sojourner rover).  During the mission, human ground teams 
performed nearly all deliberative decision-making including 
the determination of resource bounds.  While the mission 
was a landmark in space exploration and provided valuable 
science data, it required intensive human interaction and 
explored a very small region of terrain. 

In 2009, JPL plans to send another mobile robotic 
platform to Mars to perform numerous geological surface 
experiments.  This mission is currently called the Mars 
Smart Lander mission and represents a significant increase 
in scale with respect to mission duration, science return and 
terrain covered.  Figure 1 provides an overview of the 
mission.  The mission objectives are to explore the landing 
site and make long-range traverses to two additional 
geological science locations where the robot will perform 
more science data gathering.  The rover will have limited 
resources, such as power and RAM, to complete these goals.  
It will also be under tight time constraints in order to 
complete the ambitious objectives and meet mission 
requirements, such as ground communication windows. 

There will be communication with Earth at the beginning 
and the end of each Martian day.  In the morning session, 
the goals for the day are uploaded to the rover and 
additional data will be down-linked.  In the evening, the 
day’s data is down-linked.  This data includes panoramic 
images used in selecting future goals.  

This scenario has two modes of operation..  The first 
being the geological science location operations, and the 
second being the long-range traverses between those 
locations.  During the first mode, the role of high-level 
autonomy software will primarily involve resource 
management (mainly power, memory and time) and robust 
execution.   

During the second mode, the rover is expected to make 
long-range traverses averaging 600m/day.  This distance is 
well beyond the “line of sight” of the ground operations 
team based on images down-linked from the previous day. 
Therefore the traverse will require significant onboard 
autonomy. Further motivating the need for high-level goal-
based autonomy is that the rover should perform as much 
opportunistic traverse science as possible without impacting 
the progress of the 3km long-range traverses. 

Unified Planning and Execution Framework 
Current practice for rover operations, as used on the 
Pathfinder mission [Mishkin, et al, 1998] and planned for 
the upcoming 2003 Mars Exploration Rover (MER) 
mission, is to perform nearly all decision making remotely 
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Figure 1: Mars Smart Lander Scenario 

 

rom earth. When the rover encounters a situation that 
eviates from its uploaded command sequence, the fault 
rotection software will attempt to resolve the problem. 
ailing that, the rover enters safe-mode and must: wait for a 
ommunications opportunity, transmit the state of the rover 
nd imagery of the environment back to Earth, and wait for 
 new command sequence.  Depending on when the next 
ommunication window is scheduled, this can waste 
onsiderable time.  Further, to date these rovers have been 
olar powered and can only perform major functions for a 
ew hours per day (typically 4-6 hours). Placing the rover in 
afe-mode can easily cause the loss of a full day of 
perations.  Because the mission cannot be extended, falling 
ehind schedule due to execution failures results in reduced 
cience return.   

While this style of operations reduces development cost 
nd simplifies testing of flight control software, it adds to 
he time and cost of mission operations. This, in turn,  
everely limits the rover’s in-situ capabilities.   

From an automation standpoint part of what limits rover 
perations performance is that the decision-making process 
as traditionally been separated from the execution process. 
o address this several systems have colocated the 
eliberative-planning and execution capabilities, to 
ramatically increase the rover’s responsiveness and reduce 
he need for the rover to be put into safe-mode.  

Most of these systems can be classified as three-tiered 
ontrol architectures [Gat 1998].  Under a three-tiered 
ystem the deliberative planning and reactive execution 
omponents are colocated but tend to function 
ndependently typically in a black-box integration. These 
rchitectures get their name from a stack-like partitioning of 
he system into three functional components. The top tier 
rovides deliberative function, the middle tier performs 
eactive execution, and the bottom interfaces to the 
ardware controllers. Generally, the higher up in the stack, 
he greater the level of abstraction at which the components 
unctions and the longer it takes to perform. The top tier is 
sually reserved for search algorithms. In the event of an 
xecution failure, when compared to Earth-based 
eliberation, this approach can reduce the time the rover 
aits for ground intervention by facilitating replanning 
nboard.  

While some systems will plan for future phases of a 
ission during the execution of the current phase. One 

rawback of many traditional three-tiered1 approaches is 
                                                
 Not all three-tiered architectures are limited by Sense-Plan-Act(SPA), for 
nstance ATLANTIS [Gat 1992] plans and executes asynchronously. 

      



 

that they do not instigate replanning prior to an execution 
failure of the mission phase currently being executed. In 
order to replan and thus preempt execution failures, it is 
necessary to provide the deliberator with frequent state, 
resource and temporal updates. These can then be 
propagated through the plan to predict future 
inconsistencies. If the deliberator is able to incrementally 
resolve these conflicts2 while executing valid portions of the 
plan, then the robotic agent will be more responsive to 
unexpected events. We refer to this capability as continuous 
planning. 

In our implementation of this framework, we use 
CASPER (Continuous Activity Scheduling Planning 
Execution and Replanning) as the continuous planner 
[Chien, et al, 2000a, 2000b]. CASPER provides the 
Deliberator and Execution-Time Plan Manager components 
depicted in Figure 2.  The Executive component is provided 
by TDL (Task Description Language), a robust task level 
execution framework [Simmons, Apfelbaum 1998]. 

The CLEaR framework is distinct from other three-tier 
architectures because it provides increased interaction and 
information sharing between the executive and the 
deliberator [Gat 1998, 1992; Bonasso, et al, 1997].  This is 
partly realized by the use of a continuous planner combined 
with frequent updates from the executive to the deliberator.  

Two other areas of increased interaction and information 
sharing are provided by the executive’s ability to: (1) make 
decisions on how to execute a task by querying the 
deliberator to determine if a given execution will cause a 
plan failure and (2) consider execution time resource 
knowledge in deciding on task expansions.  These last two 
capabilities are provided by the Execution Time Query 
(ETQ) manager and the Atomic Resource Manager (ARM), 
also depicted in Figure 2.  In the following two sub-sections, 
we describe these components. 

ARM: Atomic Resource Management 
Motivations and Design Goals  

There are certain types of activities that require a resource 
intermittently during their execution.  For example, while a 
rover is navigating, it will occasionally take images to detect 
and avoid obstacles in its path.  Although navigation 
requires the camera, it does not use it continually.  In fact, 
after each image, it can make a rough estimate of when it 
needs the camera again.  This can be done because, given an 
image, the navigation activity determines how far it can 
safely travel before taking another image.  As a result, the 
camera will become available at different times throughout 
the navigation, and it would be nice if other activities could 
take advantage of this.    

In fact, within the context of the Mars Smart Lander 
mission, there is a need for such a capability to enable 
opportunistic traverse science during a long-range traverse.  
Traverse science uses the camera to take images at different 
times during the traverse to look for items of interest.  Like 
navigation, traverse science does not need the camera 
continually throughout the traverse and could use the 
camera when not in use by navigation.  
                                                 
2 Our incremental conflict resolution is performed by an iterative repair 
algorithm [Zweben, et al 1994; Minton, Johnston 1998]. 
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Figure 2: CLEaR Framework Diagram 
In general, we may have several activities that each make 
ntermittent use of a particular resource.  If we knew ahead 
f time when each requires the resource and for how long 
e could use deliberative scheduling techniques to create a 
lan to avoid resource conflicts while executing these 
ctivities.  Unfortunately, for some activities, such as 
avigation, we cannot accurately predict when the resource 
ill be needed.  Furthermore, the accuracy of our prediction 
ill decrease as we attempt to predict uses further in the 

uture.  As a result, an activity may use the resource earlier 
r later than expected, and once the activity has the 
esource, it may require it for a duration different from what 
t had originally anticipated.  

Given these conditions, scheduling such activities is 
hallenging. Previous approaches for dealing with these 
ssues include the following. First, a planner could avoid the 
roblem by refusing to schedule activities concurrently if 
hey require the same resource, regardless of whether or not 
hey only require the resource intermittently.  The downside 
o this is that you are limiting the robot’s capabilities, and in 
ome applications concurrent activities are required to 
omplete a goal.  A second approach would be to form a 
eliberative schedule for these activities based on rough 
stimates on the frequency and duration that each activity 
ill use the resource.  The disadvantage here is that it is 
ery unlikely that during execution the activities will use the 
esources as predicted. This could be handled by performing 
escheduling within the planner as it gets new updates on 
ctual resource usage or by allowing the executive to 
reempt lower priority tasks whenever there is contention 
or the resource.  The former approach is likely to result in 
hrashing within the plan as information changes.  Both 
pproaches are likely to lead to a large number of preempted 
ctivities. A third approach is to create special executive 
ask managers for each combination of activities that may 
eed to run in parallel. Each such manager would be 
esigned to arbitrate resource usage among these particular 
ctivities.   

Instead, we have chosen to deal with these challenges by 
eveloping a resource manager for use within the executive.  
ecause the executive needs to be responsive to unexpected 
hanges, our primary design goal is to keep the resource 
anager fast so that it can quickly respond to requests.  

      



Therefore, we will favor simpler designs and algorithms to 
reduce computational complexity.  

Because the predictions on when and how long a resource 
will be used is uncertain, the resource manager must be able 
to quickly react so that high priority activities can have 
access to the resource when it is needed.  However, the 
resource manager should make use of predicted information 
when available to try and reduce the number of times it must 
preempt another activity.  Thus, our secondary goal is to 
balance the use of deliberation and reaction, where 
deliberation takes advantage of predicted information and 
reaction to deal with unexpected changes in resource usage.  
Design of ARM  

For our first implementation of ARM, we decided to 
address only atomic resources. An atomic resource can be 
used by at most one task at a time and is either available or 
not available.  For example, a camera can be used by a 
single activity and, therefore, is considered an atomic 
resource.  In contrast, aggregate resources, such as solar 
array power, can be used by several tasks at a time and each 
task can use a different amount of solar power. This makes 
it more difficult to represent and search for reservations. As 
this reasoning is needed, we rely on CASPER’s deliberative 
planning and scheduling capabilities to perform reasoning 
about aggregate resource usage. These decisions are 
generally based on near worst-case estimates of usages.  In 
the next sub-section we describe a method for enabling the 
executive to make reactive decisions about aggregate 
resources with the assistance of the deliberator. 

Figure 3 shows the design of ARM.  For each resource, 
ARM maintains a timeline that keeps track of when the 
resource is in use, along with the task and the priority of the 
task that is using it.  For each reservation on this timeline, 
ARM keeps a ticket, which can be used by tasks to access 
their reservations.  

Before a task can use a resource it must first make a 
request to ARM indicating its priority, the time interval 
within which it would like to start using the resource and the 
duration that the resource will be used.  If ARM can find 
room, it will place a reservation on the timeline and return a 
ticket to the requesting task. Before using the resource the 
task must hold a valid ticket and claim the resource.  When 
the task is finished with the resource or otherwise no longer 
needs the reservation, it sends a release to ARM, which will 
clear out the reservation.  

Although this is the nominal behavior of the system, it is 
unlikely that things will go so smoothly during execution.  
Therefore, ARM is designed to deal with unexpected 
situations.  Unexpected events include: a task requiring a 
resource sooner or later than it anticipated, a task using a 

resource for a shorter or longer duration than it expected 
and a task making a reservation during a time interval in 
which another task already has a reservation.  All of these 
cases are handled by ARM.  The following subsections 
provide more detail on how these issues are resolved.  In 
general, our approach is to associate a task priority with 
each reservation. Whenever there is a conflict for a 
resource, the task with the higher priority wins.  If the tasks 
have equal priority, advantage is given to the task that came 
earlier.   
Requesting a Ticket  

In keeping with our goal of avoiding preemption due to 
resource conflicts, the resource manager will do some 
amount of look ahead when processing requests from tasks.   
Look ahead is facilitated by requiring each task to request a 
ticket before using a resource.  A ticket represents a promise 
between ARM and a task.  When a task requests a ticket, it 
informs ARM of the time in which it would like to start 
using the resource and the duration of that usage.  If ARM 
can find a slot for the request, it will issue a ticket, giving 
the task the right to claim the resource during the specified 
interval. 

However, given uncertainty during execution, the 
manager cannot strictly follow these reservations and must 
accommodate deviations in the actual timing requirements 
of the activities.  The resource manager will have to modify 
the plan, which may involve dropping lower priority 
reservations or preempting the current resource holder. The 
resource manager will attempt to give notice to the affected 
activities so that they can take appropriate action.  

Figure 4 shows the algorithm used for making 
reservations.  When an activity makes a request, it provides 
its priority, the time interval in which it would like to begin 
using the resource and the duration indicating how long it 
intends to use the resource.  Note that the duration is 
independent of the time interval in which it would like to 
start using the resource.  ARM first tries to find an existing 
slot during the requested time interval.  If none are found, it 
will begin removing lower priority reservations until enough 
space is freed or until all the remaining reservations have 
equal or higher priority than the requesting task.  

The algorithm runs in time O(n2) where n is the number 
of currently open reservations (i.e. reservations not in the 
past).  At each priority level, the algorithm must search 
through the reservations at that level and higher looking for 
open space.  In the worst case, each reservation is at a 
different level, requiring n iterations through the loop 
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Resource Timeline
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ARM
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Priority 10

Task Manager 1
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Figure 3:  Design of ARM 

Request (priority, startTime, endTime, duration)  
 
T = resource timeline 
T’ = working copy of T between startTime 
     and (endTime + duration) 
p = -INFINITY 
While p < priority 
  Remove from T’ all reservations with priority p 
  i = earliest free interval in T’ with size >= 
duration 
  If i exists: 
   Discard from T any reservations during interval i  

    Create new reservation for interval i 
    Return i 
  p = lowest priority in T’   
Return failure 
 

Figure 4:  ARM Reservation Request Algorithm 
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 The reservation algorithm reveals tradeoffs that were 
made when designing ARM.  Our objective was to provide 
fast response to the requesting task without disturbing 
existing reservations.  The quickest algorithm would be to 
first remove all reservations with a lower priority than the 
requesting task and then find a free space.  While fast, this 
could also result in the unnecessary removal of reservations. 
The algorithm we are using is more computationally 
complex. It iterates through the reservation priority levels in 
an attempt to remove lower priority reservations first.  
Although of higher complexity, this algorithm better 
enforces graduated priority levels and only iterates a few 
times in practice.  

We recognize that many further enhancements could be 
made to the scheduling algorithm such as: instead of 
removing reservations when there is no room for a new 
request, it might be possible to relocate them.  Alternatively 
a single higher priority reservation may be removed to 
preserve numerous lower priority reservations.  However, 
we did not incorporate these techniques because (a) they 
would have involved computationally expensive search and 
(b) the benefit would be reduced if a task did not perform as 
predicted, thus forcing repeated changes to the plan.  

Our approach does not consider multiple reservations 
simultaneously.  Some tasks may require the use of several 
resources at the same time, requiring concurrent free 
intervals to be found for each resource.  More complicated 
situations could arise if tasks require resources at temporal 
offset from each other.  This type of scheduling is dealt by 
our deliberator and not ARM.  
Claiming a Resource  

A task may claim the resource at any time during its 
reservation. This addresses the uncertainty a task may have 
about when it needs the resource.  If it is late, it can still 
claim the resource.  However, if it needs the resource 
earlier, it must request a new reservation.  

If another task is still holding the resource (after its 
reservation period), then ARM checks the priority of the 
tasks.  The higher priority task always wins, and ties are 
broken in favor of the current resource owner. This avoids a 
possible preemption. 
Releasing a Ticket  

A task can release a resource at any time, providing extra 
free space on the timeline for new requests.  However, if the 
task requires the resource for longer than allotted, it may 
keep it until a higher priority task makes a claim.  

ETQ: Execution-Time Query 
Even with execution-time atomic resource management, 

situations will arise where a task requires a different amount 
of a resource or time than was scheduled.  For example, 
adverse soil conditions may make it more difficult for a 
rover to dig, thus using more energy and time to complete 
the task. To enable reactive reasoning about aggregate 
resources and time, we have developed an Execution–Time 
Query (ETQ) mechanism to enable the executive to safely 
deviate from the constraints laid out in the plan by the 
deliberator. 

One approach to dealing with this problem is to allow the 
task to continue operation and use more of the resource.  As 
resource and time updates are made, the deliberator will 
detect problems that this extra resource use will have on the 
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Figure 5: CLEaR Concept Diagram 
lan.  For some types of resources, this approach will be 
ine.  If an imaging task uses extra RAM, and the scheduling 
unctionality detects that this will cause a problem, it can 
ecide to discard some of the collected data.  

Unfortunately, other types of resources cannot be so 
asily replenished, and this approach could lead to 
atastrophic failures.  If the rover uses extra energy, the 
cheduling functionality detects a problem too late and the 
nergy is already gone.  This could prevent the rover from 
ompleting a mission critical task such as communicating 
ith Earth.  Sometimes it is better to ask for permission than 

t is to ask for forgiveness. 
To deal with this challenge, our framework supports a 

uery system that enables the executive to ask for 
ermission before exceeding a resource limitation. This 
apability provides global consideration of resource and 
ime usage during execution.  When a monitor detects that 
he resource will be over-subscribed, instead of just 
ompleting or failing the task, it can query the deliberator.  
he executing task queries the deliberator indicating how 
uch more of the resource or time the task would like to 

se.  The deliberator then does a quick check to determine if 
he new resource usage would cause any conflicts, by 
lacing this new expected use into the plan and propagating 
t forward.  This is done similarly to how execution updates 
re handled.  If no conflicts result, then the query request, 
ermission is granted and the task can continue to execute 
ithin the confines of this new resource or time 

onstraint/restriction.  If this query propagation creates any 
onflicts then the projected update is backed out of the plan 
nd the request is rejected. As we will see in the scenario, 
here are situations when exceeding the resource allotment is 
he desired behavior.  For that reason, the framework does 
ot require that execution-time resource query be used. 
nstead it is left to the knowledge engineer to decide which 
asks should “ask for permission” or “ask for forgiveness”. 

Similar to the design of the execution-time resource 
anagement functionality, there are alternative designs for 

his query capability that would provide more functionality 
t higher computationally expense. The deliberator could 
heck if the conflicts resulting from a changed resource 
sage could be adequately repaired, and if so, give 
ermission to the task. 

urrent Status 
n our current framework CASPER creates abstract 
ommand sequences and executes those sequences by 
ranslating the CASPER planning activities into TDL task-
ree goal nodes, which are then further expanded by TDL.  
n Figure 5 we graphically depict levels of responsibility 
etween deliberative and reactive decision-making as a 
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Figure 6: Scenario Maps for a Geological Science Location 
nction of time.  At the current time, all decision-making 
th respect to the executing tasks are performed reactively. 
 the plan is projected forward, the deliberator takes on an 

creasing role in decision-making. 
By enabling the long-term deliberator and the short-term 
active executive to share information on a more frequent 
sis, the system can:  (1) reduce the need to replan, (2) 
tect the need to replan earlier and (3) when necessary 
plan before entering a failed state while continuing to 
ecute other valid portions of the plan.  

Scenario Examples: 
e are continuing to develop both our concept of unified 
anning and execution along with the implementation of 
at concept within the CLEaR system.  To assist in this 
ocess, we are developing rover mission scenarios 
nsistent with the proposed Mars Smart Lander mission, 
scribed in the Mars Smart Lander Rover scenario section, 
r use in testing and validating our system.  We are 
rforming tests in simulation and on the Rocky7 and 
cky8 research rovers in the JPL Mars Yard. 
Figure 1 provides a high level view of the complete 
enario, which includes two long-range traverses to three 
ological science locations and several science data 
thering goals at those locations.  Figure 6 contains a blow-
 view of one potential geological science location.  The 
ound operations team provides the rover with eight 
ience targets within this site.  These targets consist of: 
ur images, two spectrometer readings, and two digs each 
different locations.  The ground team assigns a priority to 
ch target, which is used in the science return optimization 
orithm of the deliberator and ARM [Rabideau, et al, 
00].   
Our description of the scenario will begin with events that 
cur while the rover is completing tasks at the geological 
ience location.  We begin with this portion of the scenario 
 these techniques are a logical extension to those of 
evious work in integrated planning and execution [Gat 
98, 1992; Bonasso, et al, 1997].  We will then move on to 

events that occur during the long-range traverse between 
science locations.  During this section we will describe how 
these new capabilities, namely ARM and ETQ, increase the 
rover’s ability to deal uncertain events. 

We decided to turn the execution-time query facility off 
while the rover was in the geological science site.  This was 
done because each of the goals in this part of the scenario is 
part of the rover’s primary mission.  If it requires extra 
resources to complete a task, it should do so, and the 
planner will have to repair the plan as best it can to achieve 
future goals.  During the long-range traverse, in the second 
part of the scenario, we will use execution-time resource 
queries to prevent opportunistic science from interfering 
with the rover’s primary goals. 

Part 1:  Within the Geological Science Location 
The system begins by employing a generic Traveling 
Salesman Problem solver to identify an initial sequence 
(tour) for visiting each of the science targets. The sequence 
is then expanded to include all of the planner level activities 
required to carry out that tour. During the generation of the 
command sequence, all of the resource constraints are 
maintained.  For our current scenario this means that the 
rover’s energy and memory resource profiles must be 
maintained within the operations constraints.  For energy 
this requires that the projected and actual used energy level 
must not drop below the prescribed margin levels.  In part 
this is to ensure that there is enough energy available for the 
communications activities at the end of each day and also to 
ensure that there is enough energy stored in the batteries for 
overnight operations.  For memory the system must balance 
the memory buffer capacity to maximize science return and 
ensure the availability of memory storage space for future 
higher priority science observations.  

The dashed line in Figure 6-A indicates the initial planned 
sequence that the rover will take to visit the science targets.  
However, things will not go as planned during execution 
and the plan will have to be modified, as shown by the solid 
line in Figure 6-B.  The following section highlights some of 
the unexpected events that occurred during execution and 
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the challenges these events posed when coupled with the 
time and resource constraints imposed by the mission. 
Deliberator 

The first problem with the plan is detected before 
execution begins.  The rover has been asked to collect more 
science data than it has room to store in memory.  The 
deliberative scheduling functionality is able to detect this 
problem and discards low priority science targets until 
enough space is available for the remaining targets.  In the 
example, image target 1 from Figure 6-A is thrown out, and 
a new path for visiting the remaining targets is generated. 
Execution-Time Plan Manager 

During execution, other resource usage issues arise.  One 
of the challenges in execution monitoring for a system under 
time and resource constraints is that it is not enough to 
detect whether or not an action resulted in success.  One 
must also monitor how the activity affected the rover’s 
resources and how much time it took.  For example, in 
Figure 6-B, the image task at target 4 and the dig at target 5 
were successful in that the main objective of the task was 
completed.  However, they also resulted in the use of more 
resource than was anticipated.  The image task required an 
excessive amount of memory and the dig used up too much 
energy. 

The Execution-Time Plan Manager (Figure 2) enables the 
rover to deal with these problems.  The Executive 
continuously provides updates on the state of each resource. 
After each task is completed, the continuous planner notices 
that there will be a deficiency in one or more resources.  For 
example, after the image is taken, the system realizes that 
there will be insufficient memory to complete the other 
science goals.  In each case, the deliberator looks for low 
priority tasks to drop, just as it did during initial plan 
generation. 

Similar behavior occurs when a task requires an 
unexpected amount of time.  Like the resource constraints, 
tight time constraints require that the rover keep track of 
how much time a task is taking so that it can avoid missing 
future deadlines.  For example, as the rover moves from 
target 2 to target 3, its obstacle detection behavior must 
avoid unexpected rocks that did not show up in the initial 
map the rover was given.  If the rover spends too much time 
trying to reach this target, it may miss other deadlines, such 
as the communication opportunity with Earth. 

Again, the continuous scheduling functionality of our 
framework addresses this challenge.  Just as each task 
includes monitors on resource usage, some tasks also 
include monitors to track the rover’s progress over time.  In 
this example, the monitor realizes that, given the rover’s 
position, it will not be able to complete the task in the 
allotted time.  At this point the continuous scheduling 
functionality takes into account the latest information about 
obstacles in the area and modifies the plan accordingly.  As 
in the previous cases, it might be necessary to drop certain 
tasks to make up time.  However, in this case, it turns out 
that the rover can visit the targets in a different sequence 
and still have enough time to make the communication 
deadline. 

Part 2:  Long-range Traverse Between Geological 
Science Locations 
After the rover completes the tasks in Figure 6, it must 
proceed to the next geological science location in Figure 1.  
This portion of the scenario will highlight benefits of 
performing execution-time resource management to 
schedule concurrent activities that make intermittent use of 
the same resource.  We will also show how the execution-
time query facility can be used to prevent a task from 
interfering with a plan when it requires more of a resource. 
ARM: Atomic Resource Manager 

The benefits of execution-time resource management are 
highlighted during long-range traverses.  Recall from the 
Mars Smart Lander (MSL) reference mission that we would 
like to perform opportunistic science during these traverses.  
Although both the traverse and traverse science tasks 
require the use of the camera, neither requires it 
continuously. These tasks can be scheduled concurrently. 
Due to uncertainty in execution, however, it is difficult to 
predict when and for how long each task will require use of 
the camera. 

To test our execution-time resource scheduling capability, 
we created a simulation to model the camera usage behavior 
of Gestalt, the navigation software that will be used on the 
2003 Mars Exploration Rover (MER) mission.  Whenever 
Gestalt takes an image, it determines how far the rover can 
safely travel before it must take the next image.  With an 
estimate of the rover's velocity, we make a prediction of 
when the traverse will require the camera again.  A 
corresponding request is made to the resource manager for 
the interval that the camera will be needed.  

Meanwhile, our simulation of opportunistic science tries 
to take images as often as it can.  Before using the camera, it 
must first make a request of ARM specifying how long it 
will need the camera.  As stated in the MSL reference 
mission description, opportunistic science should not 
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interfere with other rover activities; thus, we give 
opportunistic science a lower priority than traverse tasks.  

Figure 7 illustrates the events that occur during a typical 
run.  The figure depicts the reservations that are placed on 
the camera resource timeline during the execution of the 
traverse and opportunistic science tasks.  Each reservation is 
numbered to indicate the order in which it was placed on the 
timeline.  The time units in the x-axis are in seconds and 
mark the times for the various reservations.  The upward 
arrow denotes the current point in time.  

At the start of the scenario, Figure 7 (A), the traverse task 
has made a reservation that will begin at time 16 and last for 
5 seconds, until time 21.  Next, opportunistic science makes 
a request for the camera for sometime between time point 1 
and time point 31.  The executive resource manager finds 
space for the reservation starting at time 1.  As time elapses, 
the science task completes its first use of the camera, places 
another request and uses the camera for a second time.  At 
time point 12 in (C), opportunistic science requests the 
camera, however it cannot be given the earliest slot because 
its duration would conflict with traverse’s reservation.  
Therefore, it is given a reservation that begins at time 21. In 
the absence of execution-time resource management, 
opportunistic science would take the earlier slot and later be 
preempted by traverse. This step demonstrates how ARM 
protects against preemption.  Instead, opportunistic science 
is scheduled at a time when the resource is predicted to be 
free.  

In (D) things do not go as planned: traverse has taken 
longer than expected to claim the resource.  The behavior of 
the system at this point depends on how traverse interacts 
with the resource manager.  If traverse releases its current 
reservation and makes a new one to start immediately, the 
resource manager will notify the following science task that 
it has been superseded.  

However, in the example scenario, the traverse task does 
not release the resource and instead claims it and then holds 
on to it past its scheduled reservation.  At time point 21, 
opportunistic science attempts to claim the resource but is 
denied in favor of the higher priority traverse.  Science then 
makes a new request and is given a reservation starting at 
time slot 22.  Here, no preemption was necessary to resolve 
the conflict, as the science task was not started.  

There will be cases when preemption cannot be avoided.  
An example occurs in (F) when the science task has been 
initiated, but then the traverse requires the use of the camera 
beginning at time 26.  Because traverse has higher priority, 
the resource manager gives it a reservation and preempts the 
opportunistic science task. (G) Shows the final state of the 
timeline after opportunistic science has been given a new 
reservation.  
ETQ: Execution-Time Query 

As stated earlier, opportunistic science should never 
interfere with other rover activities.  Therefore, for the 
traverse portion of the scenario, we employ the execution-
time query (ETQ) capability to enable the task manager for 
opportunistic science to ask permission before using more 
of a resource than it was prescribed by the plan. 

In our scenario, the deliberator allocates a certain amount 
of memory for use by opportunistic science based on a 
rough estimate of how many images it will take and how 
much RAM the images will require.  If, during execution, 
0 0.3 0.5 0.7 1
0

5

10

15

20

25

30

35

40

45

Noise level

N
um

be
r 

of
 S

uc
ce

ss
fu

l/F
ai

le
d 

Im
ag

es

Schedule Success    
No−Schedule Success 
Schedule Failures   
No−Schedule Failures

Figure 8: Successful and failed science image attempts with  
scheduling and non-scheduling versions of ARM 
opportunistic science is able to take more images than 
predicted, or the images require more memory than 
anticipated, the task manager will detect that the task has 
used up the memory it has allocated.  At this point, if it 
would like to take another image, it will use ETQ to see if it 
can use more memory without disrupting the plan.  In its 
query it states the amount of additional memory it would 
like to use.  If the scheduling facility determines that this 
extra usage will not cause conflicts, it will give 
opportunistic science the permission to take the image.  
However, opportunistic science will have to check again if it 
needs extra memory beyond this new allotment.  If the 
additional use would lead to conflicts, opportunistic science 
would be denied and would have to stop taking images. 

Note that ARM is unable to perform this function because 
it does not have the long-term picture of the plan that the 
deliberator has.  Further because ARM currently only 
addresses atomic resources, it is unaware of future memory 
requirements and, thus, does not know whether or not a task 
using extra memory now will cause problems in the future. 

Evaluation of ARM 
We ran a series of tests to evaluate the impact ARM has 

on the execution of concurrent activities that make 
intermittent use of a shared resource.  Our main objective 
with the evaluation was to determine if there is any benefit 
to using the scheduling capability of ARM.  Our intention in 
designing this capability was to allow ARM to use 
predictions about resource usage to do simple form of 
scheduling in an attempt to avoid preempting tasks.  The 
study looks at the impact of ARM's scheduling on task 
preemption.  

Methodology:  
Our evaluation scenario is based on the opportunistic 

traverse science task described earlier.  In our example, the 
objective of traverse science is to take as many images as it 
can during a long range traverse.  Before taking an image, it 
must first request the resource from ARM stating when it 
would like to use the camera and for how long.  When 
making the request, the science task tries to get the resource 
as soon as possible but is willing to accept it any time until 
the end of the traverse.  We used a duration of 4 seconds.  
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The traverse task uses the camera at different intervals to 
look for obstacles in the path.  Based on the images it will 
plan a path that is typically 35 centimeters in length.  It does 
not use the camera while following that path and thus it can 
be made available to other tasks, in this case the science 
task.  After each image is taken, the traverse task makes a 
prediction for when it will need the camera again, based on 
how fast it moves and the length of the planned path and 
requests the resource from ARM for that predicted time.  
For the purpose of evaluation we picked nominal values of 
14 seconds between camera uses and 4 seconds for using the 
camera.    

To test the performance of ARM under uncertainty we 
included noise with these numbers.  For each run we select a 
different probability p.  With probability 1-p, the predicted 
and actual resource use will be the times stated above.  With 
probability p, the predicted duration and time before the 
next camera use will be drawn randomly from 2-6 seconds 
for the duration of use and 9-19 seconds for the time before 
the next use.  Because the predicted camera use will not 
always match the actual use (e.g. it may take longer to travel 
the planned distance) we also vary the actual use.  Again, 
with probability 1-p, the actual use will match the predicted 
use.  With probability p we randomly pick the duration and 
time before the next camera use from the same intervals 
used for the predicted use.  

For priorities, we gave the traverse task a higher priority 
than the science task.  

We ran two versions of the system Schedule and No-
Schedule.  The Schedule version works as described above 
using predicted resource usage information to avoid 
preemption.  The No-Schedule version does not take 
resource reservations.  Instead it simply give the resource to 
the higher priority tasks whenever it requests it.  

Results:  
Figure 8 contains the results from running each system at 

5 different noise levels.  Each entry in the table indicates the 
number of successful traverse science images taken along 
with the number of failed science images.  In each case, a 
failed science image represents a preempted science task.  
Note that because the traverse task had a higher priority, it 
was never preempted.  

Discussion:  
Overall, these results show that the scheduling capability 

of ARM is effective in avoiding the preemption of tasks.  
Without any noise, the schedule version worked perfectly 
and did not preempt a single task. At higher levels of noise, 
a few tasks were preempted but much fewer than the No-
Schedule version at the same noise levels.  Because the 
Schedule version is a bit more conservative than the No-
Schedule version, there were slightly fewer successful 
images taken.  However, considering that a failed image 
corresponds to wasted power, the cost of a small number of 
missed images is likely to be much smaller than the cost of 
wasted power. 

Related work  
There have been many techniques for combining 
deliberative and reactive reasoning into hybrid architectures 

for robotic applications. These architectures have been 
successfully applied to many dynamic and uncertain real-
world domains including manufacturing [Lyons and 
Hendriks, 1995], military operations [Arkin, 1997; Myers, 
1998] and space exploration [Gat, 1992; Washington, et al, 
1999; Pell, et al, 1997].  
 [Arkin 1998] and [Knight, et al, 2001] contain surveys of 
many hybrid architectures.  Only a few of these architectures 
were designed with resource constraints and tight deadlines 
in mind.  Consequently, there has been little work in 
addressing these issues in dynamic, uncertain environments.  
Without some facility for reasoning about resources and 
deadlines, there is a danger that the robot will not detect 
problems in the plan until it is too late to do anything about 
it.  
 However, there are some architectures that are capable of 
reasoning about resources and deadlines.  CIRCA (Musliner 
et al. 1993) contains a scheduler that enforces hard real-time 
constraints for a mobile robot navigation domains.  
However, rather than repair the schedule, it returns failure if 
it cannot meet the hard real-time constraints.  CPEF [Myers, 
1998] uses the SIPE-2 [Wilkins, 1988] planning system 
which is capable of resource management.  CPEF is unique 
in its ability to perform indirect commanding, in which the 
system supervises a collection of entities executing the plan 
along with its ability to accept user advice for plan 
development.  [Washington, et al, 1999] present a system 
that can perform resource management that is also applied 
to the Mars exploration domain.  To deal with uncertain 
resource and time usage, their system precompiles resource 
envelopes to provide task management flexibility to the 
executive. The system also performs contingency planning 
to deal with the set of most probable plan deviations.  
 CLEaR extends the capabilities of the previous systems 
by providing execution-time atomic resource management 
as part of the reactive reasoning.  The CLEaR framework 
also provides the reactive reasoning components with 
limited access to the global view of the plan through the 
execution-time query facility.  
 With respect to individual components of CLEaR, ARM 
shares some similarities with the resource manager in [Gat 
2000].  In particular, both components represent execution-
time resource managers.  However, Gat was concerned with 
providing hard-real-time guarantees, and enforcing resource 
reservations through gate keeping access to the resources.  
In contrast, we settled for a soft-real-time system that, 
through the use of limited search, can do a small amount of 
look-ahead to avoid task preemption. Thus ARM supports 
execution-time decision-making, while [Gat 2000] provides 
execution-time resource safety. 

Future work 
Our future work will involve the use of different types of 
execution-time resource management (including aggregate 
resources), means of better utilizing path-planning 
algorithms in conjunction with planning and execution, 
means of performing quick local plan repairs while 
minimizing global plan risk, and finding other ways of 
applying our unified planning and execution framework to 
improve mission operations, increase science return and 
enable more efficient long-range traverses. 
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We are also applying the CLEaR system to ground station 
automation for NASA’s Deep Space Network (DSN) [DSN 
1994; Fisher, et al, 1998, 2000].  In this domain area 
CLEaR is used in a similar fashion to generate command 
sequences for commanding the ground station 
communications subsystems to communicate with assets in 
deep space, whether that be Earth orbiters, spacecraft in 
orbit around Mars, on the surface of Mars, or as far out as 
Voyager I & II now beyond the edge of our solar system.  
The CLEaR software has also been licensed by Lockheed 
Martin Skunk Works division for use in automating the pilot 
functionality of Unmanned Air Vehicles (UAVs). 

Conclusions 
 Resource constraints and tight deadlines pose challenges 
beyond those found in other uncertain robotic environments.  
In these applications, a task may require a different amount 
of time or resource than anticipated, potentially leading to 
execution failure at future points in the plan.  We have 
developed the CLEaR framework to address these 
challenges.  CLEaR extends previous work in hybrid 
deliberative/reactive architectures in three ways.  A 
continuous planning and scheduling system allows the robot 
to identify and repair problems before they occur, while 
continuing to perform other tasks. ARM provides execution-
time atomic resource management enabling the scheduling 
of concurrent tasks that require intermittent use of the same 
resource, while avoiding the need for task preemption.  
Finally, ETQ provides the executive with access to the 
global plan perspective needed to prevent tasks from 
deviating from time and resource allocations in situations 
when doing so will lead to conflicts.  This framework will 
increase the effectiveness of robots in many real-world 
applications, including the space exploration mission 
presented in our case study. 
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Introduction
Hierarchical Task Network (HTN) planning (Sacerdoti
1974) is an approach to planning where problem-specific
knowledge is used to remedy the computational intractabil-
ity of classical planning. This knowledge is in the form
of task decomposition directives, i.e. the planner is given
a set of methods that tell it how a high-level task can be
decomposed into lower-level tasks. The HTN planning
problem consists in computing a sequence of primitive tasks
that corresponds to performing the initial set of high-level
tasks.

Our purpose in this paper is 1) to give an account of HTN-
planning as high-level programming in the situation cal-
culus (McCarthy 1963) based languages Golog/ConGolog
(Levesque et al. 1997; Giacomo, Lesperance, & Levesque
2000) and 2) to illustrate our approach with a ConGolog en-
coding of a logistics domain HTN-planning problem. The
Golog/ConGolog languages have been extended to deal with
explicit time, sensing actions, exogenous events, execu-
tion monitoring, incomplete knowledge of the initial state,
stochastic actions and others. Thus the range of problems
that can be tackled with this approach is potentially much
larger. As an example, we modifiedthe logistics domain en-
coding to execute on-line and deal with run-time exogenous
delivery requests.

Preliminaries

The Situation Calculus

The situation calculus (McCarthy 1963) is a logical language
for axiomatizing dynamic worlds. Intuitively, it has three
basic components: actions: responsible for all the changes
in the world; situations: sequences of actions which repre-
sent possible histories of the world; and fluents : relations and
functions which represent properties of the world and whose
values change from situation to situation.

We will use the definitionof the situation calculus and the
axiomatization of situations as it appears in (Levesque, Pirri,
& Reiter 1998; Reiter 2001). The language of the situation
calculus includes function symbols for actions, for example,���������
	��������������	����

could stand for the action of loading
�����

into truck
��	��

. It includes a special constant ��� that denotes
the initial situation and a function symbol

�������������
that de-

notes the situation that results from doing action
�

in situa-
tion

�
. For example, the situation term

������� 	�!�"$#%�
	���&�
	���'��)(*��+�',�)(*��+.-��.�)�����/���������
	���/01�2�
	��3'2�.� �� ���
denotes the history of the world consisting of the sequence
of actions4 �������$�
	��5�/06���
	�� ' �.�)� 	�!�"$#%�
	���&�
	�� ' ��(*��+ ' ��(7��+ - �982:

Relational fluents and functional fluents are relations and
functions, resp., whose last argument is a situation. Exam-
ples of these are a relation

���2�
	�;<+.��/�
	��<',�)(*��+�',� �� � mean-
ing that

�
	�� '
is at

(*��+ '
in the initial situation, and function��#�=?><#,	�����;<	�#$��@A����= ' �)�,�

denoting the temperature value of@A����=B'
in situation

�
.

A situation calculus axiomatization of a domain includes1:

1. Action precondition axioms: For each action function01��CD � an axiom of the form E �������/06��CD �.�)�,�GFIHKJL��CD �)���
where

HMJN��CD ����� is a formula with free variables amongCD �)� and
�

is its only situation term. These axioms charac-
terize the (situation dependent) preconditions for the exe-
cution of primitive actions.

2. Successor state axioms: For each relational fluent O ��CD �)�,�
an axiom of the form O ��CD �)�������<�����2�PFRQLSN��CD �)�T�)��� whereQ�SN��CD �)�T�)��� has free variables among

CD ���<�)� and
�

is its
only situation term. Similar axioms are included for func-
tional fluents. These axioms characterize the value of flu-
ents after executing a primitive action

�
in situation

�
.

These axioms embody Reiter’s solution to the frame prob-
lem for deterministic actions (Reiter 1991).

3. Unique names axioms for actions.

4. Axioms describing the initial situation: A finiteset of sen-
tences whose only situation term is �U� and which describe
what is initially true, before any actions have occurred.

Example 1 Our main example through out this paper will
be a logistics domain problem. There are objects that are to
be moved between locations by truck or plane. Cities con-
tain different locations some of which are airports. Primitive
actions include loading/unloading an object onto a truck or

1Arguments in predicates and formulas starting with a lower-
case letter denote variables. Free variables are implicitly univer-
sally quantified.
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plane, driving a truck and flying a plane. The following is an
axiomatization of this domain:
Action Precondition Axioms:

E ���,���/����� ���
	�;<+.������V��	��%�����PF���2�
	�;T+%��W��	����2�)�,�<XG����Y?�����������2�����.:
E ���,����;<Z<���������
	�;T+%���������	��.�)�,�PFR!�Z<�
	�;<+.������V��	������.:
E ���,���/����� ��0A!�	)>3����Z#$������><�.�)�,�*F����Y?�����������2�)�,�XG���20K!�	)>�����Z#��[>��2�2�)���.:
E ���,����;<Z<��������0K!�	)>�����Z#�������>T�%�����*FR!�Z<0A!�	)>3����Z#$������>������.:
E ���,������	�!�"$#%�
	�;T+%��W��	��)��	�!]\^�)� #��_���.�)�,�*F���2�
	�;T+%��W��	��)��	�!]\^�)�,�<XG!�Z`?!]��a�����	�!W\��+%!W��a��2X!�Z`?!W��a3����#��)�,�)+.!]��a$�.:
E ���,����b3��a3�[>U�)��	�!]\^�)� #��_���.�)�,�NF���20K!�	)>�����Z#��[>�����	�!]\^�)�,��XG� !�	)>T��	%�,����#,�_���.:

Successor State Axioms:����Y?���c�����2�2�)�������<�)�,���dF�?ef;<Z<���������
	�;T+%���������	��TXG���2�
	�;<+.��W��	��2�2�)���g�?ef;<Z<��������0K!�	)>�����Z#�������>T�XG���20K!�	)>�����Z#��[>��2�2�)���dg����Yh���c�����2�������XG�Giej����� ���
	�;<+.������V��	���X�Giek�������$0A!�	)>3����Z#$������><�.:���2�
	�;<+.��]��	��2�����������<�)�,���UF�?ef��	�!�"$#%�
	�;T+%��W��	��)�������Ug���2�
	�;<+.��]��	����2�����<Xl���GieR� 	�!�"$#%�
	�;<+.��W��	������)���TgG�?ek���.:���20A!�	)>3����Z#$�m>U�)�,>c�,���������T�)���2�PF�?efb3��a3�[>U�)����>��,�)��>����ngG���20K!�	)>���� Z#��[>�����>c�,�����2X���Giefb3��a3�[>U�)����>��,�)���,>c���UgG����>��oek�,>c���.:!�Z<�
	�;<+.���������	��)�������<�����2��F�?ej����� ���
	�;<+.������V��	���g!�Z<�
	�;<+.������V��	������TXG�GieR;<Z<�������$�
	�;<+.������V��	��%:!�Z<0K!�	)>���� Z#�������>U�)�������<�)�,���dF�?ej����� ��0A!�	)>3����Z#$������><�dg!�Z<0A!�	)>3����Z#$������>������XG�pieR;<Z<�������$0A!�	)>3����Z#$������><�.:
Unique names axioms for actions:

���������
	�;T+.�5��������	��
iek;TZ<���������
	�;<+.���������	��.�
���������
	�;T+%���������	��Niek��������0K!�	)>�����Z#�������>T�.�

etc.

Initial situation:���20A!�	)>3����Z#$�m>U���2� �� �*F>qe E ����Z#�'dXr�^eR(*��+.s%tu'dg1>ve E ����Z#,-PXr�UeR(*��+.-%tu',:���2�
	�;<+.��]�,�2�2� �� �PF�oek�
	�;T+.� ')tu' Xr�^eR(*��+ ')tu' g�oek�
	�;T+.��-%tu'UXr�^eR(*��+.-%tu'wgx:�:,:��!�	)>T��	%�,�&����+.�*F����+Nej(*��+ ')tu' gr����+NeR(*��+ -%tu' g����+Nej(*��+)y�tu'dgr����+NeR(*��+)z�tu'Ugr����+NeR(*��+.s%tu',:!�Z`?!]��a��&�2��+%�*F�Uej(*��+�')tu'dXG+�ef`?!]��a�'*g�Uej(*��+ -%tu' XG+�ef`?!]��a - gx:�:,:����Y?���c�m>U���2� � � �*F>qe E ��+.����\�#�'dXr�ef(7��+)y�t yLg>qe E ��+.����\�# - Xr�ef(7��+ y�tu' gx:,:�:
The above set of axioms forms a complete situation calcu-

lus primitive action theory for our logistics domain example.

Golog and ConGolog
The situation calculus based programming languages Golog
(Levesque et al. 1997) and ConGolog (Giacomo, Lesper-
ance, & Levesque 2000) allow us to definecomplex actions
in terms of the actions in a primitive action theory. The con-
structs of Golog are the following:{ Test condition: |} . Test whether | is true in the current

situation.{ Sequence: ~ '�� ~ - . Execute ~ ' followed by ~ - .{ Nondeterministic action choice: ~ '$� ~ - . Execute ~ ' or ~ - .{ Nondeterministic choice of arguments:
��� D � ~ . Choose a

value for D and execute ~ for that value.{ Nondeterministic iteration: ~ � . Execute ~ zero or more
times.{ Procedure definitions:proc E ��CD � ~ endProc. E ��CD � is the
name of the procedure,

CD its parameters, and ~ is the body.

ConGolog has the above constructs plus the following:{ synchronized conditional: if | then ~ ' else ~ - .{ synchronized loop: while | do ~ .{ concurrent execution: ~ 'K� ~ - .{ prioritized concurrency: ~ '_��� ~ - . Execute ~ ' and ~ - con-
currently but ~ - executes only when ~ ' is blocked or done.{ concurrent iteration: ~c� . Execute ~ zero or more times in
parallel.{ Interrupt: |G��~ . Execute ~ whenever condition | is true.

Example 2 The following is a procedure definitionfor the
logistics domain:

proc
=n��"$#�Y?��������������+.����v������+��)��+.!W��a��.:

if
����Y?���c������������+%�Xw!�Z`?!]��a���������+��)��+.!W��a��

then
%% if obj. is to be moved within the same city
if
!�Z`?!]��a��&����+��)��+.!W��a��

then
!�Z`?!]��a$�v#%��!�"$#�	������)������+�������+.�

else %% else must go by air to destination city���n��+.!]��a$�%:
if
!�Z`h!W��a3�/����+��)��+.!]��a$�PXG� +%!W��aGieR��+.!]��a

then���r����>T	%�,�)� ��><	%���.:��!�Z`?!]��a������,><	%�,����+%!W��a��dXG!�Z`?!]��a�������>T	%�,�)��+.!]��a$�2� } �!�Z`?!W��a��v#.��!�"�#,	�������������+�������>T	%��� ���!�	��v#%��!�"$#�	������)����>T	%�,�)� ��><	%��� �!�Z`?!W��a��v#.��!�"�#,	�����������>T	%�,������+.�
else O ������# }

else O ������# }
endProc

The formal semantics of ConGolog is defined in terms
of relations

�
	���Z�$� ~ �)��� ~�� �)� � � and O !�Z���2� ~ �)��� .2 Intuitively,�
	���Z��� ~ �)�$� ~�� ��� � � holds if after executing a single step of
program ~ in situation

�
, ~�� is what remains of ~ to be ex-

ecuted and
� � is the resulting situation. O !�Z���2� ~ �)��� means

that ~ can be considered in a terminating state in situation
�
.

2For the original, simpler semantics of Golog see (Levesque et
al. 1997; Reiter 2001).
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These are some of the axioms for
�
	���Z�

and O !�Z���
from

(Giacomo, Lesperance, & Levesque 2000):�
	���Z����Z!&�2����� ~�� �)� � �*F O ������#$:�
	���Z�����<����� ~�� �)� � �PFE ���,�����<�)�,��X ~�� ejZ!/�<Xw� � ej�������<�����.:�
	���Z��� |} �)�$� ~�� ��� � �*F|
4 �_8 X ~�� efZ!&�TXG� � ef��:�
	���Z��� ~ '�� ~ - �)�$� ~�� �)� � �*F�����T� ~�� e��/� � ~ - �UXr�
	���Z�$� ~ ' �����2����� � �2gO !�Z���2� ~ '��)���Xn�
	���Z��� ~ -��)�$� ~�� �)� � �%:�
	���Z���2��� D � ~ �)�$� ~�� ��� � �PF��� D �V�
	���Z�$� ~ ����� ~�� �)� � �.:�
	���Z���
if | then ~ ' else ~ - ����� ~�� ��� � �PF|
4 �_8 Xr�
	�� Z��� ~ '$����� ~�� ��� � ��g� |
4 �_8 Xr�
	���Z�$� ~ -$�)��� ~�� ��� � ��
	���Z���
while | do ~ ����� ~�� �)� � �PF�����T�%:�� ~�� ek� �

while | do ~ ��X|
4 �)8 Xr�
	���Z�$� ~ �����2����� � �.:�
	���Z��� ~ ' � ~ -$�)�$� ~�� �)� � �PF�����T� 4 ~�� e��&� � ~ - �UXr�
	���Z�$� ~ ' �)���2�U�)� � �98�g�����T� 4 ~�� e�� ~ 'K� �T�PXr�
	���Z�$� ~ - �)���2�U�)� � �982:

O !�Z���2��Z!/�������*Fk�
	�;T#�:
O !�Z���2���<�����PF O ������#�:
O !�Z���2� |} �����PF O ������#$:
O !�Z���2� ~ ' � ~ -������*F O !�Z���2� ~ '������X O !�Z���2� ~ -������.:O !�Z���2����� D � ~ �)�,�*F���� D � O !�Z���2� ~ �����.:O !�Z���2�

if | then ~ ' else ~ -$�)���dF|
4 �)8 X O !�Z���2� ~ '��)�,��g � |

4 �_8cX O !�Z���2� ~ -$�)���.:O !�Z���2�
while | do ~ �����*F � |

4 �)8 g O !�Z���2� ~ �)�,�%:O !�Z���2� ~ '
� ~ - �)�,�PF O !�Z���2� ~ ' �����X O !�Z���2� ~ - �����.:
An abbreviation

�v��� ~ �)�$�)� � � , meaning that executing ~ in
situation

�
is possible and it legally terminates in situation

� � ,
can be definedin terms of the transitive closure of

�
	���Z�
and

predicate O !�Z���
:

�v��� ~ ������� � �P�%���e���� ~ � �.: �
	���Z� � � ~ �)�$� ~ � ��� � ��X O !�Z���2� ~ � �)� � �.:�
	���Z� � is definedby a second order situation calculus for-
mula. For details see (Giacomo, Lesperance, & Levesque
2000).

A Prolog interpreter for ConGolog can be obtained almost
directly from these axioms and a primitive action theory (Gi-
acomo, Lesperance, & Levesque 2000).

HTN Planning
In this section we briefly review HTN-planning. Our discus-
sion is based on the definitionsof HTN-planning from (Erol,
Hendler, & Nau 1996). For the primitive tasks, however, we
will use situation calculus notation, i.e. we use primitive ac-
tions instead of STRIPS-style HTN operators. Moreover, we
use situations instead of states.

A primitive task is an action term
01��CD � . A compound task

is a term of the form
��Z��=r#$��CD � . A task network is a pair�/�N� | � where

�
is a list of tasks and | a boolean formula

of constraints of the forms
�]�j��� � � , �W�,�����

,
�/���V���

,
�W�,���2�V� � � ,��"ke�" � � and

��"fe�+.�
where

�,��� � are tasks from
�

,
�

is a
fluent literal,

"3��" � are variables and
+

is a constant. An HTN

method is a pair
���������

where
�

is a compound task and
�

is
a task network. Methods are the HTN construct for building
complex tasks from primitive ones.

An HTN planning problem is a tuple
���<�)�$�)�v�

where
�

is
a task network,

�
is a situation, and

�
is a planning domain

consisting of a primitive action theory plus a set of methods.
A plan is a sequence of ground primitive tasks.

Let
�

be a primitive task network,
�

be a situation, and
�

a
planning domain. A sequence of primitive tasks � is a com-
pletion of

�
in
�
, denoted by �B� +.��=?>����<�����)�v�

, if � is a total
ordering of a ground instance of the primitive task network�

and is executable in
�
.

Let
�

be a task network that contains a compound task
�

and
=�e����U�)� � � be a method such that � is a most general

unifierof
�

and
�

. Define
	�#�� ;<+.#����<���,��=r�

to be the task net-
work obtained from

� � by replacing
� � with

� �W� and incorpo-
rating (see (Erol, Hendler, & Nau 1996) for details) the con-
straints in

� � with those in
�
. Define

	�#��<���<�)�$�)�v�
as the set

of all reductions of
�

by methods of
�

.
A solution

�,���2���<� �5� ���v�
to a planning problem

���<� �U� �)�v�
is the set of all plans that can be computed in a finitenumber
of reduction steps:�,����'$���T� �� �)�v�*ej+.��=h>U���T� �� ���v��,���W��� ' ���<� � � ���v�*e�����W�d���T� � � �)�v��G v¡�¢]£�¤�¥2¡%¦�¡ t §�¨�t ©�ª �������P��� � � � � ���v��,�������<� �� �)�v�*ef  ��«3¬ ����� � ���<� �� ���v�
Example 3 The following are methods for moving an object
in the logistics domain that correspond to the Golog proce-
dure example above. The firstmethod works for moving an
object within the same city. The second is for moving an ob-
ject between cities.��=n��"�#,Y?���c�����2����+%�4 �*ef!�Z`?!]��a$�v#%��!�"$#�	������)������+�������+.��8������Y?���������)������+.�%�V����X��!�Z`?!]��a���������+�����+%!W��a��.�����2X��!�Z`?!]��a��/����+�����+%!W��a��.������
��=r��"$#�Y?��������������+.�4 �.'ef!�Z`?!]��a$�v#%��!�"$#�	������)������+��)���,><	%���.���-
ek� !�	��v#%��!�"�#,	�����������><	%�,������>T	%���%�� y ek!�Z`?!]��a$�v#%��!�"$#�	�����������>T	%�,������+.�98������Yh���c������������+.�.��� ' �Xx��!�Z`?!]��a���������+��)��+.!]��a$�.��� ' �2X��!�Z`?!]��a��&����+��)��+.!W��a��.���.',�Xx����+.!]��apieR��+.!]��a����.'_��X��!�Z`?!]��a�������>T	%�,�)��+.!W��a��.��� ' �2X��!�Z`?!]��a������,><	%�,����+.!]��a$�%�V� ' �2X�]�.'N�®��-��Xx�W��-M�¯�2y���

Programming HTNs in Golog/ConGolog
In this section we show how HTN-planning problems can be
encoded in Golog/ConGolog. Let us firstconsider task net-
works which are totally ordered and with a constraint for-
mula | that is a conjunction of constraints of the form

�/�2�����
.

This is the type of task networks the HTN-planning system
SHOP (Nau et al. 1999) is designed to solve.

Totally ordered task networks can be encoded in Golog
since there is no concurrency among the tasks.
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Totally ordered task networks
Consider an HTN-planning problem E e ���<� ��� �)�v�

.
We encode the methods

�������T')�.����������-)�.��:,:�:)�,���U�)��°��
of each

compound task
�

as a Golog procedure as follows:

proc
���(�')tu'�� } � �.')tu' � :�:,: � ��(�')t ±�²2� } � �.')t ±�²N���( -%tu' � } � � -%tu'N� :�:,: � ��( -%t ±/³ � } � � -%t ±]³ �´,´�´��(P°�tu'�� } � �2°�tu' � :�:�: � ��(o°$t ±/µ�� } � �2°$t ±/µ

endProc

where
�2±�t ¶

is the
�
th task in

� ±
and

(P±�t ¶
is a conjunction of the

literals
�

such that
�&�2�V��±�t ¶��

is a constraint in
� ±

.
Let ·1¸ denote the resulting set of Golog procedures. To

complete the encoding of the HTN planning problem E we
include a Golog program ~.¹ obtained from the task network�

. This program has the same form as that of a single method:��(L'_� } � �.' � :�:�: � ��(oº�� } � �2º .
The HTN planning problem can now be reformulated in

terms of the logical semantics of Golog:» ¸ � e��������2�v��� · ¸ � ~)¹ � � � �����
Here,

» ¸ is the primitive action theory of E plus the axioms
of Golog.

The procedure in Example 2 is an encoding of the methods
in Example 3, except that instead of using nondeterministic
choice of actions, i.e. operator

�
, we used

!�b
-statements since

the conditions before the firsttasks are mutually exclusive.

Partially ordered task networks
Before we move on to partially ordered task networks, let us
comment on enforcing constraints of the values of literals,
i.e. constraints of the forms

�&�2�����
,
�W�,�����

and
�]�,�2�2��� � � and their

boolean combination. Intuitively, one way to think about
these constraints is that their purpose is for eliminating or
“pruning” some of the plan candidates. Their purpose is sim-
ilar to that of the temporal constraints used by Bacchus and
Kabanza (1995; 2000) for controlling search in a forward
chaining classical planner. Reiter uses this technique in a
Golog implementation of several classical planners (Reiter
2001). The idea is to use a predicate

�%� � � !]��;T����!���ZP����� to en-
code constraints and check them before adding a primitive
action to the plan being computed. So in the remainder of
the paper, we will assume that these constraints have been
suitably encoded by means of a

�%� � � !]��;T����!���Z predicate.
Furthermore, we will assume that the partial order boolean

formula is a conjunction of atoms
�W�¼��� � � . This is not a

limitation since an unrestricted formula can also be enforced
through the

�.��� � !]��;T����!���Z predicate. However, if the partial
order formula is a conjunction, it is computationally better to
enforce it imperatively in the program.

Let us now consider encoding partial order HTN planning
problems in ConGolog. As before, for each method there
will be a procedure, but we also need to introduce two flu-
ents and two actions which are used to enforce the partial
ordering among tasks: fluent

# D #,+%;���!�Z3\^�m>U��CD �%����� meaning
that the ConGolog procedure

>
is executing in situation

�
,

fluent
��#�	�=n!�Z����#,�<�m>U��CD �.�)��� meaning that the basic action

or procedure
>

has executed and terminated in situation
�
,

action
�_����	%�,�[>U��CD �2� which causes

# D #�+.;���!�Z3\^�m>U��CD �%����� to be-
come true, and

#�Z�<�[>U��CD ��� which causes
# D #�+.;���!�Z3\^�m>U��CD �.�)�,�

to become false and
��#�	�=n!�Z����#��<�[>���CD �.�)�,� to become true.

Both fluents are initially false for all procedures and actions
and the two actions are the only ones that change these flu-
ents’ truth value. Formally, the successor state axioms for
these fluents are the following:# D #�+.;���!�Z3\^�m>U��CD �%���������<�)�,���PF�?eR�_��� 	%�,�m>U��CD ���dg# D #�+.;c��!�Z3\�[>���CD �.�)�,��Xw�Bief#�Z�<�[>U��CD ���.:

��#�	�=n!�Z����#��<�[>���CD �.�)� �����<�����2�*F�he®>���CD �gw�1ej#�Z�<�[>U��CD ���Pg��#�	�=n!�Z����#,�<�m>U��CD �.�)���.:
Let

�
be a task network and

�
one of its tasks. Let

Z# D #�+��W���
stand for � # D #�+.;c��!�Z3\�W���<X � ��#�	�=n!�Z����#��<�W���

. Let
><	�#,�<�]�,�����

stand for the conjunction:½
¾�¿ ¢mÀ ¦ ¿ ¢&Á ¿ ª £�¡)Â

��#,	�=r!�Z����#��<�W���

If there is no constraint
�]�p�Ã� ± �

in
�

then
>T	�#��<�W�,�)���ve�
	�;<#

.

The ConGolog procedure that encodes the methods���U�)�3'��.�������)� -)�%�,:�:,:)����������°��
for a compound task

�
is:

proc
� ~ '$� ~ - �%:,:�:�� ~ ° endProc

where

~ ± �.���e
><	�#,�<�W� ±�tu' ��XGZ# D #,+��W� ±�tu' � � � ±�tu' �W�><	�#,�<�W�2±�t -.��XGZ# D #,+��W�2±�t -.� � �2±�t -A�W�
´�´,´><	�#,�<�W�2±�t °�Ä��XGZ# D #�+��]�2±�t °�Ä�� � �2±�t °�Ä

The
� ±�t ¶

s are the tasks in
� ±

. The ~ ± s consist of a set of inter-
rupts one for each subtask. As soon as the predecessors of
a task that has not yet executed terminate, the interrupt fires
and the task executes.

Example 4 This is a simple blocks world example method
for moving a block

"�'
from a block

"�-
onto a block

"�y
:��=r��"$#���" ' �)" - �)" y �4 +)��#���	���"�'.�.�P+)��#�� 	���"�y��%�d;<Z�_��� +%���"�'���"�-%�.�)�)����+.���"�'��)"�y,�98��+)��#�� 	���"�'_�L�Å;<Z�)����+.�5��"�'���"�-.���2X��+)��#�� 	���" y �L�Å;<Z�)����+.�5��" ' ��" - ���2X��;TZ�_����+.���"�'��)"�-.���j�)����+.���"�'��)"�y,����

The encoding as a ConGolog procedure is the following:

proc
=n��"$#���" ' �)"�-���"�y��Z# D #�+���+)��#�� 	���" ' ��� � +)��#,��	���" ' �N�W�Z# D #�+���+)��#�� 	���"�y���� � +)��#,��	���"�y��N�W�Z# D #�+���;TZ�_����+.���"�'��)"�-.�2�rXv��#�	�=n!�Z����#,�<��+)��#�� 	���"�',�2�PX��#�	�=n!�Z����#,�<��+)��#�� 	���"�y$�2� � ;TZ�_����+.���"�'��)"�y,�N���Z# D #�+����)����+.���" ' �)" y �2�vXÆ��#,	�=r!�Z����#��<��;<Z�)����+.���" ' ��" - �2�

� �)����+.���" ' �)" y �
endProc
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It is not always possible but in many cases the partial or-
dering of tasks can be captured without introducing extra flu-
ents. For instance, the procedure for

=n��"�#$��" ' ��" - ��" y �
can

clearly be written in the following simpler way:

proc
=n��"$#���" ' ��" - �)" y ���+)��#,��	���" ' �N�W�.+)��#���	���" y ��� �;TZ�_����+.���"�'���"�-�� � �)����+.�5��"�'���"�y,�

endProc

On-line Execution with Exogenous Actions
The situation calculus and Golog/ConGolog are very pow-
erful languages which allow one to solve problems well be-
yond the capabilities of today’s HTN-planners. In this sec-
tion we present an encoding of the logistics domain of the
previous examples for execution on-line and handling of ex-
ogenous delivery requests at run-time. We also show some
sample runs using a ConGolog interpreter in Prolog.

On-line execution of a ConGolog program means that
once the firstprimitive action is determined according to the
control structure of the program, which due to nondetermin-
ism may involve randomly choosing one, this action is actu-
ally executed in the world. This means that our ConGolog
interpreter should not backtrack after choosing such an ac-
tion. Luckily, this behaviour is very easy to realize in Prolog
using a cut. The off-line interpreter includes the rule:

offline(Prog,S0,Sf):-
final(Prog,S0), S0=Sf ;
trans(Prog,S0,Prog1,S1),
offline(Prog1,S1,Sf).

To prevent the interpreter from backtracking on primitive
actions, including exogenous ones, we simply add a cut after
a one step transition is chosen:

online(Prog,S0,Sf):-
final(Prog,S0), S0=Sf ;
trans(Prog,S0,Prog1,S1), !,
online(Prog1,S1,Sf).

This is a brave online interpreter. A cautious one may, for
instance, check offline that the remainder of the program suc-
cessfully terminates before committing to an action:

online(Prog,S0,Sf):-
final(Prog,S0), S0=Sf ;
trans(Prog,S0,Prog1,S1),
offline(Prog1,S1,Soff), !,
online(Prog1,S1,Sf).

These issues are further discussed in (Giacomo, Reiter, &
Soutchanski 1998; Reiter 2001).

Let us now turn to exogenous actions. Although an agent,
or in our case the logistics program, does not have con-
trol over when exogenous actions occur, its background
theory includes axioms informing it what exogenous ac-
tions can occur and what their effects are. In our lo-
gistics example, we only consider one exogenous action:	�#�Ç�;T#��)���v#%��!�"$#�	�a<�������$������+.�

meaning that a request to deliver�����
to
����+

has been issued. Exogenous actions will be gener-
ated by having the interpreter ask the user to input them.

Following (Giacomo, Lesperance, & Levesque 2000), we
will model exogenous actions by defininga special proce-
dure which will execute in parallel with the logistics main
procedure:

proc
# D � E 	��%\���#,�%��# D ��0A+���!���ZY?+.+.;<	�	�#,�<��#,� � #��

endProc

The condition
# D ��0K+���!���ZY?+%+.;T	�	�#��<��#��

always succeeds
when evaluated and it comes back with a user supplied value
for

#
which can be an exogenous action,

Z!/�
which means no

exogenous action occurred, or
#�Z� � !�= which is just as

Z!&�
but tells the interpreter to stop asking the user for exogenous
actions. We could alternatively have had them generated ran-
domly without complication.

Now, the main logistics procedure is a program
that reacts to the occurrence of exogenous actions	�#�Ç�;<#,�_���v#.��!�"�#,	�a<��������������+.�

by triggering the execution
of a

=n��"�#,Y?���c�������$�2����+%�
task:

proc
��#.��!�"$#�	�a$�v��#�=n��Z����><+.�������+.�P��#.��!�"�#,	�a�@K#�Ç��[><+.�������+.� ��)����	%���v#%��!�"$#�	�a��[><+.�������+.� �4 ��=n��"�#,Yh���c�m>T+.�5�2����+%� �#�Z���v#.��!�"$#�	�a��m>T+.�5�2����+%�2� ���#.��!�"$#�	�a$�v��#�=G��Z38

endProc

The main ConGolog program is the parallel execution of
the logistics procedure and the exogenous actions procedure:# D � E 	��%\ � ��#.��!�"$#�	�a$�v��#�=n��Z

.

Here is a sample run in Eclipse Prolog:

[eclipse 2]: runSim.
startSim
Enter an exogenous action:

requestDelivery(package1, loc5-1).
requestDelivery(package1, loc5-1)
startDelivery(package1, loc5-1)

Enter an exogenous action: nil.
driveTruck(truck3-1, loc3-1, loc3-3)

Enter an exogenous action: nil.
loadTruck(package1, truck3-1)

Enter an exogenous action: nil.
driveTruck(truck3-1, loc3-3, loc3-1)
unloadTruck(package1, truck3-1)
Enter an exogenous action: nil.

fly(plane1, loc5-1, loc3-1)
Enter an exogenous action:
requestDelivery(package2, loc3-2).

requestDelivery(package2, loc3-2)
loadAirplane(package1, plane1)
fly(plane1, loc3-1, loc5-1)
unloadAirplane(package1, plane1)
startDelivery(package2, loc3-2)

Enter an exogenous action: nil.
endDelivery(package1, loc5-1)
loadTruck(package2, truck3-1)
driveTruck(truck3-1, loc3-1, loc3-2)
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unloadTruck(package2, truck3-1)
Enter an exogenous action:
requestDelivery(package3, loc1-3).

requestDelivery(package3, loc1-3)
Enter an exogenous action: nil.

startDelivery(package3, loc1-3)
endDelivery(package2, loc3-2)
driveTruck(truck2-1, loc2-1, loc2-3)
Enter an exogenous action: nil.

loadTruck(package3, truck2-1)
driveTruck(truck2-1, loc2-3, loc2-1)
unloadTruck(package3, truck2-1)
Enter an exogenous action: nil.

loadAirplane(package3, plane2)
Enter an exogenous action: nil.

fly(plane2, loc2-1, loc1-1)
Enter an exogenous action: nil.
Enter an exogenous action: endSim.

endSim
unloadAirplane(package3, plane2)
loadTruck(package3, truck1-1)
driveTruck(truck1-1, loc1-1, loc1-3)
unloadTruck(package3, truck1-1)
endDelivery(package3, loc1-3)

Plan length: 32 More? n.

The non-indented lines are primitive tasks appearing in the
order they occur. The user is prompted for an exogenous
action every time the condition

# D ��0K+���!���ZY?+.+.;<	�	�#��T��#,�
is

evaluated. This happens every time the interpreter computes
a transition for the

# D � E 	��%\
procedure.

Conclusion
Our purpose was two-fold. On one hand we have argued that
HTN-planning can be thought of as a special case of high-
level programming in the sense of Golog/ConGolog. We
have done this by showing an encoding of HTN-planning
problems in these languages. In doing this, we only took
advantage of a few of their constructs and of the techniques
which have been developed for the many problems that have
arisen in cognitive robotics research. These techniques are
obviously relevant to planning given that both problems in-
volve modeling dynamic worlds. The work by the Cogni-
tive Robotics group at the U. of Toronto includes formaliza-
tions for robotic control that account for explicit time of ac-
tion occurrence, sensing and knowledge, execution monitor-
ing, stochastic actions, action choice based on decision the-
ory, and others.3 Our second goal was to actually show a gen-
eralization of HTN-planning, after taking this programming
perspective, by taking a classic HTN-planning problem, a lo-
gistics domain problem, and encoding it in ConGolog for on-
line execution and run-time exogenous actions.

We were not the first to point out a connection between
HTN-planning and high-level languages Golog and Con-
Golog. Baral and Son (1999) extended ConGolog with an
HTN construct. In the extended language, a program may
include an HTN-planning problem as a statement. However,
the new construct is limited: the tasks appearing in it cannot

3Much of this work can be found at
http://www.cs.toronto.edu/cogrobo

be ConGolog programs. One has to separately definemeth-
ods for the compound tasks mentioned in an HTN-statement.
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Abstract

In classical planning and scheduling approaches, a task
schedule is first designed off line, then executed on line, sim-
ply releasing tasks at times compatible with temporal do-
mains of their starting time-points. When durations of tasks
are uncertain, one wishes to keep as much flexibility on line
as possible so as to release each task according to effective
durations taken by previous ones. One also wishes to en-
sure off line that the on-line schedule will be feasible what-
ever the uncertain durations will be, which has been called
temporal controllability of the plan. Such proactive reason-
ing both leads to predictice schedules that are more robust
when executed on line, and also to easier and more effective
on-line rescheduling when needed. Going further, the notion
of sequentiability has been defined with respect to resource
constraints. It means here the ability to decide on line the se-
quencing of tasks that use the same discrete resource, accord-
ing to effective durations taken by previous ones. In the non-
uncertain framework, algorithms exist to prune the search and
detect so-called forbidden precedences among tasks. In this
paper we show how these techniques can be extended in tem-
poral problems with uncertainty.

Introduction
Temporal Constraint Satisfaction Problems, and particu-
larly Simple Temporal Problems (STPs) (Dechter, Meiri,
& Pearl 1991; Schwalb & Dechter 1997) are frequently
used in planning and scheduling applications that involve
quantitative time constraints (e.g. (Laborie & Ghallab 1995;
Morris, Muscettola, & Tsamardinos 1998)), as they allow
fast checking of temporal consistency. A duration between
two time-points or the temporal domain of a time-point (set
of possible times of occurrence) are represented through in-
tervals of possible values. However this formalism does not
adequately address an important aspect of real execution do-
mains: the time of occurrence of some events may not be un-
der the complete control of the execution agent. For exam-
ple, on a building site, a task might wait for a supply truck,
which arrival time is dependent on the traffic, while the task
duration itself might depend on the weather conditions. In
such cases, the execution agent does not have freedom to
select the precise delay between events. Instead, the value
is selected by Nature independently of the agent’s choices.
This can lead to constraint violations during execution even
if the STP appeared consistent at plan generation time.

The problem of constraint satisfaction for STPs with Un-
certainty was addressed formally in (Vidal & Fargier 1999).
Uncertainty means here the effective duration of a task or the
effective delay between two particular times (start or end of
tasks) still lie within allowed bounds but cannot be decided,
and will hence be observed on line during execution. In
this setting, the question of temporal feasibility goes beyond
mere consistency to encompass the main issue of Dynamic
Controllability. Essentially, a network is dynamically con-
trollable if there is a strategy for executing on line the time-
points under the agent’s control that satisfy all requirements.
Such a property must consider that the agent will apply the
strategy in a chronological way: to decide when to execute
next task, she might take advantage of observations made
on the occurrence of past uncontrolled events, but she must
decide without knowing the effective durations of tasks still
to come. Dynamic controllability was proven to be tractable
(Morris, Muscettola, & Vidal 2001), through the application
of a mere local consistency checking algorithm.

Actually the Dynamic Controllability (checked off line)
means the ability to postpone effective timing of tasks until
executing them on line, but resting assured that no constraint
will ever be violated, whatever the observations are. This
can be viewed as a least-committment approach adding flex-
ibility to the planning and execution loop, still ensuring the
plan safe execution. In other words, our approach is proac-
tive in the sense that most of the reasoning is made off line,
to prove that a schedule will be feasible. But actual schedul-
ing (i.e. assigning times to starting times of tasks), though
being now straightforward, is made on line.

In scheduling, complex resource constraints must also be
accounted for (Pinedo & Chao 1999). We are interested here
in non-preemptive tasks (i.e. they cannot be interrupted) and
disjunctive resources (i.e. discrete resources with capacity
equal to one). In this framework two tasks competing for
the same resource need be sequenced. For example, the
same crane might be needed for two unloading tasks that
should be both processed within a given time window. Usu-
ally, when executing an STP, such decisions have already
been made (and the added precedence link proven consis-
tent), since a constraint such as task � before or after task �
cannot be expressed through simple binary constraints be-
tween time-points. Nevertheless, in domains with temporal
uncertainties, it might be the case that one sequencing choice
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is compulsory to make the network Dynamically Control-
lable in some situations, while the reverse choice is needed
in other situations, none being valid in all situations. This
calls for Dynamic Sequencing strategies, which means post-
poning such decisions until execution. We would then rather
be able to check off line that this might be done on line
without constraint violations. Such a new property has been
called Dynamic Sequentiability (Vidal & Bidot 2001).

In general cases, this property cannot be checked in poly-
nomial time since sequencing is already an NP-complete
problem in many scheduling problems without uncertainty
(Lenstra, Rinnooy Kan, & Brucker 1977). But there a num-
ber of propagation techniques exist to filter out values from
temporal domains, that are not compatible with the sequenc-
ing constraints, allowing to speed up the search for a feasible
schedule or to detect early an inconsistency (Baptiste, Le
Pape, & Nuijten 2001). For instance the Forbidden Prece-
dence rule checks whether one of the two possible sequences
may be proven infeasible with respect to temporal domains
of start and end times of two tasks � and � (Erschler, Roubel-
lat, & Vernhes 1976; Torres & Lopez 2000). A more elab-
orated one, the Extended Forbidden Precedence rule, which
is based on energetic reasoning (Lopez & Esquirol 1996),
checks it taking also into account all other tasks that use the
same resource and might occur between � and �.

In this paper, after recalling some background on the topic
in section 2, we will focus in section 3 on the Forbidden
Precedence rule; we will show how the rule should be writ-
ten in the framework of STPs with uncertainty. Section 4
will follow the same lines addressing the Extended Forbid-
den Precedence rule. We will conclude with a couple of
words about foreseen extensions of the work.

Background
A Simple Temporal Network (STN) (Dechter, Meiri, &
Pearl 1991) is an STP represented as a graph � ��� �
in which the vertices in � are the time-points that are the
variables of the problem, while edges (or links) in � are
binary numerical constraints ���, in the shape of simple in-
tervals �������� 	������ of possible durations between two
time-points 
 and �. Please note that the inverse con-
straint implicitly exists and is ��� � �������� 	������ �
��	��������������, and that no specific constraint between

 and � results in the initial interval �������.

To check global consistency of an STN, one might use
filtering techniques, namely arc-consistency (AC) and path-
consistency (PC) techniques that both run in polynomial
time in STNs. PC for instance is a local shortest path propa-
gation algorithm: it computes any binary constraint ��� be-
tween points 
 and � by intersecting it with all paths going
through a third time-point �:

��� � ��� � ���� � ����

which amounts to, considering that composition simply
sums up the lower and upper bounds of the intervals, and
intersection takes the max of the lower bounds and the min
of the upper bounds:

��� � ������������ ������ � ��������

�	
�	������ 	����� � 	�������

AC merely updates the temporal domain of each time-
point � (i.e. the interval of possible times for �), by comput-
ing the sum of the temporal domain of another time-point

 and the interval expressing the duration between 
 and
�. This may be seen as a specific and more restricted case
of PC since a temporal domain of 
 is the duration interval
between the origin of time 0 and 
. The advantage of PC
is that the complete minimal network is computed: for any
two time-points 
 and �, PC provides the duration interval
containing these and only values that are consistent with the
other constraints of the problem. Such strength of PC will
be widely used in this paper.

Figure 1 illustrates AC and PC through small examples.
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Figure 1: AC and PC algorithms

A Simple Temporal Network with Uncertainty (STNU)
is similar to an STN except a subset of � called  repre-
sent specific links called contingent, which may be thought
of as representing causal processes of uncertain duration;
their finish timepoints, called contingent timepoints, are
controlled by Nature, subject to the limits imposed by the
bounds on the contingent links. All other timepoints, called
executable timepoints, are controlled by the agent. Thus,
an STNU is a 3-tuple � � � ���� �. We require
� � ���� � 	��� �� for each contingent link � � .

An STNU may be regarded as a family of STNs: a pro-
jection (Vidal & Fargier 1999) of � is an STN derived
from �, replacing each contingent link � by an interval with
equal upper and lower bounds ��� �� for some � such that
���� � � � 	���. The set of values � for all the contin-
gent links represent one situation that the executing agent
might face on line, when durations of contingent links are
eventually observed. Then one can define a schedule as an
assignment of fixed times to all time-points, and an execu-
tion strategy as a mapping from the set of projections (or
situations) to the set of schedules. An execution strategy is
viable if and only if for all situations the associated schedule
is consistent.

Global consistency needed to be redefined in terms of
controllabilities. We will not get into the details of these
properties in this paper (see (Morris, Muscettola, & Vidal
2001) for details), but instead just focus on the most rele-
vant one, the Dynamic Controllability: in short, an STNU is
dynamically controllable if and only if there exists a viable
execution strategy that can be carried out on line as far as
the contingent durations are observed. Thus, a Dynamic ex-

42      



ecution strategy might be safely run on line, since it assigns
a time to each executable timepoint that may depend on the
outcomes of contingent links in the past, but not on those
in the future (or present). This corresponds to requiring that
only information available from observation may be used in
determining the schedule on line.

To check dynamic controllability, one might first run a PC
algorithm. If a contingent link is squeezed, then it means
some of its uncontrollable values are not consistent, there-
fore the problem will be infeasible for such values. But
this is not enough, since the contrary is not true in general.
A further PC-like filtering algorithm that still runs in poly-
nomial time might be designed to get the minimal STNU.
This algorithm called 3DC+ (Morris, Muscettola, & Vidal
2001) either proves inconsistency or provides the executing
agent with duration intervals restricted to dynamically con-
trollable values only, making it possible to safely and eas-
ily execute the schedule on line according to observations
made. We just quickly recall here the basics of this algo-
rithm (see (Morris, Muscettola, & Vidal 2001) for details):
one needs only considering triangles 
�� in which one con-
straint ��� is contingent (if two are contingent the triangle
will be considered twice, and if all three links are contingent
the triangle is trivially not dynamically controllable). We
consider ��� � �	� ��, ��� � ��� �� and ��� � ��� �� (fig-
ure 2; a contingent constraint is depicted as a dotted arrow).


 �

�

��� �� ��� ��

�	� ��

Figure 2: Triangular network for 3DC+

1. case 1: if � � �, then necessarily � is before � and no
further restriction is necessary.

2. case 2: if � � �, then necessarily � will be executed
before �, hence without having observed it yet, there-
fore ��� must be restricted so that things will work fine
whatever values are taken by ���, which raises ��� �
��� �� � �� � �� 	 � ��. For instance, the initial network
of figure 3(a) is stable after PC, but is further restricted by
3DC+ to the network of figure 3(b).

[1,3]

[1,3][0,1]

[1,3]

[1,3][0,0]

�


 � 
 �

�

(a) (b)

Figure 3: Illustration of 3DC+ case 2

3. case 3: � � � and � � �, i.e. � might occur before
or after �. Here the general rule to apply is to update
��� � ��� �� � ��	
�� � �� 	�� �� and in the case where
��� � 	, one needs to add a���� � �� ��� � on the link
���, which means that after activating 
, one should wait
either for the occurrence of � or at least ��� time units be-
fore activating �. Such ���� constraints are added to the
STNU model and regressed, which is a backward prop-
agation process, still made locally through triangles, and
thus still tractable. Figure 4 presents an example where
� � � � 	. As previously, the figure shows the initial
network (a) and the network propagated by 3DC+ (b).

(a)

[-2,1][-2,1][0,4]

[1,3] [1,3]

(b)


 �

� �


 �

[1,4]
� ��  �

Figure 4: Illustration of 3DC+ case 3

Existing work only focused on temporal constraints, dis-
regarding resource constraints that are of high significance
in planning and scheduling applications. As mentioned
in the introduction, a disjunctive resource compels all
tasks needing this resource to be sequenced. Sequencing
decisions, just as task activation time decisions, should
be left to the on-line executing agent, since in some sit-
uations one sequencing will be needed while the inverse
choice must be taken in another situation. Anyhow, to
ease feasibility checking of the problem and detect some
sequencing that are forbidden anyway, filtering algorithms
over sequencing decisions are of high added value. Efficient
though non-complete ones exist in classical scheduling;
this paper aims at adapting them in the uncertain framework.

In the remaining of the paper, we will use the following
notations for each task �:

� �� � ���� �
�
�: start time-point

� �� � ���� �
�
�: end time-point

� �� � �� � �� � ��
�
� ���: duration

� ��� � ���� � �
�
� �: consumption over an interval �

Forbidden Precedence
The reader should keep in mind that the meaning of a forbid-
den precedence is that adding this precedence to the problem
(before execution) would lead to an inconsistency. When
temporal uncertainties are accounted for, it is enough to find
one situation in which adding this precedence would make
the projection inconsistent: such a sequencing may be de-
cided on line when facing a situation that supports it, but it
should not be added during off-line scheduling when all sit-
uations are still likely to occur. We will first recall the clas-

43      



sical way of expressing the rule in scheduling without tem-
poral uncertainty. This has not been extended to the STN;
we need to do this first before extending to the STNU.

The STN context

Let us consider two (non contingent) tasks � and � which
must be sequenced (for instance because they compete for
the same resource).

Classical rule formulation in scheduling Proposition 1,
illustrated by figure 5, allows us to conclude that “� before
�” is forbidden (denoted by � � �) (Erschler, Roubellat, &
Vernhes 1976).

Proposition 1 If �
�
� �� � �

�
� �

�
then � � �.

Proof. �� is the earliest possible start time for � , therefore
�� � �

�
is the earliest possible end time for �. Similarly,

�
�
��

�
is the latest possible start time for �. Therefore � � �

implies that �� � �
�
� �

�
� �

�
. Reverting this proposition

gets to Proposition 1. �

i

j

�������
�������
�������

�������
�������
�������

������������

Figure 5: Forbidden precedence � � �

New formulation based on a minimal STN One can see
the previous rule uses information on the possible times of
�� and ��, which are in an STN the temporal domains, i.e.
the duration between 0 and the time-point.

That may be generalized in a complete minimal network
obtained through a PC propagation (figure 6). In this mini-
mal network, a forbidden precedence between � and �, exists
if and only if a lower bound of the link ���� is positive, that
means �� is before ��, which forbids � � �. It yields the
following proposition.

Proposition 2 If �� � � then � � �.
Symmetrically if �� � � then � � �.

Proof. In a complete minimal network obtained through a
PC propagation, all paths from �� to �� have been searched
for. Therefore in the edge ���� valuated by ���� ���, �� is the
highest lower bound for ����. Then �� � � means � � �. �

Proposition 3 Proposition 2 subsumes Proposition 1.

Proof. The proof is straightforward since after PC propaga-
tion �� stands for the greatest minimal path between �� et
��. In particular �� � �

�
� �

�
� �� � �

�
. �

Adaptation to STNUs

We will now assume that some of the tasks may be con-
tingent, which means we need considering an STNU prop-
agated through 3DC+ instead of an STN. In figure 6, that

��

�� ����
�
� �� �

��
�
� ��� ��

��� ����� ��

���� ���

���� ���

Figure 6: STN after propagation through PC

means the links ���� and ���� may be contingent1.
For instance let � be contingent. After propagation � � cor-

responds to a shortest path from �� to ��, but it might result
from a path going through ��, being the sum����

�
. Since �

is contingent we must consider the worst situation in which
this path would take longer, this is when � takes its upper
bound ��. A precedence is indeed forbidden if there exists
at least one situation in which it is forbidden. Otherwise the
off-line scheduling process could be allowed to enforce such
a precedence in the network, which would lead to a possible
failure at execution time if � takes its upper bound.

So let us look at the case where �� � ��. One can see there
will be a problem if �� � � since �� would necessarily be
released by the execution process before �� has occurred. It
is easy to check that this new condition ���� � � subsumes
the previous one �� � �, that is �� � � � ��. Indeed, if only
PC is applied to this network, the link ���� valuated by ��� ��
is intersected with the path ������, i.e. ��

�
� ���� ���������,

then one has � � �� � ��. Since 3DC+ will only restrict
further the value of the link ����, the property �� � � � ��

is still enforced by 3DC+. In other words, there might be
cases in which �� � � � � while �� � � as the next example
will show. Considering all other possible cases, one gets the
following updated rule.

Proposition 4 If � is not contingent and � � � � then � � �.
If � is contingent and �� � � � � then � � �.
If � is contingent and �� � � � � then � � �.

Symmetrically,
If � is not contingent and �� � � then � � �.
If � is contingent and �� � � � � then � � �.
If � is contingent and �� � � � � then � � �.

In the example of figure 7, � is a contingent task while
� is not. Propagation through PC provides us with ���� ��
on the link ����. Condition � � � might be deduced by
Proposition 4 (since �� � � � � � � � �), but cannot be
deduced considering the length of the shortest path from ��

to ��, that is ��, since �� � �� � �.

Extended forbidden precedence
We will now introduce a more effective rule in terms of de-
duction by taking into account other tasks that compete for

1We still consider that other links are not contingent, which is
usually the case in real-life planning, but our scheme might easily
be extended to cases with contingent links between tasks.
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Figure 7: Illustrative example of Proposition 4

the same resource and that are to occur within the same ref-
erence interval. For that purpose we need to define the mini-
mal consumption of a task � over a reference interval � (Es-
quirol, Lopez, & Huguet 2001). As in the previous section,
we first give mathematical expressions as classically stated
in scheduling, improve them for the STN framework, then
adapt them in the STNU.

Classical rule formulation in scheduling
Consumption We denote by ��� the consumption of task
� (i.e. how long � uses the resource) over a reference interval
� � ����. Two cases must be distinguished:

1. ����
�
� � 	 �
 ��� � �;

2. ����
�
� �� 	 �
 ��� � �	
���� ����������� ���.

This is illustrated by figure 8 where striped areas represent
the consumption of each task between �� and ��.

k2

k4

k3

k1

k5

t1 t2

��
��
��
��

����
����
����
����

��
��
��
��

�������������
�������������
�������������
�������������

Figure 8: Consumption of five tasks

One then gets:

��� � �������	
���� ����������� ����

which amounts to, knowing that �� � �� � ��

��� � �������	
���� �� � ��� �
� � ��� �� � ���� (1)

One is usually especially interested in computing the
lower and upper bounds of the consumption: for the con-
sumption of task � over interval �, we might derive from
equation (1) the minimal (or necessary) consumption noted
��� , and the maximal consumption noted ��

� .
The former is obtained by considering the minimal dura-

tion of the task, and by shifting it to its left and right utmost
positions, retaining the minimum value of all intersections
between such positions and the reference interval �. That is
illustrated in figure 9 and raises:

��� � �������	
��
�
� �� � ��� �

� � ��� �� � �
�
�� (2)

k1

k2

t2

k3

t1

∆

��
��
��
��

��
��
��
��

Figure 9: Minimal consumption of three tasks

The maximal consumption is on the contrary obtained by
considering the maximal duration and positions which inter-
section with interval � is maximal:

��� � �������	
���� �� � ��� �
�
� ��� �� � ���� (3)

The relevant notion for our purpose is obviously the min-
imal consumption: when trying to check whether � before �
is feasible, we intend to take into account that another task �
will necessarily consume the resource, between �� and ��,
for at least some time � . Therefore we will not consider
anymore the maximal consumption in the remainder of the
paper.

Rule formulation based on temporal domains In the
STN context, extending the forbidden precedence rule
means taking as a reference interval � � ���

�
. Propo-

sition 5, illustrated by figure 10, allows the deduction of
a forbidden precedence between tasks � and � by consid-
ering the minimal consumptions of other tasks competing
for the same resource over � (Lopez & Esquirol 1996;
Esquirol, Lopez, & Huguet 2001).

Proposition 5 If �
�
� �� � �

�
� �

�
�
�

� ����� �
���

�

� then

� � �.

The proof is straightforward since the minimal consump-
tion expresses the necessity that the other tasks will consume
the resource over a subset of the interval.

k

j

i

����������������������

∆

����������

�������
�������
�������
�������

Figure 10: Extended forbidden precedence � � � accounting
for �

New formulation in the STN context
General formulation of the consumption Let us con-
sider the minimal consumption of a task � between �� and
�� according to the outcome of a PC algorithm in an STN.
Figure 11 illustrates the situation will all relevant links.
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��� � �
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�	� ��
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Figure 11: Minimal consumption of a task � in an STN

Here � � ���� � �	� �� is the reference interval. The
general formulation of the minimal consumption of � over
this interval is as follows:

��� � �������	
��
�
� �������� �

�
� ��������� �

�
����

(4)
Let us justify the formulation. The two former terms �

�
and � correspond to the obvious cases, when the task occurs
fully outside �, and when it covers the interval �, respec-
tively.

The third term is when the task is shifted to the left. In
such a situation ���� will take its lower bound �, and ac-
tually the interval ���� looks like the amount of � that lies
after ��, therefore � should be the quantity to consider. But
one may also consider � is left-shifted when ���� takes its
upper bound. Then � represents the part of � that lies outside
the reference interval. Therefore the quantity �

�
�� could be

considered as the minimal consumption of �. The dominat-
ing value will be the maximal one, since a propagation algo-
rithm retains the max of all lower bounds. Similar reasoning
leads to � and �

�
� � as possible quantities to represent the

minimal consumption of � when it is right-shifted.
Now all that follows consists in determining which quan-

tity subsumes the other, distinguishing between contingent
and non-contingent cases for �.

Extended forbidden precedence rule in a minimal STN
Formula (4) can be simplified considering how PC updates
the links. Composition of intervals ������� and ��

�
� ���

raises ��
�
� �� �� � �� which is intersected with ��� ��. Since

the network is stable �
�
� � should not update �, therefore

� � �
�
� �. Similarly � � �

�
� �. We should then use � for

a task shifted to the left and � for a task shifted to the right.
In the network of figure 12, after a propagation through

PC one gets: �
�
� � � � � � � � and � � �; �

�
� � �

�� ���� �  and � � �.

����

[1,3]

[0,1] [-6,-1]

�� ��

[4,8]

[1,3]

Figure 12: Example for calculating the consumption

The minimal consumption is then expressed by:

��� � �������	
��
�
� �� �� ��� (5)

To get the Extended Forbidden Precedence Rule, one
needs to consider the reference interval as being ���� �
�	� ��. Proposition 5 ends up being:

Proposition 6 If � � �
�
� �

�
�
�

� ����� �
����

� then � � �.

The following example (figure 13) illustrates that Propo-
sition 6 subsumes the classical formulation of Proposition 5.

0

��

���

��

[-2,1]

[2,6][0,1]

[1,2]

[4,9]

[4,7]

[1,3]

[1,3][0,1] [0,4]

[1,3]��� ������

Figure 13: Illustrative example of Proposition 6

For the minimal consumption over the interval � �

���
�

, with the original formulation:
��� � �������	
��

�
� �� � ��� �

� � ��� �� � �
�
��

one gets ���� � �������	
��� �� �� �� �� �� ��� � � and
���� � �������	
��� � � �� � � �� � � ��� � �. Over the
interval � � ����, with the new formulation

��� � �������	
��
�
� �� �� ���

one gets ���� � �������	
��� �� �� ��� � � and ���� �
�������	
��� �� � ��� � �. Then if �

�
� � and �

�
� �,

with Proposition 5 the test � � � � � � � � � does not
permit any deduction, while rule 6 provides us with the test
� � � � � � � � � which implies � � �.

Adaptation to STNUs
We now suppose that � is contingent.

Minimal consumption The formulation of the minimal
consumption is based upon the one in STNs with � not being
contingent (formula (4)). For each � contingent, one must
consider the upper duration �� instead of �

�
since, as said

before, we should manage to infer a forbidden precedence if
at least one situation forbids it, and since the consumption
will always be higher with � taking its upper duration it is
enough to consider the situation with �� � ��. We hence
get the following general formulation:

��� � �������	
���� �������� �� � ��������� �� ����
(6)
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As in STNs, we will now try to simplify the two latter
terms of this formula, i.e. for a task � shifted to the left and
shifted to the right. Figure 14 shows which are the links of
interests in these two cases.

��� ��

�� ��

��

��� � �

��
�
� ���

��� ��

��

��� ��

�� ����
�
� ���

(a) (b)

Figure 14: A left-shifted (a) and right-shifted (b) task

First, if only a classical PC algorithm was run on the net-
work, then one would get in the former case �� � � � �
(otherwise as seen before � would have been updated). That
amounts to �� � � � �, which allows us to simplify the term
for a task shifted to the left, only retaining the stronger term
�� � �. Similarly, for a task shifted to the right, �� � � � �
(otherwise � would have been updated by the PC algorithm),
which amounts to �� � � � �.

This is actually enough to get the simplification, since
3DC+ will only restrict the constraint domains further and
therefore can only make the inequalities stronger. Anyhow
we will consider all cases of 3DC+ to show how the result
holds. This algorithm indeed restricts the constraints in dif-
ferent ways according to the relative placement of ��, ��,
and the ending points of �.

� Task shifted to the left

1. � � � (�� after ��).
3DC+ does not make any specific restriction, therefore the
former result simply holds. Moreover, in this case task �
will necessarily be before ��, thus outside the reference
interval: since � � � � � the term �� � � is greater and
hence dominated by �� in formula (6).

2. � � � (�� comes before ��).
With 3DC+, one gets � � �

�
��, thus ���� � �

�
�� � �.

In the example of figure 3 (where �� stands for 
, �� for
�, and �� for �), the initial network (a) cannot be updated
by PC; one then gets �� � � � � � � �  and � � �. In
the final network (b), 3DC+ has restricted further value �.
This allows us to deduce a higher necessary consumption
since now �� � � � �� � � �.

3. � � � and � � �.
With 3DC+, only � is further restricted. Adding a ���� on
���� will also only affect the lower bound of ����, but
the value of the ���� still must be lower than �. Therefore
here as in case 1 of 3DC+ the former result �� � � � �
holds from PC updates.

� Task shifted to the right
We refer here to figure 14(b).

1. � � � (�� after ��).
Here again, 3DC+ provides no further restriction. More-
over, in this special case � will be fully contained within
the interval�: since � � �, the term ���� will be greater
and hence dominated by �� in formula (6).

2. � � � (�� before ��).
With 3DC+, one gets � � �� � �. With PC we had � �
�� � �, which means necessarily �� � � � �. This is a
property of 3DC+, that makes both terms equivalent here.
We will choose �� � � to remain consistent with other
cases.
Using the propagated network of figure 3 (where ��

stands for 
, �� for �, and �� for �), one gets � � �
and �� � � � �� � � �.

3. � � � et � � �.
With 3DC+, one gets � � �������	
��� � �� �

�
��,

which amounts to two distinct cases:

� If ���� � �
�

then � � ����. Since we had � � ����
from PC, we get � � �� � �: as for case 2, this is a
special case where both terms could be used;

� If �� � � � �
�

then � might simply be updated with
�
�

which means � � �
�

, which as said before does not
affect the result of PC: ���� � �. The only interesting
part is that one might get a ���� of � ��� �� � � � on
����. That means in the worst case the lower bound
� will be increased up to �� � � if �� does not occur
before. Which still entails �� � � � �.

In figure 4, on the network obtained by 3DC+ (b) (where
�� stands for 
, �� for �, and �� for �), one gets � � �
and �� � � � �� � � .

As a matter of conclusion, when � is contingent, the min-
imal consumption of � over a reference interval � is:

��� � �������	
���� �� �� � �� �� � �� (7)

Extended forbidden precedence rule in an STNU The
reference interval being � � ���� � �	� ��, the rule is sim-

ilar to Proposition 6, but the minimal consumption �
����

�

will be computed from equation (5) if � is not contingent and
from equation (7) if � is contingent. Moreover, the terms �

�
and �

�
should be replaced by �� if � is contingent and �� if �

is contingent.

Proposition 7 � and � not contingent: If � � �
�
� �

�
�

�
� ����� �

����

� then � � �.

� and � contingent: If � � �� � �� �
�

� ����� �
����

� then
� � �.
� contingent and � not contingent: If � � � � � �

�
�

�
� ����� �

����

� then � � �.
� not contingent and � contingent: If � � �

�
� �� �

�
� ����� �

����

� then � � �.

We consider the same example as in figure 13, where now
�� and �� are contingent. Figure 15 shows the network ob-
tained after 3DC+ propagation.
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With formula (7), it yields:
�

���������
�

����

� � �� �

�. With Proposition 7, one consider the first case where �
and � are both non-contingent. If �

�
� �

�
� , the test

� �  �  � � holds which implies � � �.

0

��

���

[1,4]

��

[-2,1]

[2,6][0,1]

[1,2]

[4,9]

[4,7]

� ��� �  �

[1,3] [1,3]���

[1,3][0,0]

��� ���

Figure 15: Illustrative example of Proposition 7

Concluding remarks
In this paper we have focused on two propagation rules that
are known to be effective in task scheduling, when dealing
with disjunctive resources. These are the Forbidden Prece-
dence and the Extended Forbidden Precedence rules. First,
using the strength of the STN minimal network, we modified
the rules to take into account updated constraints between
time-points instead of temporal domains, and showed the
gain in terms of more deductions made. In the STNU frame-
work, such deductions should be made more cautiously,
since such rules guide the off-line scheduling process, and
if a precedence has not been proven to be forbidden then it
might be enforced in the network before execution. When
temporal uncertainties and hence dynamic on-line execu-
tion strategies are to be considered, then one should forbid
a precedence (� � �) as soon as there exists one situation in
which the precedence is inconsistent. This made us consid-
ering worst cases with respect to contingent durations and
change the rules accordingly.

These results are a first step in designing techniques to
check off line the dynamic sequentiability of a task plan.
The overall goal of these proactive reasoning techniques is
to design predictive schedules that are not completely set,
final decisions being taken on line. This added flexibility
improves the robustness of the solution when facing time
discrepancies from predicted task durations, and limits the
need for elaborated (purely reactive) on-line scheduling, that
would be more time consuming and could lead to trouble-
some deadends.

So the given rules might only prune the search and ease
the on-line process by enforcing the precedence relations
that are not forbidden. On the contrary, having � � � and
� � � does not necessarily mean in STNUs that the prob-
lem has no solution; it only means there are some situations
in which the former is forbidden while there are some situa-
tions (a priori others) in which the latter is forbidden. There-
fore there is still work to be done to conclude the feasibility

or not of the dynamic sequencing problem.
Anyway, we stronly believe that such incomplete rules are

still very effective filtering techniques that will help the over-
all checking process. Therefore we plan to study the adap-
tation of more elaborated ones like edge-finding techniques,
and evaluate these techniques on experimental examples.
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Abstract
Several successful autonomous systems are separated into
technologically diverse functional layers operating at
different levels of abstraction. This diversity makes them
difficult to implement and validate. In this paper, we
present IDEA (Intelligent Distributed Execution
Architecture) a unified planning and execution framework.
In IDEA a layered system can be implemented as separate
agents, one per layer, each representing its interactions
with the world in a model. At all level, the model
representation primitives and their semantics is the same.
Moreover, each agent relies on a single model, plan
database, plan runner and on a variety of planners, both
reactive and deliberative. The framework allows the
specification of agents that operate within a guaranteed
reaction time and supports flexible specification of reactive
vs. deliberative agent behavior. Within the IDEA
framework we are working to fully duplicate the
functionalities of the DS1 Remote Agent and extend it to
domains of higher complexity than autonomous spacecraft
control.

Introduction     

Several successful autonomous systems are separated into
technologically diverse functional layers operating at
different levels of abstraction (Bonasso et al. 1997) (Currie
and Tate 1991) (Wilkins et al. 1994). However, there are
some significant drawbacks to this approach. Developing
layered systems is complex. For example, it is
unreasonable to expect that domain experts (e.g., system
and mission engineers in a spacecraft domain) will
directly encode their knowledge in a form usable by the
different agent layers. Instead, this encoding becomes the
responsibility of specialists familiar with each agent layer,
which increases development cost and reduces the
applicability of the autonomous software. Another
problem is the frequent need to encode the same
requirement in different forms in the different layers. The
difficulty of tracking encoding discrepancies can decrease
the reliability of the autonomous software. In this paper,
we describe IDEA (Intelligent Distributed Execution
Architecture) an approach to planning and execution that
provides a unified representational and computational
framework for an autonomous agent. IDEA provides a
well-founded virtual machine that integrates planning as
the reasoning module at the core of the execution engine.
The virtual machine is composed by four main
components whose interplay provides the basis for the
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agent’s autonomous behavior: the domain model, the plan
database, the plan runner, and the reactive planner.
Deliberative planning is not a core requirement for the
virtual machine but, through modeling and problem
solving on the plan database, IDEA provides the means to
program arbitrary combinations of reactive and
deliberative problem solving. IDEA also defines a simple
protocol for communication among several separate IDEA
agents, i.e., agents implemented using the IDEA virtual
machine. We believe that this representational and
problem-solving approach can be applied at all levels of
the architecture of a complex agent, such as Remote Agent
(Bernard et al. 1998). We have recently taken a first
significant step toward demonstrating this by re-
implementing the high-level control layer of the Remote
Agent. This includes closed-loop reactive planning after
an unrecoverable hardware fault to put the spacecraft in
standby while allowing the deliberative planner to
regenerate the mission plan to adapt to the degraded
spacecraft capabilities.
By defining a virtual machine IDEA aims at the agent’s
“assembly level”. We believe that using IDEA is not
incompatible with current high-level execution languages
(Gat 1996) (Simmons and Apfelbaum 1998) since
programs written in these languages could be compiled
into IDEA’s “assembler” and executed by an IDEA virtual
machine. Moreover, IDEA aims at defining the required
functionalities and interfaces of the modules constituting
the virtual machine. As such, IDEA encourages the use of
different technologies and implementations for the plan
database and the reactive and deliberative planners (Kim,
Williams and Abramson 2001).
In the rest of the paper we briefly describe the Remote
Agent architecture as an example of the state of the art in
multi-layered agents. We then describe how idea differs
from current multi-layered architectures. We sketch the
IDEA virtual machine and point out some of its
implications, mainly with respect to the reactivity and
interaction between reactive and deliberative decision-
making.

Layered Agent Architectures: Remote Agent

The Remote Agent (RA) was developed at the NASA
Ames Research Center and at the Jet Propulsion
Laboratory. RA is an autonomous control system capable
of closed-loop commanding of spacecraft and other
complex systems. RA was demonstrated by running on-
board the Deep Space 1 (DS1) spacecraft and controlling
its operations for a total of two days in May 1999 (Bernard
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et al. 1998) (Nayak et al. 1999). Unlike traditional
spacecraft command sequencers, RA was designed to be
goal-achieving and robust. While a command sequencer
simply issues low-level commands at fixed times, a goal-
achieving system receives a specified state to be
maintained for a specified period of time and from this it
determines the relevant commands and when to issue
them. A command sequencer is brittle when confronted
with command failures and cannot further proceed, but
RA can modify pre-planned commands in order to
overcome obstacles that would normally prevent the
achievement of a goal. Operational constraints were
explicitly encoded into RA models. RA used these models
to avoid violating the constraints regardless of the
commanded goals.
The RA architecture integrates three layers of
functionality: a constraint-based planner/scheduler (PS)
(Jonsson et al. 2000) a reactive executive (EXEC) (Pell et
al. 1999), and a Model Identification and Recovery system
(MIR) consisting of a model-based truth maintenance
system with diagnosis and recovery module (Williams and
Nayak 1996) (Figure 1). Each layer uses a different
modeling language and a different way to specify problem-
solving control.

Figure 1: Remote Agent's layered architecture

At the highest level is PS, which uses a high-level
declarative modeling language (HSTS DDL) to define the
state machines and the temporal constraints needed to
create valid plans. PS uses depth-first, backtrack search as
the basic problem-solving engine. In order to produce
plans in reasonable times, developers can use a simple
language to specify choice selection heuristics. For the
DS1 RA, we were able to write heuristics that drastically
reduced backtracking, limiting it to shallow trees. This
allowed PS’ response time to stay between ½ hour and 4
hours depending on the size of the planning problem. This
was achieved on a 20 MHz CPU for ½ of the available
CPU time and within 32 MB of available memory.

The Executive (EXEC) occupies the second layer.
EXEC’s function is to translate high-level actions in the
plan into a stream of timed, low-level commands to
System Software. EXEC does so with two separate
mechanisms. First it interprets the plan one step at a time
with a specialized module called the plan runner. For each
action currently in execution, the plan runner checks
whether all logical and temporal termination conditions
for the action are satisfied. If so, it terminates the action, it
propagates the action termination time to the rest of the
plan, and it starts the next action in the plan. When
executing an action, EXEC runs a procedure associated
with it in EXEC’s model. Each procedure is written in
ESL, an extension of LISP (Gat 1996). It specifies how to
achieve the success states associated with the action using
low-level commands to System Software. An ESL
procedure operates at a level of abstraction higher than
that of low-level commands in order to enhance reactivity.
On DS1, an EXEC procedure needed to respond to any
handled event within a worst-case 4-second bound.

EXEC relies on MIR to support low-level sensor
interpretation and commanding. MIR provides two main
functions. MI (Mode Identification) estimates state and
notifies EXEC when a state changes. MI uses a detailed
model of the system components (e.g., switches). Typically
MI needs to consider interactions between several
subsystems (e.g., sensors) in order to determine the state
of some device (e.g., whether a thruster is ON or OFF).
MR (Mode Recovery) uses the same model of MI and
determines the least costly path from the MI estimated
(faulty) system state and the one EXEC requires in order
to satisfy the plan. MR also guarantees that the recovery
actions do not pass through invalid states communicated
by EXEC. For DS1, the maximum response time for MR
was 5 seconds while MI could generally generate a
diagnosis within a few hundred milliseconds

Using different problem solving modules with different
representation languages and different reasoning engines
had a direct advantage. In large part the modules
constituting RA were based on technology already
available. For DS1, it was therefore possible to concentrate
on the still very hard problem of weaving these modules
into a single, coherent agent. Also, one may argue that the
representation and problem solving capability of each
module could be tuned to maximize performance at that
level. However, this heterogeneous approach made it
difficult to validate all the models and procedures and to
insure that they did not conflict.

The structure of IDEA

After an in depth analysis of RA’s functionality, we
believe that it is possible to duplicate it within a new,
unified agent framework, where all layers have the same
structure. In this section we give an outline of the main
components in IDEA.

Tokens and Procedures
In IDEA, the fundamental unit of execution is atoken, a
time interval during which the agent executes a
procedure. A procedure has the following general form:
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P(i1, …, in → m1, …,mkÿo1, …, om; s)
Each ii, mi and oi represents respectively aninput, mode
and output argument. It is possible for any or all ofn, k
and m to be zero. For example, ifn=0, the procedure has
no input arguments. A procedure has also a status values.
Normally, at any time during its execution, a procedure
returns a value for each oj. There are no constraints either
on the order or on the exact time at which output values
are returned. When the procedure returns a value for the
statuss, however, the token is terminated and one or more
tokens may be started. To execute a procedure the value of
all input arguments ii must be known. If so,P can be
called and the time of invocation ofP is the token start
time. The procedure continues execution until one of two
things happen: 1) a status value is returned; or 2) the
agent decides to interrupt the token’s execution (e.g.,
because the token has timed-out, i.e., the current time is
equal to the latest end time of the token). The time at
which this happens is the token end time. While inputs,
outputs and status play an active role in the execution of a
token, the mode arguments play only an indirect role.
Their value is not monitored at execution but can be
arbitrarily modified by a planning activity at any time
during the agent’s problem solving.

Figure 2: Structure of an IDEA agent

Communication Wrapper and Virtual Machine
Figure 2 gives an overview of the basic components of

an IDEA agent. The agent communicates with other
agents (either controlling or controlled by the agent) using

a communication wrapper. The function of this wrapper is
to send messages that initiate the execution of procedures
by other agents or to receive goals that are treated by the
agent as tokens. The arguments and the start and end time
of each received token are treated as parameters used by
the internal problem solving of the IDEA agent to decide
what to do next. An IDEA agent can communicate with
multiple agents both controlling and controlled. Moreover
two agents could mutually control each other. Therefore,
there is no restriction on the communication topology of a
multi-agent system implemented with IDEA agents.
The format of the allowed communications is governed by
the centralModel that describes which procedures can be
exchanged with which external agents. It also specifies
which procedure arguments are expected to be determined
before a goal is sent to another agent (input arguments)
and on which arguments the agent is expecting execution
feedback from some other agent executing the token
(output and status arguments). As we will see this model
is also central to the functioning of the virtual machine.
To communicate with other agents the relay relies on an
underlying inter-process communication mechanism that
is not part of IDEA proper. Our current implementation
relies on the IPC package from CMU (Simmons and
James 2001) and we are also exploring the use of real-time
CORBA (Real-Time CORBA 2002).

Plan Database and Model
The IDEA agent executes tokens only after they have

appeared in a plan maintained in a central database. This
can happen either because a controlling agent has
communicated new goals or because some internal
planning (reactive or deliberative) has generated
appropriate subgoals. Although our reference
implementation is based on the constraint-based EUROPA
planning technology (Jonsson 2000), the use of different
planning technologies is possible as long as they satisfy
IDEA’s requirement. In particular, the database must be
partitioned into a series of parallel timelines, each
representing the evolution over time of a dynamic property
of a subsystem. To be considered for execution, a token
must lay on an appropriate timeline. Sequences of tokens
on a timeline will be executed sequentially and in parallel
with tokens on other timelines. From now on we will
continue discussing IDEA assuming the existence of a
sophisticated constraint representation and propagation in
the database, although this is not a strong requirement of
IDEA.

At any point in time, thePlan Databasedescribes the
portion of the past that is remembered, the tokens
currently in execution, and the currently known future
tokens, including all the possible ways in which they can
execute. Each token parameter (input, mode, output,
status, and start and end time) has an associated variable.
All these variables are connected by explicit constraints
into a single constraint network. For example, the start
and end time variables of each token are always related by
an explicit duration constraint. The network implicitly
restricts the possible value of each argument. The
constraint database provides constraint propagation
services that impose appropriate levels of consistency
(e.g., arc consistency or path consistency) and can restrict
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the range of variables to appropriate sets of values
(possibly a singleton). For example, consider a simple case
with two timelines, one representing the actions of a robot
and the other representing the state of the robot’s on-board
battery. The plan may contain a robot action:

recharge ([10, 20]ÿ ÿ ; nominal)
This takes as input the level of charge of the battery, has

no mode and output arguments, and is expected to return
in a nominal state. The [10, 20] range means that the
actual value of the input battery state of charge must be
between 10 and 20 units for the procedure to be legally
executed. The exact input value could be obtained by
executing a tokenread_state_of_charge (ÿ ÿ soc; s) on
the battery state of charge timeline. Such a token could be
present in the plan and constrained to execute before the
recharge token. The communication of the state of charge
between the two procedures can be obtained by a co-
designation constraint between the output of
read_state_of_chargeand the input ofrecharge.

Tokens and constraints between them must respect the
requirements of the agent’s central domain Model. For
example, the domain model could contain the constraint
that before recharging the battery, it is necessary to
read_state_of_chargefrom the battery. If this is the case,
then rechargewill not be executable unless such model
constraint is satisfied in the plan at the time of execution.

Procedures can be executed only if the value of their
parameters is consistent with the plan database
constraints. The framework does not require that all
database constraints be fully consistent at all times. It is
possible to allow model constraints to be unsatisfied or for
constraints to be inconsistent. The only consistency
requirement is local and pertains to all the tokens that are
currently being executed, about to be executed or that have
already completed execution. This situation is similar to
classic repair-based scheduling methods, where the
scheduler can relax some constraints in the plan and
attempt to satisfy them later. Since inconsistencies can
only involve future tokens, the agent should have a
reasonable belief that there will be a way to fix the
inconsistency before the future tokens involved are
executed. However the latter is not a strong requirement in
this framework since usually it is possible to degrade
performance by rejecting lower priority goals.

Generating and Running Plans
The core execution component of the agent is thePlan

Runner, an extension and generalization of the RA plan
runner. The plan runner is very simple so that it can be
extremely efficient and easy to validate.
The Plan Runner is activated asynchronously when either
a message has been received from another agent (e.g., a
new goal is being communicated or the value of an output
parameter becomes available for execution feedback) or an
internal timer has gone off (e.g., the maximum allowable
duration of a token has been achieved). When the Plan
Runner wakes up, it makes the messages available for
inclusion in the Plan Database and then immediately calls
a Reactive Planner.The Reactive Planner has the
responsibility to return with a plan that is locally
executable. The planner is essentially in charge of
guaranteeing two conditions: (1) consistency of token

parameters with the plan constraints; and (2) support for
the token according to the domain model.

Checking plan constraints is obtained as part of the
constraint propagation within the Plan Database. This
automatically communicates the effect of a received output
or status value to the unexecuted part of the plan.
Similarly, the actual end time for a token is propagated to
the rest of the plan.

Checking model support for a token requires
guaranteeing that a new token must start when the token
immediately preceding on thetimeline ends. Before
starting a new token and invoking the new procedure, the
Reactive Planner checks whether the token is indeed
supported by the model in the plan. This means that there
must be a set of constraints in the plan that corresponds to
a set of requirements necessary for the token execution
according to the model. If this is the case, the Reactive
Planner may further constrain the procedure’s arguments
so that it can be called during the current execution cycle.
This may require constraining the input variables so that
all of the procedure’s input arguments are bound to a
single value. If so, the Plan Runner starts execution of the
token procedure with the input variable found in the plan.

It may be that one of the two conditions above is not
satisfied. This can happen, for example, if the output
returned by a procedure does not match the set of possible
return values in the plan, or if some model constraints are
missing in the plan. For example, the plan runner may be
on the verge of executing arecharge token but the plan
may not have an explicit constraint connecting recharge
with a specific pastread_state_of_chargetoken. In this
case the Reactive Planner has the responsibility to fix the
plan so that execution can continue. This may involve
resolving execution exceptions (such as the missing
constraint betweenrecharge and read_state_of_charge
described before) or refining future token parameters on
the basis of the information received during the execution
of current tokens (e.g., decide to execute a token as early
as possible because of the value of some received output
argument).
The total cycle time of the Plan Runner and Reactive
Planner is bound by a fixed amount of time, the execution
latency (Muscettola et al. 1998). The Plan Runner is
expected to wake up, process all received messages, call
the Reactive Planner, receive termination notification
from the Reactive Planner, send appropriate messages to
external agents and suspend itself within the execution
latency. If this does not happen, then the agent will have
irrecoverably failed and some low-level fault protection
behavior will have to take over control. This hard
requirement ensures that the agent will operate within a
well-defined real time guarantee, a condition that is
usually overlooked in intelligent agents research but is
crucial to the design and implementation of a viable
embedded control system.

Reactive and Deliberative Planning
IDEA allows the use of several planning modules in the

same agent, each potentially using a different internal
logic and working with a different scope. All of these
modules satisfy the same input/output behavior: given an
initial plan database, a planner generates a new plan
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database that satisfies some given plan quality criterion
(Jonsson et al. 2000). For example, the plan quality
criterion may require that all tokens present in the initial
plan database be present in the final plan and be fully
causally supported. This may require removing
inconsistencies present in the initial state, and generating
new tokens and constraints according to the requirements
of the domain model. A planner can be invoked in a
reactive or proactive fashion. The first case occurs within
the execution cycle of the Plan Runner, the second when
the agent anticipates potential problems in the future and
asks the planner to intervene. Deliberative planning can
also be invoked to produce a high quality plan for a future
horizon (e.g., an optimized observation plan for the next
day), an activity that cannot be adequately carried out
within the reactive execution latency. We will discuss later
how this can be accomplished. Here we want to point out
that there is no limitation on how small a planning
problem could be, provided that the generated plan
resolves any local plan flaw that was present in the plan
before the invocation of the planner. For example,
consider our example of an unsupported recharge token.
The plan database may contain a previously executed
token that invokedread_state_of_charge. On the basis of
the domain model it may be determined that the result of
that procedure invocation is still viable as an input to
recharge. Therefore, the planner may simply create the
temporal constraint and the parameter co-designation
constraint from read_state_of_charge to recharge.
Subsequent constraint propagation will assign a unique
value for the input parameter ofrecharge. The plan
quality criterion may allow the planner to stop and signal
the resolution of the flaw. The Plan Runner can now
resume execution and start execution ofrecharge.

Implications of the New Framework

Centrality of the model
The proposed framework strongly relies on a single,

core domain model semantic. Unlike RA where models
were internal to each layer and could have very different
semantics, the common IDEA “modeling assembler”
forces all agents to share the same semantics. At present,
the modeling language used is the DDL language used in
the PS model of the DS1 Remote Agent (Jonsson et al.
2000). Layering of the agent’s functionality depends on
partitioning the overall model into groups of timelines of
different abstraction levels, each being the responsibility
of a separate IDEA agent. For example, RA EXEC’s
action decomposition procedures are implemented by
simply specifying an appropriate set of timelines and
constraints in the model and by relying on fast, reactive
planning for next action selection (see below). Partitioning
a model among several agents is important to
appropriately balance the responsiveness of each control
agent with its ability of taking into account more complex
constraints and longer horizons when deciding the next
step. For example, a decision on what scientific
observation to execute next at the highest level of
abstraction may require looking ahead several steps in the

current plan. This means that the reactive behavior at the
higher level may require a relatively large execution
latency (e.g., 10 seconds). At the lowest level, however,
devices may have to be controlled with a much shorter
latency (e.g., responding to a fault within tens of
milliseconds). This may limit the amount of interactions
and look-ahead that an agent will be allowed to take into
account, trading off responsiveness for myopia. The
coordination between different agents at different levels of
abstraction allows us in principle to achieve the best
compromise and design of the overall control system.
Defining a robust methodology of the design of such a
multi-agent, multi-latency control system is a current area
of research.

In each agent, the plan database always checks
consistency with the domain model. For example, a
planner can lay a procedure invocation on a timeline only
if the procedure type is associated with the timeline in the
model. Also, the plan runner refuses to execute a token
that is locally inconsistent or with partially supported
model requirements.

The model can be acquired incrementally (i.e., one
requirement at a time) during system design and
engineering and at any time it contains all of the known
constraints and desired behaviors in nominal and fault-
protection conditions. Having the model as a single locus
for this information and making the model directly usable
by automatic reasoning systems (e.g., the planners) makes
this knowledge directly usable at execution. This is in
contrast to traditional software practices for complex
systems (e.g., spacecraft flight software), where there is
always a significant gap between specifications (in natural
language or other semi-formal format) and
implementations (a low-level language such as C or C++).

Reactivity
Even within a single IDEA agent, one important aspect

is its reactivity, i.e., the time needed by the agent to decide
what to do next in a way consistent with its predictions
and with its goal. As we mentioned before, short response
times depend on limiting the scope of the planning
problem. Selecting the next action may require significant
effort, requiring the intervention of a “deliberative
planner” to bridge the gap between the current state and
the goals. However, in general the amount of planning
effort depends on the required level of plan quality (e.g.,
your next action must guarantee achievement of all future
goals with minimal resource usage), on how much
information is available before planning, and on the
uncertainty on the values returned by procedure
executions. In several cases the model may force the
choice of the next action (e.g., turn on the heater if the
temperature is too low) but the information needed to
make the decision may not be available ahead of time
(e.g., while the agent is keeping the temperature in range,
it does not know future temperature changes and,
therefore, whether it will need to turn on the heater or the
cooler next). In this case planning may just need to
determine the next token and, therefore, may need very
little time. Later we will discuss how more expensive
planning is integrated in the agent’s behavior.
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Time-bounded response
One of the critical parameters in this agent framework

is theexecution latency, i.e., the time needed by the plan
runner to terminate execution of a token and start
execution of the next on a timeline. At first this would
appear to severely restrict the amount of intelligence that
an agent can bring to bear when reacting to faults. If we
look closer, however, this requirement simply states that a
subsystem (timeline) can remain without commanding for
a maximum amount of time equal to the latency. This
requirement is equivalent to establishing a minimum
sampling rate in a traditional control system. The agent
can react intelligently by relying on a number of pre-
compiled alternative solutions (scripts). When invoked,
the planner could quickly select a script by matching its
plan database with the script applicability conditions.
Then, the planner could download the first token in the
script and immediately signal the plan flaw resolution so
that the plan runner can resume. Subsequently, the
planner can download the remaining tokens in the script.
This script interpretation (together with local replanning
to react to new sensor data) essentially describes the
functionality of the action execution capabilities of the RA
EXEC module.

In some situations there may not be a planner (scripted
or not) that can respond within the latency. In this case the
system will need to provide a “standby procedure”, i.e., a
procedure or combination of procedures that maintains a
safe state while the planner addresses the original plan
flaw. Once the planner solves the problem, the system can
exit the standby state and continue nominal execution.
Note that the standby procedure, the planner behavior and
the “standby exit” procedure are all described in the
domain model and must be loaded into the plan database
like any other procedure. In other words, standby is a
concept that is explicitly modeled like any other system
requirement. The planner will decide to go into standby
within the latency time. This will gain enough time to take
the next steps in a deliberate way.

Modeling the control system
Although a planner may need more time than the

latency to modify the plan database, no special
architectural support is given for this deliberative activity.
For example, the agent may need to call the planner before
a predicted plan flaw will actually appear in execution.
This can be obtained by modeling the planner like any
other subsystem, i.e., by specifying a timeline that can take
tokens whose execution explicitly invokes the planner.
The model may also include constraint requirements for
“planned” planner invocations (Pell et al. 1997). For
example the model may say how to evaluate the time
needed by the planner to produce a solution, and it may
require that planning does not occur in parallel with other
CPU intensive activities. Proactive planner invocations
will therefore appear in a plan. In summary, our
framework does not “hard-wire” the relation between
reactivity and deliberation but allows explicit
programming of the interaction policy with a much wider
and adjustable range of possibilities.

Final Remarks

It is commonly accepted that reactive and deliberative
behaviors in an agent require very different
representations and inference mechanisms. The
framework discussed in this paper aims at providing both
capabilities within a single, simple representational,
planning and execution framework. This unification is
based on the observation that “planning” can be arbitrarily
simple for an appropriate definition of a planning
problem. This can include the selection of the next action
to execute from a script, a typical operation performed by
procedural executives. IDEA aims at supporting all
functionalities of the Remote Agent architecture. We have
generated an implementation of IDEA using the EUROPA
planning technology. We have re-implemented the high-
level control layer of the Remote Agent and are currently
applying IDEA to other applications such as the control of
an interferometry testbed at the Jet Propulsion Laboratory
and an analysis of the low-level fault protection system for
the Deep Space 1 and Deep Impact spacecrafts from JPL.
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Abstract

In this paperwe present�����	��
 ������� , anintegratedplanning
and execution-monitoringsystem. �����	��
 ������� allows the
userto monitor the executionof a plan, interrupt this mon-
itoring processto introducenew informationfrom theworld
and repair the plan to get it adaptedto the new situation.�����	��
 ������� hasbeensuccessfullyappliedto smallproblems
of mobilerobotsnavigationin dynamicenvironments.

Introduction
ResearchonAI planningusuallyworksundertheasumption
that the world is accessible,staticanddeterministic.How-
ever, in dynamicdomainsthingsdo not alwaysproceedas
planned. Interleaving planningandexecutingbringsmany
benefitsasto beableto starttheplanexecutionbeforeit is
completedor to incorporateinformation from the external
world into the planner(Stone1996). Recentworks on this
field analysethe combinationof an executionsystemwith
techniquesas plan synthesisor anticipatedplanning(De-
spouys& Ingrand1999). Otherworkson reactive planning
(Wilkins & Myers1996)aremoreconcernedwith thedesign
of planningarchitecturesratherthanexploiting thecapabili-
tiesof thereplanningprocess(Wilkins 1988).��������� � �!�#"�$

is aplanningsimulatorthatallowstheuserto
monitor the executionof a plan andintroduce/deleteinfor-
mationat any time duringexecutionto emulateanexternal
event. The issueof decidingwhen and how to interleave
planningandexecutionis a well-recognizedproblemandit
is not tackledin thispaper(Ambros-Ingerson& Steel1988).
We will assumeit is theuserwhodecideswhento executea
planstep.��������� � �!�#"�$

is a domain-independent,synchronousre-
plannerthatrepairsaplanwhenthis is no longerexecutable
after the occurrenceof an unexpectedevent. Like other
planning systems(Wilkins & Myers 1996), the objective
of

��������� � � �%"&$
is to avoid generatinga completeplan each

time by retainingasmuchof the original plan aspossible.��������� � � �%"&$
hasbeenspeciallydesignedfor replanningin

STRIPS-like domainsandhasbeensuccessfullyappliedto
a greatvarietyof differentdomains.'

This work hasbeenpartially supportedby projectsDPI2001-
2094-C03-03(MCyT), UPV n. 20010017andUPV n. 20010980.
Copyright c

(
2002, American Associationfor Artificial Intelli-

gence(www.aaai.org). All rightsreserved.

Monitoring the execution of a plan
Replanningis introducedduringplanexecutionwhenanun-
expectedeventoccursin theworld. Oneproblemwith unex-
pectedeffectsis decidinghow they interactwith theeffects
of theactionthatwascurrentlybeingexecuted.Oursolution
is to assumetheactiontookplaceasexpectedandsimply to
insert the unexpectedeffectsafter the executionof the ac-
tion.

Whenan event is producedit is necessaryto verify the
overall plan is still executable. Many replanningsystems
only performapreconditioncheckingto verify whethernext
actionis executable.Thisoptionis lesscostlyandmucheas-
ier to implementin many realapplicationswherethesensory
systemdoesnot captureall predicatesthathave changedin
the problem. However, this apparentlyefficient approach
mayturn out to be inefficient in the long termasmany un-
necessaryactionsmight beintroduceddueto changesin the
planarenot foreseenenoughtime in advance.For instance,
if a roadis blockedoff somemetersaheadbut it is still pos-
sibleto moveonto thenext connectionpoint,amobilerobot
will makeanunsuccessfulmovementasit will haveto back-
trackonceit reachestheblockedroad.

Our proposalis a fastandefficient algorithmthat repairs
the plan as a whole and finds the optimal solution (mini-
mum numberof actions)for most of the testedproblems.
Replanningis alsonecessarywhennew goalsareaddedin
theproblem,but this issueis out of thescopeof this paper.

Graphical interface
Figure1 shows thegraphicalinterfaceto monitora planex-
ecution. The problemcorrespondsto oneof the instances
in the robot domainwhich

�����)�*� � � �%"&$
hasbeentestedon

(this domainwill be explainedlater in sectionAn applica-
tion example). In theleft upperpartof thescreenit is shown
the literals of the currentstateof the execution; the lower
sectionshows the literal goalsor objectivesof thefinal sit-
uation. On theright sideof thescreena graphrepresenting
theplanunderexecutionis displayed.Thecirclesstandfor
theactionsin theplan. Thoseactionsreadyto beexecuted
at thenext timesteparedouble-circled.Theright lowerpart
displaysinformationabouttheactionselectedby theuserin
theupperwindow.

At any time during the simulationit is possibleto mod-
ify the currentstateto introducenew informationfrom the
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Figure1:
��������� � �!�#"�$

maininterfacewindow

externalworld. Throughtheinterfaceshown in Figure2 the
usercaneliminatethoseliteralswhich areno longertrueor
insertnew literalsin thecurrentstate.

Figure2: Interfacefor input information

Replanning during execution
Thereplanningalgorithmstartsfrom thecurrentstatein the
plan execution,whenthe unexpectedeventhasbeeninput.
The objective is to find out which stateshouldbe reached
next in the problemso asto retainasmuchof the original
planasis reasonablewithout compromisingtheoptimalso-
lution. In otherwords,we want to computethat statefrom
which asmany actionsaspossibleof the old plan arestill
applicable.Figure3 shows thethreemainstepsin thealgo-
rithm to obtainthenew plan:1) computethepossiblereach-
ablestates,2) selectthe optimal stateand3) constructthe
final plan.

Figure3: Outlineof thereplanningalgorithm

Next sectionexplainsthealgorithmin detail andthe fol-
lowing oneprovidesanexamplein themobilerobotdomain
to clarify

��������� � � �%"&$
behaviour.+-,/.1032 4�565!7�8

algorithm
Initially, the user is monitoring the executionof a partial
plan 9;:;<>= ?A@ � =CBD@ E�E�EF@G=�H�IJB%�A@G=�HCK , that is
parallelexecutionof a setof sequencesof actions,whenan
unexpectedevent is introducedin the system.The remain-
ing partial plan to be executedis definedas LM:N<O= ?�PQ@� E�E�E���@R= HCKTS�UV= WYXZL[@\=�W]XZ9 and =�W hasnot beenexe-
cutedyet. = ? P representsthenew currentsituation(aninitial
actionwith effectsandno preconditions).�����)�*� � � �%"&$

doesnot handledurative actionsbut allows
parallelexecutionassumingthe costof eachactionis con-
stant.Theobjectiveof

�����)�*� � � �%"&$
is tominimizetheoverall

numberof actionsandmaintainingasmaximumnumberof
parallelactionsaspossible.Following we will explain each
stepof

�6�����*� � � �#"�$
algorithm(Figure4).

Problem Graph (PG). The first stepof the algorithmis
to build thePG,agraphinspiredin aGraphplan-likeexpan-
sion(Blum & Furst1997). ThePGmaypartially or totally
encodethe planningproblem. The PG is a relaxed graph
(deleteeffects are not considered)which alternatesliteral
levels containingliteral nodesandaction levels containing
actionnodes.

The first level in the PG is the literal-level ^ ? and it is
formed by all literals in the initial situation = ?#_ . The PG
creationterminateswhena literal level containingall of the
literals from the goal situation is reachedin the graphor
whenno new actionscanbe applied. This type of relaxed
graphis commonlyusedin many heuristicsearchplanners
(Haslum& Geffner 2000)(Hoffmann& Nebel 2001) as it
allows to easilyextractanapproximateplan.

Necessary states. Secondstepis to computethe neces-
sarystateto executeeachactionin L . A necessarystatefor
anaction = W is thesetof literalsrequiredto execute=�W andall
its successors(

��`�a�a <O= W K ). In orderto computethenecessary
states,literalsarepropagatedfrom thegoal = H to thecorre-
spondingactionby meansof therecursiveformulashown in
thealgorithm(step2 in Figure4).

Set of possible reachable states. This setcomprisesthe
necessarystatesto executea setof parallelactions

� =�Wb� and
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Algorithm
��������� � �!�#"�$

( L ) @ plan L	_
1. Build a Problem Graph (PG) alter-
nating literal levels and action levels
( ^c?!dfegB#df^hB#dTe	i�d�E/EjE ), where:ehk = � =&k : ��$l" <>=&k#KmX1^nk IVBno =&kpSXqe W dfrcsDt��^ k :u^ k IVBwvyxcz z�<>=�K�U{=pX|e k
2. Compute the necessary state, }w<>=�K ,
for each =pX~L
}w<>= W Kc:

�� � �#�-�&� X ��$l" <O= HCK��!dfr-:u�������� ���������j���>� }�<>=&k%K � < ��$j" <>= W K-�Zxcz z{<>= W KfK���)���%� ����� �b� �j���O� xcz z{<>=���K�d otherwise
where:� "� #¡ <>= W K3: � =�k¢X£L o = W @¤=&k����`�a�a <>= W KY: � k =�k¢X~LQS�= W @;E�E�E�@¤=&k���&$¥� � <O=�W�Kc: � = k X~L o = k SX �{`#a�a <>=�W¦K o =�WFSX ��`�a�a <>= k K��
3. Compute the set of possible reach-
able states §g}D: � }w<O¨�B�K�d�E�E�E�dT}�<>¨�HCK�� , where:¨ W : � = B df= i d�E�E�E���S�U ©1X ���%¡�ª <f«nKc@N¬{&=��)X®© o =��)X£¨ W
���%¡�ª <¯«nK is the set of all possible paths
between = ? P and = H and }w<O¨ W K3: �±°������!²¦� }�<>=&k%K .
4. Select the optimal reachable state}J³�´�µm:¶= ·%¸ ¹1r¦� �#º <>»�K � »¼X½§¢}]� , where

º <>»�K¾:¸V<�»�K�¿AÀ�<�»{K .
5. Construction of the final plan L	_Á:<>= ?�P�@ � E�E�E/�F@N}J³�´�µ¯KJÂÃ<O}*³¦´�µc@ � E�E�E��Q@N= HCK .

Figure4:
�6�����*� � � �#"�$

algorithm

all their successors
��`�a�a � = W � . A statewill be definitely

reachableif its literals make up a feasiblesituationin the
new problem.

In atotally sequentialplan L , thepossiblereachablestates
will coincidewith the necessarystatesto executeeachac-
tion in L . However, when L comprisesparallelactionsit is
necessaryto computethe combinationsof parallelactions,¨ W , suchthat eachelementin ¨ W belongsto a differentpath
from the currentstateto the goal state. In otherwords, ¨�W
is a setof actionsthat canall beexecutedat thesametime
step.Consequently, thenecessarystateto executeactionsin¨ W denotesastatepossiblyreachablefrom = ? _ .

Optimal state. In order to selectthe optimal reachable
state,wedefineaheuristicfunction

º <>»�Kc:u¸{<>»�K6¿ÄÀ�<�»{K as-
sociatedto thecostof aminimalplanfrom thecurrentsitua-
tion = ? _ to thegoalstate= H overall pathsthatareconstrained
to go throughnode» . ¸V<�»�K is thecostof theplanfrom » to=�H andis calculatedstraightforwardfrom theoriginal plan.À�<�»�K is theestimatedlengthof anapproximateplan 9¢_ from= ? _ to » . An outlineof thealgorithmto computetheapprox-
imateplanis shown in Figure5.

Step 3.1. Firstly, we form a set Åg9ÇÆÈ^ with the

Algorithm Approximate plan ( = ? _Odf» ) @
plan 9¢_
1. Build a fictitious action = H _ with
preconds and no effects associated to
state »
2. 9¢_�:m= ?�_�@¤=�H�_
2. ^É:m»p�Äxcz!z�<>= ? _¥K .
3. while ^ËÊ:ÃÌ

3.1 select
� X£^

3.2 select best =&k for
�

3.3 insert =&k in 9¢_
3.4 update ^

4. return 9¢_
Figure5: Outlineof the algorithmto build an approximate
plan

unsolved preconditionsof the nearestaction = to = ?�_ . IfÍ Åg9 Í�ÎÐÏ
then literals which appearlater in the PG are

removedfrom Å¢9 . If again
Í Å¢9 Í�ÎÃÏ

wecountthenumber
of waysof solvingeach

� XÑÅg9 (
� =DXÒe W �J� XÒ^nk o � Xxcz!z�<>=�K o rÓsF:Ôt�� ), andselectthe literal with the lowest

numberof actions.
Step 3.2. The bestactionfor

� X �*$l" <O=�K will be the ac-
tion = k whichminimizesthenumberof flaws(preconditions
not yet solved or preconditionsof otheractionswhich are
deletedby = k ). To computethenumberof flaws we have to
checkall possiblepositionsof =&k in the plan provided that= k sÕ= .

Step 3.3. Thenew action = k is insertedin thepositionob-
tainedin thepreviousstep.This positionmaybesequential
- betweentwo actions-or parallelto oneor moreactions.In
this lattercase,it mustbepossibleto executeall actionsin
parallel,i.e. noneof theactionswill requireand xcz!z effect
of anotheractionor deleteany of its preconditions.When
this is not possible,actionsmustbeexecutedsequentially.

The length of the returnedplan 9¢_ will be the valueof
the heuristicfunction À*<>»�K . Someof the propertiesof the
heuristicfunctionare:Ö if » is aninconsistentor non-reachablestate(all literalsin» cannotbetrueat thesametime), À�<�»{K returns× ,Ö if » is reachablefrom = ? _ sowill bethestatesfollowing » .

This helpful informationreducesvastly the costof com-
puting À*<>»�K ,Ö althoughÀ�<�»{K is a non-admissibleheuristic,it returnsthe
optimalstatefor mostof thetestcasesin empiricalevalu-
ations.

An application example
In this sectionwe show thecorrectbehaviour of our replan-
ningsystemthroughaproblemin themobilerobotsdomain,
themail deliveryproblem. We want to solve the following
problem:therearethreelettersC1, C2 andC3, initially lo-
catedin thestoreS, andthreerobotsR1, R2 andR3 which
arealsoat the storein the initial situation. Letter C1 must
bedeliveredto officeO-13, C2 to O-20 andC3 to O-6. The
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Figure6: Robotdomain

robotscanonly move throughthe referencepointsor from
oneoffice to a referencepoint andvice versafollowing the
connectionlinesin Figure6.

Theoperatorsin thedomainare Ø!Ù Ú $ Ù �¾Û » Û�ÜÝÛ · whereÛ · is a robot and
Û » and

Û�Ü
representa referencepoint, an

office or the store, Þ � a�ß ` Þ Û ¨ Û · and z "&� � à%"&$ÓÛ ¨ Û » Û · ,
where

Û ¨ is oneof theletters,
Û · onerobotand

Û » oneof the
locations.

Oneof theoptimalsolutions(w.r.t. theoverallnumberof
actions)for thisproblemconsistsof threeparallelsequences
of orderedactions,eachsequencebeinga thesetof actions
to beexecutedby oneof therobots(Table1, 2, 3). Another
solutionwould beto sendR1 to transportC1 androbotR2
or R3 to deliverfirstly C2 andC3 afterwards.

Table1: Optimalplanfor themail deliveryproblem(Robot
1)

Time Sequence 1
t1 a2 Þ � a�ß ` Þgánâ¢ã-â
t2 a5 Ø&Ù Ú $ Ù �m�ä$ â¢ã-â
t3 a8 Ø&Ù Ú $ Ù �¾$ â $ â�åÝã-â
t4 a11 Ø&Ù Ú $ Ù �¾$ â%å�æ â�å®ã-â
t5 a14 z "�� � à#"�$ ácâFæ â%å�ã-â

The new situationoccursafter executingactionsat time
t2 whenboth ã{ç and ã{å aresituatedat

$ ç and ã-â at
$ â .

At this time the userchangesthe currentstateandinforms
the planningsystemthat the aisleconnectingoffices æ â�è ,æ â%é , æ â%ê etc. through

$ å is blocked. Therefore,officeæ ç!ë is only accessiblethrough the other extremeof the
aisle,i.e through

$ ì
. Theremainingplan L to beexecuted

will comprisethesetof actionsof eachsequencefrom t3 to
t7.

Next stepis to computethe necessarystatefor eachac-
tion in L . On doing this throughthe propagationprocess
explainedin the previous section,

�6�����*� � � �#"�$
detectsthat

Table2: Optimalplanfor themail delivery problem(Robot
2)

Time Sequence 2
t1 a3 Þ � a�ß ` Þgá*çÝã�ç
t2 a6 Ø!Ù Ú $ Ù �Ã�Ó$ çÝã{ç
t3 a9 Ø!Ù Ú $ Ù �í$ ç $ å®ã{ç
t4 a12 Ø!Ù Ú $ Ù �í$ å $ â%ë®ã�ç
t5 a15 Ø!Ù Ú $ Ù �í$ â�ë±æ ç&ë®ã{ç
t6 a17 z "�� � à#"�$ áJç�æ ç!ë®ã�ç

Table3: Optimalplanfor themail delivery problem(Robot
3)

Time Sequence 3
t1 a4 Þ � a�ß ` ÞQá*åÝã{å
t2 a7 Ø&Ù Ú $ Ù �Ë�ä$ çÝã{å
t3 a10 Ø&Ù Ú $ Ù �[$ ç $ åÝã{å
t4 a13 Ø&Ù Ú $ Ù �[$ å $ î ã{å
t5 a16 Ø&Ù $ î®$ èÝã�å
t6 a18 Ø&Ù $ è�æ ê®ã{å
t7 a19 z "&� � à%"&$ á*å±æ êÝã{å

action =CBbi is not executablebecauseit is not possibleto go
from

$lï
to

$>ð�ñ
. Therefore,thereis noneedto compute}w<>=�ò%K

because= Bbi is a successorof = ò . Notice that a necessary
state }w<O= W K is the setof literals to executeaction = W andall
its successors;consequently, thereis no feasiblenecessary
statefor =�ò and noneof its predecessoractionssince the
partof theplanfrom =�ó up to = Bbi is not reusableany more.
Thisdeterminesthat

�����)�*� � � �%"&$
doesnot reuseany partsof

aplanthatcomebeforea failedaction.
Oncewe know =�ò and =CB¯i arenot executableand, tak-

ing into accountthat L containsparallel sequencesof ac-
tions,we build all possiblecombinationsof parallelactions
to form the reachablestates. Thesecombinationswill be� }w<O= ô�K v)}w<>=CB¯õ%K�v)}w<>=CBb?#K�� , � }�<>=�ô�K�v�}w<O=CBbõ#K�v�}w<O=�B ó K�� , ...,� }w<O= ô�K�vä}w<>=CB¯ö�K{vä}w<O=CB�?#K�� , etc.Thenweapplytheevalua-
tion functionto eachreachablestate.Theresultsareshown
in Table4.

For stateã � â theheuristicvalueis 6, whichis thenumber
of actionsto transformthe currentstateinto a statewhereã�â is at

$ â ( }w<>= ô K ), ã{å is at
$ ç ( }w<O= B�? K ), and ã{ç is at

$ â%ë
( }w<O= Bbõ K ). Noticethatit is not necessaryto applyany action
to reach }�<>=�ô�K or }w<>=CBb?%K , and the minimal lengthplan to
reach}w<>=CB¯õ�K is 6.

Valuesfor statesã � ç , ã � å , ... arenot shown in the ta-
ble asthesenodesareprunedwhenthe computedvalueis
greaterthan

º <fã � â�K . Next bestvalueis
º <fã � ê!K . Theheuris-

tic functionalsoreturnsavalueof 6 sincethis is thenumber
of actionsto deliver áJç in æ ç&ë from thecurrentstate.How-
ever, thevalueof ¸V<�»{K , lengthof theplan to reachthegoal
state,is shorterthanfor

º <fã � â�K andconsequentlythis is the
optimalreachablestate.

Notice that in this example À�<�»�K always returnsa value
equalto À�÷�<�»�K (costof optimal path),which is not always
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Table4: Evaluationof reachablestates( ø meansthenodeis
pruned)

Reachablestate À�<�»{K ¸V<�»{K º <�»{Kã � â }w<>=�ù KVvÓ}w<O= Ï%ú KVv£}w<O= Ï Ì!K 6 10 16ã � ç }w<>=�ù KVvÓ}w<O= Ï%ú KVv£}w<O= Ï�û K ø 9 ×ã � å }w<>=�ù KVvÓ}w<O= Ï%ú KVv£}w<O= Ï�ü K ø 8 ×ã ��î }w<>=�ù KVvÓ}w<O= Ï%ú KVv£}w<O= Ï ù!K ø 7 ×ã � è }w<>=�ù KVvÓ}w<O= Ï%ú KVv£}w<O= Ï�ý K ø 6 ×ã � ê }w<>=�ù KVvÓ}w<O= Ï#þ KVv£}w<O= Ï Ì!K 6 9 15ã ��ÿ }w<>=�ù KVvÓ}w<O= Ï#þ KVv£}w<O= Ï�û K ø 8 ×ã � é }w<>=�ù KVvÓ}w<O= Ï#þ KVv£}w<O= Ï�ü K ø 7 ×
...... .... ... ... ...ã ��� }w<>= Ï!Ï K v±}w<>= Ï#ú K v±}w<>= Ï Ì!K ø 9 ×
...... .... ... ... ...ã ��� }w<>= Ï!Ï K v±}w<>= Ï�þ K v±}w<>= Ï Ì!K ø 8 ×
...... .... ... ... ...ã ��� }w<>= Ï�� K v±}w<>= Ï#ú K v±}w<>= Ï Ì!K ø 8 ×
...... .... ... ... ...ã � � }w<>= Ï�� K v±}w<>= Ï�þ K v±}w<>= Ï Ì!K ø 7 ×
...... .... ... ... ...ã ��� }w<>= H K ø 0 ×

the case. Moreover, the other feasiblesolution for ã{ç to
deliver letter á*ç through

$ å , $ î ,
$ è , $ ê , $ ÿ , $ é and

$ ì
hasnot even beencalculated.This is becausethe Problem
Graphfinishesat the first literal level at which the goal lit-
eralsappearandtheapproximateplanfoundfrom this level
correspondsto theminimal lengthplan.

Finally, a plan from =�Ì&_ to the bestreachablestate §¢} ü
is generated.This plan(Table5) is composedof six actions
andit is theoptimalsolution.This planwill beaddedto the
remainingplan L thusgivenriseto theplanshown in Figure
7.

In orderto build theplanshown in Table5,wehavedevel-
opedaplanningalgorithmthatusesthesamedatastructures
andheuristicevaluationthan

�����)�*� � � �%"&$
. Theplannerhas

beendesignedto returnaplanactionby action,startingfrom
thefirst executableaction.Currently, weareworking on the
full integrationof theplanningandreplanningalgorithmsto
getplanningandexecutionrunningconcurrently.

The plan obtainedwhen computing À�<�»{K is usedas an
upperboundto the planner. For mostof the testcases,the
planreturnedby theplannerwasthesameastheobtainedin
thecomputationof À*<>»�K .

Figure7: Finalplanfor therobotdomain

Table5: Optimalplanto reach§¢} ü
	�
� currentstate
	���� Ø&Ù Ú $ Ù �í$ ç $ â±ã{ç
	���� Ø&Ù Ú $ Ù �í$ â $ â�å®ã{ç
	���� Ø&Ù Ú $ Ù �í$ â�å $ â%ç�ã{ç
	���� Ø&Ù Ú $ Ù �í$ â�ç $ â!âgã{ç
	���� Ø&Ù Ú $ Ù �í$ â&â $ ì ã{ç
	���� Ø&Ù Ú $ Ù �í$ ì æ ç!ë�ã{ç
	���� optimalreachablestate

Experimental Results��������� � �!�#"�$
hasbeentestedin severaldomainswith differ-

ent type of input informationaboutthe currentstate. The
testeddomainsareHanoi,Monkey, Blocks-world, Logistics
andMobile robotsnavigation.For eachof thesedomainswe
have introducedseveralunexpectedchanges:Ö Hanoi: theappearanceof new disksandmodificationsin

thelocationof theexisting disksÖ Monkey: changesin the locationof several objects(the
monkey, thebananas,theknives,theboxes,etc.)Ö Blocks-world: samekind of modificationsasin theHanoi
domain,Ö Logistics: we introducedunexpectedevents as break-
downsin planes.In thiscaseit is necessaryto replansome
of the routesasthereareplanesthatareno longeravail-
able.Ö Mobile robotsnavigation: we have testedseveral situa-
tionslike blockingoff thepathfollowedby a robotor us-
ing up thebatterypowerof a robot.

In all cases,theobtainedplanwastheoptimalone.Figure
8 shows thecomparative timesfor sevendifferentproblems
betweengeneratinga completeplan from scratchor repair-
ing only theaffectedpartsof theplan(replanningprocess).
Temporalcostfor replanningincludesthecostof computing
the reachablestateplus time for generatingthe plan. The
lessmeaningfulthechangesarethegreaterthesaving time
is (in figure8, ’slightchanges’meanmodificationsthatonly
affect a small partof the planwhereas’major changes’are
thosewhich affect the mostpart of the plan). In problem
P7, thenew currentstateforcesto createa completelynew
plan so the costof replanningis slightly higher. The com-
plexity of thetestedproblemsis not very high (for instance,
examplesupto seventeenblocksweretestedin blocks-world
domain).

We have also made the same tests with planner��� x � ç&ë&ë!ë (Fox & Long 1999)(Bacchus2000). The time
differencebetweenplanning and replanningis about the
sameproportionastheresultsshown in Figure8.

Wehavenotconsideredherethequalityof plansresulting
from replanningversusplanningfrom scratch.However, we
can affirm that in case À*<>»�K returnsthe optimal value the
quality of a completelynew plan - in termsof numberof
actions-is not greaterthantheobtainedwith thereplanning
process.
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Figure8: Comparative results:generatinga completeplan
versusreplanning

Conclusions��������� � � �%"&$
is a planningand executionsystemwhich al-

lows the user to monitor the execution of a plan, inter-
rupt the monitoring to input new information and repair
the plan underexecutionwhenan unexpectedevent is in-
put.

��������� � � �%"&$
performsan executionmonitoring rather

than simply testingthe next action to execute. This way,��������� � � �%"&$
anticipatesforthcomingsituationsand adjusts

theplanin accordance.
The key point in

��������� � �!�#"�$
is the replanningmod-

ule.
��������� � �!�#"�$

usesagraph-basedplanningapproachsup-
portedby heuristicsearchtechniquesto efficiently replanin
dynamicenvironments.AlthoughwecannotguaranteeÀ*<>»�K
is an admissibleheuristicfunction, the obtainedresultsare
alwaysoptimalor closeto theoptimalsolution.

�����)�*� � � �%"&$
is alsoableto computea very fastsolution,oneof themost
importantrequirementsin replanningsystems.

Along with the replanningmodule,we have developed
anheuristicplannerwhich builds anexecutableplanaction
by action. Our next goal is to integrateboth algorithmsin��������� � � �%"&$

soasto obtainasinglesystemfor planningand
executionconcurrently. Additionally, we intend to extend��������� � � �%"&$

to dealwith timeandconsumableresourcesand
obtain optimal responsesin termsof distances,fuel con-
sumption,time,etc.
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1 École des Mines de Nantes – BP 20722 – F-44307 Nantes Cedex 3 – France

2 IRCCyN – Institut de Recherche en Communications et Cybernétique de Nantes
email:{aelkhyar, gueret, jussien }@emn.fr

Keywords: Dynamic scheduling, repair-based techniques, explanation-based constraint programming,
Resource-Constrained Project Scheduling Problem.

Introduction

Scheduling problems have been studied a lot over the last
decade. Due to the complexity and the variety of such
problems, most works consider static problems in which
activities are known in advance and constraints are fixed.
However, every scheduling problem is subject to unexpected
events (consider for example a new activity to schedule, or
a machine breakdown). In these cases, a new solution is
needed in a preferably short time taking these events into
account and as close as possible to the current solution.

In this paper, we present an exact approach for solv-
ing dynamic scheduling problems. This approach uses
explanation-based constraint programming and operational
research techniques. Our tools have been designed for a gen-
eral scheduling problem: the Resource-Constrained Project
Scheduling Problem (RCPSP).

Problem description

The RCPSPcan be defined as follows: letA = {1, . . . , n}
be a set of activities, andR = {1, . . . , r} a set of renew-
able resources. Each resourcek is available in a constant
amountRk. Each activityi has a durationpi and requires
a constant amountrik of the resourcek during its execu-
tion. Preemption is not allowed. Activities are related by
precedence constraints, and resource constraints require that
for each period of time and for each resource, the total de-
mand of resource does not exceed the resource capacity. The
objective considered here is to find a solution for which
the end of the schedule is minimized. This problem, de-
noted byPS/prec/C max (Bruckeret al. 1999), isNP-hard
(Blazewicz, Lenstra, & Rinnoy Kan 1983).

The staticRCPSPhas been extensively studied (Bruckeret
al. 1998). A major difficulty in this problem is to maintain
the resource limitation over the horizon time. Several deduc-
tion rules exist:core-times(Klein & Scholl 1999),energetic-
reasoning(Erschler & Lopez 1990),task-interval(Caseau &
Laburthe 1996), etc.

The dynamicRCPSP is seldom studied. Two classical
methods are used to solve it:

• recomputing a new schedule each time an event occurs.
This is quite time consuming and may lead to a solution
quite different from the previous one.

• building a partial schedule and completing it progres-
sively as time goes by (like in on-line scheduling prob-
lems). In this case the schedule cannot be constructed in
advance.

Recently, (Artigues & Roubellat 2000) introduced a for-
mulation of theRCPSPbased on a flow network model. They
developed a polynomial algorithm based on this model in or-
der to be able to insert an unexpected activity.

Explanation-based constraint programming
Constraint programming techniques have been widely used
to solve scheduling problems (Klein 1999). Constraint pro-
gramming is based upon the notion ofconstraint satisfaction
problems.

A constraint satisfaction problem(CSP) consists in a set
V of variables defined by a corresponding set of possible
values (the domainsD) and a setC of constraints. A solu-
tion for theCSPis an assignment of the variable such that all
the constraints are satisfied.

Explanation-based constraint programming (e-
constraints) has already proved its interest in many
applications (Jussien 2001). This section recalls what is an
explanation and how it can be used.

Explanations
In the following, we consider aCSP (V, D, C). Decisions
(variable assignments) made during the enumeration phase
of the resolution of this problem correspond to adding or
removing constraints from the current constraint system (eg.,
upon backtracking).

A conflict set (a.k.a. nogood) is a subset of the cur-
rent constraints system of the problem that, left alone, leads
to a contradiction (no feasible solution contains a con-
flict set). A conflict set divides into two parts: a subset
of the original set of constraints (C ′ ⊂ C) and a sub-
set of decision constraints introduced so far in the search:
¬ (C ′ ∧ v1 = a1 ∧ · · · ∧ vk = ak).

In a conflict set composed of at least one decision con-
straint, a variablevj is selected and the previous formula
can be rewritten as1: C ′ ∧∧

i∈[1..k]\j(vi = ai) =⇒ vj 6= aj

1A conflict set that does not contain such a constraint denotes
an over-constrained problem.
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The left hand side of the implication constitutes anelim-
inating explanation for the removal of valueaj from the
domain of variablevj and is notedexpl(vj 6= aj).

ClassicalCSP solvers use domain-reduction techniques
(removal of values). Recording eliminating explanations
is sufficient to compute conflict sets. Indeed, a contradic-
tion is identified when the domain of a variablevj is emp-
tied. A conflict set can easily be computed from the elim-
inating explanations associated with each removed value:

¬
(∧

a∈Dvj
expl(vj 6= a)

)

There exist generally several eliminating explanations for
the removal of a given value. Recording all of them leads to
an exponential space complexity. Another technique relies
on forgetting(erasing) eliminating explanations that are no
longer relevant2 in the current variable assignment. By do-
ing so, the space complexity remains polynomial. We keep
only oneexplanation at a time for a value removal.

Using explanations

Explanations can be used in several ways (Jussien 2001).
For example, when debugging, explanations can be used
to: clearly explain failures, explain differences between in-
tended and observed behavior for a given problem (why is
valuen not assigned to variablex ?).

Explanations can also be used to determine direct or in-
direct effects of a given constraint on the domains of the
variables of the problem, and for dynamic constraint re-
moval. This is the case with the justification system used
in (Bessìere 1991) for solving dynamicCSP. This justifica-
tion system is actually a partial explanation system. More-
over, being able to explain failure and to dynamically re-
move a constraint facilitates the building of dynamic over-
constrained problem solvers.

We added explanation handling within a branch and
bound algorithm in order to provide a dynamicRCPSPprob-
lem solver.

Solving dynamic RCPSP
We developed an environment for solving dynamicRCPSP
that is based upon:

• a branch and bound algorithm (inspired from (Bruckeret
al. 1998)) within a constraint programming solver: at
each node, deduction rules are applied in order to deter-
mine redundant information. In the following, we call
constrainteach initial constraint of the problem (prece-
dence and resource constraints), but also each decision
taken by the branching scheme, and each deduction made
(thanks to propagation rules) during the search.

• an extensive use ofexplanations. Explanations are
recorded during the search, and improved thanks to prop-
agation rules (namelycore-timesandtask-interval) which
have been upgraded in order to provide a precise explana-
tion for every deduction made.

2An explanation is said to be relevant if all the decision con-
straints in it are still valid in the current search state.

Our environment can efficiently handle dynamic events.
Indeed, an unexpected event leads to add, modify or remove
a constraint in the system. In the first two cases, if the cur-
rent solution is no more valid, then the explanations tell us
which are the constraints responsible of the contradiction.
Repairing is done by removing at least one constraint from
the explanation. The resulting solution is generally quite
similar to the previous one, and is found faster than if we
have had to solve the problem from scratch.

Notice that, as we saw before, if the constraints of the
explanation are only initial constraints of the problem, then
the problem is over-constrained. In this case, our system
explains to the user why the problem has no solution. Re-
sponsible constraints can therefore be relaxed.

Conclusion
We developed a dynamic environment for solving general
scheduling problems which can let the user interact with
his/her problem: define a new time-window for an activ-
ity, add/remove precedence constraints, add/removemust-
overlapconstraints (i.e. stating that two activities must over-
lap), define/reduce/remove a required time-lag between two
activities, etc.

We are currently experimenting our tools in order to show
the interest of a real dynamic approach compared to re-
execution from scratch. We do expect promising results.
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This position paper presents the constraint technology that 
has been developed 1 at THALES since 1997 for introducing 
Constraint Programming (CP) in THALES operational 
systems (see [Givry.et.al01a] for a longer presentation). 
These systems involve combinatorial optimization problems 
such as planning and scheduling problems that can be 
expressed with finite-domain variables and constraints. 
Typical examples of THALES systems concern supervision, 
for weapon allocation, radar configuration, weapon 
deployment and aircraft sequencing. All these systems are 
subject to specific requirements coming from the 
operational constraints of embedded real-time systems and 
from the strategic context of Defense applications: 
• The system involves several functions/tasks such as 
situation assessment, resource management, visualization, 
etc.; each task is periodical and the period can be much 
shorter than a second; 
• There is a memory space limit (a few megabytes); 
• The system has to be supported for a long time, typically 
over 20 years for Defense applications, including several 
retrofitting (functional and platform evolutions); 
• The system can be reused and modified for building a 
specific system for a new client (product line); 
• The development of the system must be made and 
mastered in house for reasons of confidentiality and market 
protection. 
 
The CP paradigm partially meets these requirements. A 
constraint model has modularity properties, i.e. 
adding/removing a constraint is easy, which enables an 
incremental development process, reducing the 
development time and effort. CP solvers provide efficient 
algorithms through the use of global constraints. The 
declarative nature of CP enables the programmer to focus 
on the application requirements rather than on debugging 
low-level programming errors. Validated CP models can be 
reused in a product line approach. 
Unfortunately, off-the-shelf CP solvers do not provide any 
guarantee on time and space usage. The classical 
backtracking search algorithm used in CP does not take into 
account any time contract. Recently an effort was made to 
provide better search algorithms in CP solvers, for instance 
                                                 
1 This work is partially funded by the EOLE project [Eole01].  

in [Beldiceanu.et.al98,Laburthe98,Perron99], but without 
any explicit time contract. Our aim is to extend CP solver 
with new search features that would keep the same nice 
software engineering properties as for modeling. This led to 
develop a high-level language for designing search 
algorithms. This approach allows to propose a set of search 
primitives on top of the real-time finite-domain constraint 
solver Eclair© [Laburthe.et.al98,Platon01]. The resulting 
search algorithms are based on partial search methods and 
take into account the time contract explicitly. Such 
algorithms can take advantage better of platform 
evolutions.  
 
Eclair offers time and space guarantees. Deadlines are 
guaranteed by the operating system alarm and Eclair is able 
to restore a coherent state after an interruption in order to 
deliver a valid solution, or just a partial solution (when not 
all variables are instantiated). The memory allocation for the 
constraints is static: a global constraint model is built once 
and only parts of the model are made active and used at a 
given cyclical call. The memory consumed during the 
search is limited by using only restricted depth-first search 
or restricted best-first search.  
 
Partial search methods are anytime algorithms 
[Zilberstein96] based on tree search methods having better 
quality profiles than the classical backtracking search 
algorithm. The main idea is to apply some arbitrary limits on 
the nodes visited in the tree search2, depending on the 
behavior of the heuristics and on the remaining 
computation time. We distinguish four approaches: the 
iterative weakening methods (e.g. [Harvey&Ginsberg95]), 
the real-time search methods (e.g. [Korf90]), the iterative 
sampling methods (e.g. [Gomes.et.al98]) and the 
interleaving methods (e.g. [Meseguer97]). These methods 
use one or several search schemes3. The practical 
complexity of the search can be increasing, self-adjusting, 
or stable. In [Givry.et.al99], we propose the notion of 
parameterized search applied to one search scheme. The 
                                                 
2 This description of partial search is compatible with the depth-
first search principle. In [Perron99], partial search methods are 
based on the order of  node exploration, which is memory 
consuming. 
3 A search scheme is a procedure which describes a search tree. 
For example, a combination of choice points. 
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parameters of the search limits are given explicitly. We can 
tune the degree of incompleteness of the search by varying 
the values of the parameters. A tuning policy indicates the 
relevant values of the parameters for different time 
contracts. In [Givry.et.al01b], we integrate the parameterized 
search approach into a hybridization scheme  to express 
partial search based on several search schemes. The 
hybridization scheme is a sequence or an interleaving of 
parameterized searches. The searches can cooperate by 
exchanging solutions. A time-sharing policy specifies how 
to distribute the time contract to the searches.  
 
Our constraint optimization framework is called ToOLS© 
(Templates Of On-Line Search). A search algorithm is 
expressed in ToOLS as the conjunction of four distinct 
components: 
• A set of heuristics to rank every choice; 
• A set of primitives to express a search scheme 
independent of any time limit; it  is composed by predefined 
choice points and combinations of choice points as in the 
OPL language [Hentenryck99]; 
• A set of primitives to express the search limits that 
depend on the current node, the current path or the current 
sub-tree; the resulting parameterized search algorithm 
controls the size of the explored search tree defined by one 
search scheme; 
• A temporal strategy defined by a hybridization scheme, 
i.e. a cooperation of several parameterized searches, dealing 
with time allocation and selecting the tuning strategy of the 
parameters (static tuning, iterative tuning or adaptive 
tuning).  
A template of search defines an abstract component of a 
search algorithm that can be reused to speed up the 
development process of customized partial search 
algorithms. This framework makes it easier to try new 
combinations of search limits and new temporal strategies.  
 
Experiments on the weapon allocation problem show that 
partial search algorithms significantly improve the solution 
quality compared to a traditional approach [Givry.et.al99] 
and also demonstrates the gain in development time of new 
customized search algorithms. The code is clearer and more 
concise when using the search primitives. Another 
application in the Telecom domain is currently tested in our 
framework [Eole01].  
 
The hybridization scheme is a way to define specific local 
search methods, such as large neighborhood search based 
on a sequence of partial searches in different 
neighborhoods. Pure local search methods could also be 
introduced in our framework as a black-box used by the 
hybridization scheme. The temporal control could be 
enhanced by an on-line learning mechanism, using the fact 
that similar problems are repeatedly solved in a real-time 
system. [Crawford.et.al01] gives the base for this  
mechanism. 
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Abstract

As the number of spacecraft involved in Space
Systems increases in satellite constellations or
large satellite fleets, improving operations
efficiency becomes an important goal of satellite
operators, while maintaining a high level of safety,
reliability and flexibility.

ASTRIUM has developed an Operations Schedule
Manager that integrates dynamic, reactive
scheduling and schedule execution, which is now
operational in control centers.

Introduction

Improving operations efficiency and managing the
complexity of fleet management are expected from
operations automation (relieving operator from
routine operations), operations concepts
unification between heterogeneous satellites, and
resource sharing (e.g. antennas).

Dynamic schedule management and schedule
execution are critical to reach these goals.

In addition, the very high level of safety and
service availability requirements for Space
Systems must be maintained. These needs translate
into operations flexibility and reactivity
requirements.

This paper deals with the interactions between
planning and execution, across :

• Operational requirements for dynamic
scheduling and schedule execution

• The Schedule Manager approach and its
implementation

Operational requirements

In addition to standard task scheduling constraints,
satellite operations generate constraints such as
transition delays (antenna pointing and lock),
resource compatibility and links between ground
and satellite resources.

A critical aspect of operational scheduling is the
necessary ability to always produce an executable
schedule even when all constraints cannot be
satisfied. This must rely on operational rules such
as priority ranking between tasks and constraints.

Schedule execution control requirements

Schedule execution must support either automated
tasks executed by applications or manual tasks
whose progress is indicated by operators.

The user interface must provide means to
manually control task execution (acknowledgment,
restart, abortion) and to modify task properties
(such as their duration, priority, etc.).

On-line scheduling requirements
A frozen schedule is not compatible with
emergency operations. Reactivity and flexibility
are key operational requirements

Reactivity is the capacity to update the schedule
according to upcoming events in near real-time.
Events may be : task start, task termination, task
duration extension, etc. Consequences of these
events must be propagated as soon as they occur,
providing controllers with a consistent view of the
future at any time.

Flexibility means the capacity to manage
resources allocation in real-time and to edit  the
schedule at any time. The main requirements are
the following :

• Asynchronous short-time re-scheduling,

• Immediate scheduling of new unplanned tasks
for emergency execution,

• Automated postponing of tasks that are
waiting for resources used by other tasks,

• Assisted switching to backup resources in
case of failure,

• Interruption of on-going tasks for allocating
already used resources to higher priority tasks

• Manual allocation of resources to override
automated scheduling
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Integration of  Scheduling and Execution

We propose an approach where resource
optimization and operations execution are fully
integrated in a single application, the Schedule
M anager . The Schedule Manager is at the same
time a scheduling server  and an execution
controller .

At the heart of a the control center client-server
architecture, the Schedule Manager acts as the
orchestra conductor of the Ground Segment : it
allocates resources, drives equipment configu-
ration, starts tasks at proper dates and monitors
their execution until their termination.

3. A tight coordination between scheduling and
execution when scheduling operates near the
current time or when execution manages
resources, through the management of
individual software locks on resources and/or
tasks.

4. A powerful and configurable User Interface that
provides a global, detailed and consistent
situation assessment, updated in real-time.

This approach supports any type of missions. A
major reference is the new INTELSAT Control
Center that runs safe and highly automated
operations of 30 satellites and is now operational
at INTELSAT headquarters and Earth stations.

Figure 1 : TIMELINE User Interface

Scheduling is triggered when tasks are introduced
or are modified, or when unexpected events occur.
Scheduling and schedule execution must run in
parallel and must be coordinated when scheduling
operates near the current time in order to maintain
schedule consistency.

Implementation by the TIM ELINE product
The TIMELINE software product fully
implements the proposed approach. It relies on the
four following features :

1. A pragmatic focusing scheme enabling short
re-scheduling computation time (from 5 to 30
seconds), even within very large schedules of
thousands of tasks. Scheduling is based on
CSP algorithms and ranking of constraints.

2. A multi-threaded software architecture that
allows users and external clients to interact
with the schedule even while re-scheduling.

Conclusion

Plan execution and re-scheduling capabilities
provide an unprecedented level of automation in
Spacecraft Ground Systems managing large
satellite fleets on a limited set of ground
equipment.

More detailed information can be found in the
following references. Feel free to ask the authors
for a copy.
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Introduction 

The role of rescheduling has been widely acknowledged 
for helping the production floor to meet its objective 
functions, e.g. maximising throughput, in spite of the 
occurrence of internal or external disturbances (Jain and 
Elmaraghy 1997; Efstathiou 1996; Wu and Li 1995). 
However, little work has been done to assess the effects of 
rescheduling strategies on the management of 
manufacturing systems complexity. It is the aim of this 
research work to investigate the extent and nature of 
rescheduling effects on the overall complexity of the 
manufacturing facility. 

Here, complexity is defined, from an information-theoretic 
point of view, as the expected amount of information 
required to describe the state of the manufacturing system 
(Calinescu et al. 2000; Efstathiou et al. 1999). In that 
connection, complexity is associated with the variety and 
uncertainty within manufacturing systems. Complexity can 
be classified into static and dynamic (Frizelle 1998; 
Frizelle 1995). Static complexity is related to the schedule 
(variety) whereas dynamic complexity is related to the 
deviations from the schedule (uncertainty). 

This research work is being carried out following a three-
step methodology: theoretical development, case study and 
computer simulations. Each of these steps is explained in 
the next sections. 

Theoretical development 

The theoretical development consisted of the creation of a 
generic model for the management of manufacturing 
systems complexity (Huaccho Huatuco et al. 2001a). The 
model illustrates the interaction between the production 
and the scheduling functions. It takes into account the 
regular monitoring of the system in order to check its 
adherence to the schedule and to react accordingly if it has 
deviated from schedule. This generic model highlighted 
the key elements of rescheduling. 

 

Two sets of measures were chosen for the analysis of this 
research topic: traditional and entropic. Traditional 
measures include: Mean Tardiness, Mean Flow Time and 
Average Machine Utilisation. Entropic measures include 
both Static and Dynamic complexity indices to quantify 
the information content of the schedules and the 
disruptions between consecutive schedules, respectively. 

Additionally, two sub-models were developed for 
assessing the cost and value of the complexity generated 
and managed by industry when rescheduling. 

This theoretical step was complemented with the practical 
side of the methodology, the case study, which is 
explained next. 

Case study 

The case study involved ALPLA UK, a major plastic-
bottle supplier based in the UK. The case study stages 
were: familiarisation, data collection, analysis of results 
and generation of conclusions/recommendations to the 
company. Nine weeks of data were collected, consisting 
of: weekly production schedules, daily revised schedules, 
reasons for changes, log book notes about details of 
production deviating from schedule on a daily basis. 

Applying the entropic measures described above it was 
possible to conclude that when rescheduling was 
performed, the information content of schedules increased 
in time whereas the disruption between schedules 
decreased in time (Huaccho Huatuco et al. 2001b). In 
connection with the latter result, a further analysis on the 
value of complexity showed that rescheduling reduced the 
Non-value Adding (NVA) part of the complexity whereas 
it increased its Value-Adding (VA) part (Huaccho Huatuco 
et al. 2001c). 

In order to extend the results from this case study it is 
necessary to test other different rescheduling strategies. 
This cannot be done on real-world organisations, as it 
would imply disrupting the operation of the manufacturing 
system. This is where computer simulations play a key 
role, as described next. 
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Computer simulations 

The computer simulations step constitutes work in 
progress. The purpose of this step is to compare different 
scenarios of rescheduling strategies, amalgamating the 
model and measures of the theoretical development with 
the experience gained from the case study. 

Two sets of rescheduling strategies are being studied. First, 
rescheduling strategies to handle internal disturbances, 
such as: production variation and machine breakdowns. 
Second, rescheduling strategies to handle external 
disturbances, such as: customer changes and supplier 
failures to deliver. 

Those rescheduling strategies will be analysed in terms of 
their effect on different kinds of complexity and how they 
contribute to the overall manufacturing system 
performance, using the measures mentioned earlier. 

From the preliminary results of the computer simulations 
step, it is possible to conclude that, as the rescheduling 
strategies get more and more refined, the size of the 
algorithm and the amount of input data increase. 

The analysis and comparison of these scenarios will allow 
generating some generic conclusions on the research topic. 

Conclusions 

The conclusions of this research work are two-fold. First, 
theoretically it will provide a generic model to assess 
different rescheduling strategies for managing 
manufacturing systems complexity. Second, practically 
that model can be customised to the needs of a specific 
company and therefore constitute a decision-making tool 
to evaluate different scenarios before rescheduling the real 
system. 
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Introduction
Augmentingthestrengthof anartificial systemwith auton-
omy is oneof the groundinggoalsof researchin the field
of planning. But paradoxicallythe problemof embedding
a plannerin a realsystemhasnot beentackledface-to-face
until recently. Thanksto hugeimprovementsin thecapabil-
ities of plannersandthanksto theemulationof application
domains,someimportantstepshave beenmadein this di-
rectionandin 1999theRemoteAgentExperiment(Johnson
etal. 2000)hasprovideddemonstrationof spacecraftauton-
omy basedon varioustechnologiesincluding planningand
scheduling.

Animatedby thesamewill to plungeplanninginto reality
andthusto endow a systemwith high level decisionalabil-
ities, we proposein this paperthe analysisof an example
takenfrom thespacedomainandfrom which we draw gen-
eral requirementsfor a planningsystemto copewith a dy-
namiccontext. WethenconfronttheIxTeTsystem(Ghallab
& Laruelle1994)with theserequirements.It is a partialor-
derplannerrelyingon CSPtechniquesto handlea rich tem-
poral representation.From our experienceof this system,
we identify its advantagesbut alsoits defaultswith respect
to this new challengingapplication.In adoptingthis critical
point of view, we tendto establisha road-mapof thefuture
works neededto achieve a demonstratorof an autonomous
spacecraftcontrolusingsuchplanningtechnologies.
Planning & Scheduling : a component of a generic ar-
chitecture for autonomous systems - Beforefocusingon
PlanningandScheduling,wetookamoregenerallook atthe
problemof controlling a systemmeantto act in a dynamic
context. This led us to considera genericcontrol archi-
tecturetowardswhich several importantrealizationsof the
Roboticscommunityconverge,bothin andout of thespace
domain((Alami et al. 1998),(Volpeet al. 2001)). It splits
the control of a systembetweentwo levels. The low level
control is responsiblefor the activation and the control of
the physicalsystem(effectorsandsensors).The high level
control is in chargeof commandingthelow level control. It
is itself composedof two submodules,a reactive partanda
deliberative one(seeFig. 1). It hasto constructsequences
of commandscarefully so as to ensurethat all known op-
erationalconstraintsare satisfied. The complexity of this
taskis worsenby the impossibility, in a realapplication,to
list all the situationsthat might be encountered.Thuspart
of the control schemahasto be adaptable.It is the role of
the planningandschedulingcomponentto allow evolution
from the initial designso as to matchthe currentcontext.
It is in chargeof foreseeing,of anticipatingfuture controls
by takinginto accountthecurrentstateof thesystem,of its
environmentandthe currentsetof goalsto achieve. Start-
ing from thisinformalspecificationof aplanningcomponent
in a control architecture,we proposemorepreciserequire-

Situation Tracking, Planning & Scheduling)

High Level Control
Deliberative Part

(Mission management,

High Level Control

(Executive)
Reactive Part

Low Level Control

(Real Time Control)

Figure1: Theclassical3-LayersControlArchitecture

mentsjustifiedby thestudyof a spacemission.
A mission example in the space context 1 - We consider
a control systemembeddedin a satellitewhosemissionis
to watchover fires andto monitor the activity of volcanos.
Thesatelliteis equippedwith two cameras.Thefirst oneis
usedto detectout breakingfires : it cantake wide pictures
aheadof thesatellitewhichareanalyzedon-board.Thesec-
ondoneis usedto monitor volcanosandfire in caseoneis
detected: it cantake picturesof preciselocationsthanksto
a scanmirror and of a higher resolution. The interaction
betweenthesetwo camerasentailsdynamiccontext andin-
volvestheuseof on-boardplanning: whenafire is detected,
thesatelliteis requiredto sendanalarmto thegroundandto
takea higherresolutionpictureof thefire, thusdynamically
changingtheactivity of its secondcamera.Besidescontrol-
ling thesetwo cameras,the following activities shouldbe
tracked by the planningsystem: orbit correction, attitude
change, energy production, payloadcalibration, communi-
cationwith theground. . .To eachactivity correspondoneor
severalproceduresmanagedby theexecutive.

Basedon the analysisof this mission, the next section
highlights somerequirementsfor the successfuluse of a
plannerin a control system.It shouldbe notedthat in this
studyof on-line planning,interleaved with plan execution,
the context of an autonomoussatelliteenablesus to bene-
fit from somerestrictionson the encounteredproblems(a
spacecraftmovesin a moredeterministicworld thanrovers
for instance)andthusthe following requirementsmight be
incompletewith respectto the generalproblemof control-
ling anautonomousroboticsystem.

Requirements for dynamic planning
In this section,we try to figure out the main requirements
for a planningsystemin the context of our missionexam-
ple - requirementsconcerningboththeexpressivenessof its
representationandtheflexibility of its searchprocessto take
into accounttheinteractionwith theplanexecution.

The first remark that can be done when consideringa
spacedomain, is the importanceof time : almostall data
concerningthesatellite- its positionon its orbit, theground
stationvisibility windows,theareasit fliesover- aredenoted
by a temporalwindow. Thespacedomainbeingcloselyre-
lated to the temporalissues,a planningsystemshouldbe

1This exampleresultsfrom interactionswith CNES and As-
trium.
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ableto handletime,a first stepbeingto handleactionswith
different� durations.Furthermore,theactivities of a satellite
involve somecomplex temporalfeatures.For instance,the
durationof anattitudechangeactivity dependson theangle
of themanoeuvre,whereastheenergyconsumeddependson
the durationof the activity. So the planningsystemshould
be able to expressrich relationsbetweenthe durationand
theeffectsof anactivity.

The planningsystemshouldalsobe able to managere-
sourcesof different types: symbolic ones(payload,solar
panels,communicationbus...) or with numericquantities
(power, energy, memoryspace,propellant).Theseresources
canbe borrowed,consumedandeven producedduring the
mission.

Besidesthe informationusuallygivento a planningsys-
temin its representationof thedomain(initial stateandop-
erators),someexternalconstraintshave to betakeninto ac-
countby the planner: contingenteventssuchaseclipses,
groundstationvisibility windows.. . , and the insertionof
activitiescompletelyspecifiedby someexternalmodule(pa-
rametersandexecutiontime) suchasorbit correctionma-
noeuvres.Someof theseexternalinformationcanbe com-
putedin advance(by theOrbit Controller. . . ). But theplan-
ning systemmayalsoneedthehelpof specializedmodules
during its searchto computethe parametersof actions(the
mirror movementfor instance).

Among thedatacomputedin advance,somewill remain
valid on the horizonof oneday (the orbit and the satellite
position on the orbit given by the Navigator). Someoth-
ershave to becomputedfor eachorbit suhastheareasthat
thesatellitefliesover.. .Sotheplanningsystemmayhaveto
considerdifferentplanninghorizons,with differentlevelsof
abstraction.Theplanningdurationshouldat leastguarantee
thatavalid planis availableattheendof thecurrenthorizon.

In a satellite,FDIR (Failure DetectionIdentificationand
Recovery)mechanismsareimplementedateachlevel of the
architecture,to beableto efficiently reactto failures.For in-
stancealmostall instrumentsaremaderedundantand,when
onebecomesoutof order, a“reflex” actionwill switchto the
otherone.In thiscontext, theplannerdoesnotneedto havea
detailedknowledgeof thesystemandplanningwill bemore
efficient if it is donewith a representationat a high level of
abstraction.However, it canbe interestingto keeptheplan
relatively flexible, especiallyconcerningthe temporaland
resourceconsumptiondata,in thepurposeof avoidingsome
costly replanningrequests(the plan is further constrained
duringits execution).

In thecontext of interleavedplanningandplanexecution,
the systemsendsback information, throughthe executive,
to the planningsystem.This informationis adaptedto the
systemrepresentationof theplannerandconcerns: theex-
ecutionstatusof the activities, their datesof execution,the
level of resources,the statusof the instruments(available,
failed).. .To confrontthesedatawith the plan, an interface
modulein chargeof theplanmanagementis neededbetween
theexecutive andtheplanningsystem.This Plan Manager
containsthe plandatabase,propagatesthe systeminforma-
tion andchecksits consistency with the constraintsof the
plan. As theexecutive (a proceduralsystem)hasno notion
of time, the Plan Manager is also in charge of launching
and stoppingthe proceduresassociatedto the activities at
the right time. For this purpose,the structureof the plan
shouldcontaininformationsuchas:

� a commitmentstatus(anactivity is beingexecuted),
� an indicationof the controllability of the activity (com-

pletelycontrollable: the systemhasto stopit / not con-
trollable: thesystemhasto wait for its termination),

� anindicationof thepossibilityto interruptanactivity.

Moreover, thePlan Manager mayhave aninterfacewith
theusersandmanagethemissiongoals.It maybein charge
of gatheringandformulatingall requeststo theplanningsys-
tem. Requestsmaybeof threetypes: computea new plan
for the next horizon, modify the currentplan to add new
goals(a fire hasbeendetected.. . ) or new activities, repair
thecurrentplan in caseof failure. A plan failurecanresult
from a failedexecutionstatusof anactivity, or from thede-
tectionof inconsistency betweenthe informationsentback
andtheconstraintsof theplandatabase.Theplanningsys-
temneedsthento keeptrace,in thestructureof theplan,of
thedependency betweentheactivities (to know which ones
canstill beexecutedandwhichonesshouldbereplannedor
evenabandoned).

In this section,we have listedsomegeneralrequirements
for a planningsystemin the context of a satellitemission,
eachof theserequirementsbeing justified by an objective
look at theexample.In theprocessof thisanalysis,wewent
onestepfurther and provided someelementsof response,
linkedto thedesignof thearchitecture,by proposingtheuse
of a PlanManager. This choicealsoentailsfurtherspecifi-
cationson the planner. In the next section,we investigate
theadequationof a specifictemporalplannerwith all these
criteria.

Is IxTeT a good candidate for dynamic
planning?

TheIxTeT systemis a lifted partial-orderplannerbasedon
CSPmanagersto dealwith a rich temporalrepresentation.
This representationis a functional one : it describesthe
world asa setof multi-valuedfunctionsof time, calledat-
tributes,andresourcesover which borrowing, consumption
or productioncanbespecified.Theplannerdealswith a set
of deterministicplanningoperators,calledtasks,which are
temporalstructuresgiving partial specificationsof the evo-
lutionof attributesoverthetaskduration.Usingungrounded
operators,thesearchprocessexploresatreein theplanspace
whoserootnodeis a structuresimilar to a taskwhich speci-
fiestheinitial situation,goalswith differentassociateddates
andexpectedcontingenteventsacrosstheplanninghorizon.

This quick presentationof the IxTeT systemalreadyof-
fers us opportunitiesto stressout someof the featuresthat
promptus to considerit asa potentialsolutionto meetthe
requirementsexpressedin theprevioussection.

The most immediatefeatureis the explicit handlingof
time : it is possibleto expressactionswith differentdura-
tionsandeffectsoccurringat differentdatesaswell asper-
sistency of somecharacteristicsof theworld overa time in-
terval. Thusit is possibleto handleconcurrentactionsin a
detailedfashion.This explicit temporalqualificationof the
evolution of partof theworld alsoprovidessupportfor ex-
pressingmany requiredfeaturesin the initial partial plan,
suchas contingenteventsexpectedover the plan horizon
or actionsenforcedby externalmodulesto happenat given
dates.

Anotherimportantfeatureof IxTeTis theextensiveuseof
CSPmanagerswhichoffersmultipleadvantages.Thesearch
processrelieson thesemanagers(onedealingwith a tempo-
ral CSP, theotheronehandlingatemporalvariables)to solve
conflictsin apartialplanby postingseparationconstraintsor
to explain goalsby insertingoperatorsandthe relatedpar-
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tial bindingconstraints.But beyondthesebasicfunctionali-
ties,muchof theexpressivenessis achievedthroughspecial
constraintswhich arepart of the descriptionof tasks. For
instanceit is possibleto expressconstraintslinking time-
points and variables,suchas algebraicequations: this is
a way to describethe dependency betweenthe durationof
an actionandits effects(see(Trinquart& Ghallab2001)).
Furthermorethe useof complex constraintsenablesoneto
asserttheuseof avariablequantityof aresourceovera time
interval.
Lastbut not least,theseCSPmanagerstakepartin theelab-
oration of flexible plans: they computefor eachvariable
a minimal domainwhich reflectsonly the necessarycon-
straintsin theplan. Partially orderedandpartially instanti-
ated,planscanbefurtherconstrainedat executionby a plan
manageraswasadvocatedin theprevioussection.

All of theseinterestingfeaturesencourageus to usethe
IxTeT systemas the foundationto develop a control sys-
tem endowedwith planningcapabilities.However this list
of positive pointsshouldnot pushusto subjectivity; there-
mainderof this sectionis dedicatedto thedefaultsof IxTeT
and to the evaluationof the gap to fill in order to build a
”dynamicplanner”.

IxTeThasmainlybeenusedasanoff-line planner, elabo-
ratingaplanbasedonthedescriptionof thegoals,of theini-
tial situationandof its operators.However, sinceit performs
a searchin theplanspace,it canquiteeaselybeadaptedto
incrementalplanningandto plan-mergingoperations.Such
a work hasbeendonefor the PROBA project (managing
the missionof an observationsatellite)in (Gout,Fleury, &
Schindler1999),wheregoals(imagerequests)were incre-
mentally insertedin the plan (but without invalidating it).
In thecaseof our missionexample,addingnew goalsmay
requirethe replacementof previously plannedactivities by
new ones.Furtherwork needsto bedoneto embedtheabil-
ity of partially invalidating a plan and, from the resulting
partialplan,elaborateacompleteplancorrespondingto new
goalsandanew initial state.

Thanksto theCSP-basedapproach,IxTeTprovidesflexi-
ble plansto thePlanManager. However, theseCSPshandle
only controllablevariablesbut many activities may involve
uncontrollableones. This problemhasbeenaddressedin
thecaseof temporalvariables- see(Morris, Muscettola,&
Vidal 2001) for an adaptationof the temporalmanagerto
verify theDynamicControllabilityProperty-andin thecase
of atemporalvariables- see(Fargier, Lang,& Schiex 1996)
for consistency checkingandminimal domaincomputation
in aCSPmixing bothcontrollableandnoncontrollablevari-
ables.

Another interestingimprovementof the IxTeT planner
would be to enablethe useof specializedmodulesduring
the searchprocessto computesomeparametersof the ac-
tivities insertedin theplan. This work dependsa lot on the
typeof informationthat is required.The maindifficulty to
dothiscomesfromthefactthattheplanningprocessisbased
on leastcommitmentandthatactivities arepartially instan-
tiated. It shouldbenotedthat somework hasalreadybeen
donein thatwaywith theobjectiveto combineIxTeTwith a
motionplannerto computecertaindataconcerningtheposi-
tion of a robot(see(Lamare& Ghallab1998)).

At last,we couldnot finish this studyof IxTeT’sdefaults
without mentioningthat,in spiteof its advantages- namely
soundnessandcompleteness- theplanningprocesshasone
major drawback : it is not guaranteedto end in a limited
time. Domaindependentheuristicscanbedefinedto givean

acceptableresponsetime in mostcases,but somestandby
proceduresshouldbeforeseenin casetheplanningprocess
laststoo long.

Conclusion
In this shortpaper, we summarizedthe work we startedto
realizea prototypefor demonstratingthe useof advanced
planningtechnologiesin thecontext of anearthobservation
satellitemission.We startedwith ananalysisof themission
context soasto exhibit requirementsfor theplanningsystem
usedin this application.Thenwe discussedtheadequation
of theIxTeT systemwith sucha realization.We draw posi-
tiveconclusionswhich incite usto engageefforts in various
directionsto actuallyembedthissystemin adynamicframe-
work. Thetwo mainissuesthatwewantto addressin aclose
futureare:

� thecontrolof thesearchprocessto respondto thetempo-
ral constraintsinducedby theon-linesetting,

� plan modificationstrategiesin caseof inadequacy to the
stateof thesystemresultingfrom execution.
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Abstract

Many applicationssuchas planning,scheduling,computa-
tional linguisticsandcomputationalmodelsfor molecularbi-
ology involve systemscapableof managingqualitative and
metric time information. An important issuein designing
suchsystemsis the efficient handlingof temporalinforma-
tion in anevolutiveenvironment.In apreviouswork,wehave
developeda temporalmodel,TemPro,basedon the interval
algebra,to expresssuchinformation in termsof qualitative
andquantitative temporalconstraints.In orderto find a good
policy for solvingtimeconstraintsin adynamicenvironment,
we presentin this paper, a studyof dynamicarc-consistency
algorithmsin thecaseof temporalconstraints.Weshow that,
anadaptationof thenew AC-3 algorithmpresentspromising
resultscomparingto the other dynamicarc-consistency al-
gorithms. Indeed,while keepinganoptimalworst-casetime
complexity, thisalgorithmhasabetterspacecomplexity than
theothermethods.

Keywords:TemporalReasoning,DynamicArc Consistency,
Planning,Scheduling.

Introduction
Many applicationssuchasplanning,scheduling,computa-
tional linguistics(Song& Cohen1991; Hwang & Shubert
1994), data basedesign(Orgun 1996) and computational
modelsfor molecularbiology(Golumbic& Shamir1993)in-
volvemanagingtemporalconstraints.In linearplanning,for
example,during the searchprocessthe plannermustorder
thesetof actionsforming theplanby imposinga collection
of appropriateorderingconstraints. Theseconstraintsare
essentialto guaranteethe consistency of the resultingplan,
that is, to guaranteethat if theactionsareexecutedstarting
at the initial stateand consistentlywith theseconstraints,
thenthegoalwill beachieved. In nonlinearplanning(Chap-
man1987;Penberthy& d. Weld 1994)wherethe actions
in a planarepartially ordered,maintainingthe consistency
of the orderingconstraintsis required,for example,when
theplannerattemptsto establishasubgoalby reusinganac-
tion alreadyin theplanunderconstruction.Reasoningabout
constraintsthatpreventanactionA from lying within a cer-
tain interval betweentwo other actionsA1 and A2 is also
importantin plannerssuchasUCPOP(Penberthy& d. Weld
1992).Thedevelopmentof a domain-independenttemporal
reasoningsystemis thenpractically important. An impor-

tantissuein designingsuchsystemsis theefficienthandling
of qualitative andmetric time information. Indeed,thesep-
arationbetweenthe two aspectsdoesnot exist in the real
world. In our daily life activities, for example,we combine
thetwo typeof informationto describedifferentsituations.
In thecaseof schedulingproblems,we canhave qualitative
informationsuchastheorderingbetweentasksandquanti-
tative informationdescribingthe temporalwindows of the
tasksi.e earlieststarttime, latestendtime andtheduration
of eachtask.

In apreviouswork(Mouhoub,Charpillet,& Haton1998),
we have developeda temporalmodel, TemPro,basedon
the interval algebra,to expresssuch information in terms
of qualitative and quantitative temporalconstraints. Tem-
Protranslatesanapplicationinvolving timeinformationinto
abinaryConstraintSatisfactionProblem1 whereconstraints
aretemporalrelations,we call it TemporalConstraintSat-
isfactionProblem(TCSP)2. Managingtemporalinformation
consiststhen in solving the TCSPusing local consistency
algorithmsand searchstrategies basedon constraintsatis-
factiontechniques.

The aim of our work hereis to solve a TCSPin a dy-
namicenvironment. Indeed,in the real world, whensolv-
ing a TCSPwe may needto addnew informationor relax
someconstraintswhen,for example,thereareno moreso-
lutions(caseof over constrainedproblems). In this paper,
wewill mainlyfocusonmaintainingthearc-consistency dy-
namically. In apreviouswork,wehaveusedarc-consistency
algorithms(Mouhoub,Charpillet,& Haton1998)to reduce
the size of the TCSPrepresentingthe initial problem,by
removing somevaluesthat do not belongto any solution.
Indeed,an arc-consistency algorithmremovesall inconsis-
tenciesinvolving all subsetsof 2 variablesbelongingto the
setof variablesof the problem. In a dynamicenvironment
we needto checkif therestill exist solutionsto the prob-
lem every time a constrainthas beenaddedor removed.
Adding temporalconstraintscan easily be handledby the
arc-consistency algorithmswe have used,we have just to

1A binaryCSPinvolvesa list of variablesdefinedon finite do-
mainsof valuesanda list of binaryrelationsbetweenvariables.

2Notethat this nameandthecorrespondingacronym wasused
in (Dechter, Meiri, & Pearl1991). A comparisonof theapproach
presentedin this paperand our model TemPro is describedin
(Mouhoub,Charpillet,& Haton1998).
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put in this casethenew constraintin the lists of constraints
to be checked. However, constraintrelaxationcannotbe
handledby thesealgorithms. Indeed,when we remove a
constraint,thesealgorithmscannotfind which value, that
hasbeenalreadyremoved,mustbeput backandwhich one
mustnot. We mustthenuseincrementalarc-consistency al-
gorithmsinstead (called also dynamicarc-consistency al-
gorithms). Somedynamicarc-consistency algorithmshave
alreadybeenproposedin the literature. We alsopresentin
thispaperanew dynamicarc-consistency algorithmwhichis
a modificationof a recentarcconsistency algorithm(Zhang
& Yap2001)in orderto handledynamicconstraints.Com-
parisonstestsof the different dynamicarc consistency al-
gorithmswereperformedon randomlygenerateddynamic
temporalconstraintproblems.Theresultsshow thatthenew
algorithmweproposehasbetterperformancethantheothers
in mostcases.

Therestof thepaperis organizedasfollows: in thenext
section,we will presentthroughan example,the different
componentsof themodelTemProandits correspondingres-
olution methods. Maintainingdynamicarc-consistency in
thecaseof temporalconstraintsis thenpresentedin section
3. Section4 is dedicatedto theexperimentalcomparisonof
thedifferentdynamicarc-consistency algorithms.Conclud-
ing remarksandpossibleperspectivesof our work arethen
presentedin section6.

Knowledge Representation
Example 1 : Considerthe following typical temporalrea-
soningproblem3 :

1. John,Mary andWendyseparately rodeto thesoccer
game.

2. It takes John 30 minutes, Mary 20 minutes and
Wendy50 minutes to get to thesoccergame.

3. Johneitherstarted or arrived justasMary started.
4. John either started or arrived just as Wendy

started.
5. Johnleft homebetween 7:00 and 7:10.
6. Mary and Wendyarrived together but started at

different times.
7. Mary arrivedat work between 7:55 and 8:00.
8. John’s trip overlapped thesoccergame.
9. Mary’s trip took placeduring the gameor elsethe

gametookplaceduring her trip.

The above story includesnumericandqualitative infor-
mation(words in boldface). Thereare four main events:
John,Mary andWendyaregoingto thesoccergamerespec-
tively andthesoccergameitself. Somenumericconstraints
specifythedurationof thedifferentevents,e.g. 20 minutes
is the duration of Mary’s event. Othernumericconstraints
describethetemporalwindowsin which thedifferentevents

3This problemis basicallytakenfrom anexamplepresentedby
Ligozat,GuesgenandAngerat thetutorial: Tractability in Quali-
tative SpatialandTemporalReasoning,IJCAI’01. We have added
numericconstraintsfor thepurposeof ourwork.

occur. And finally, symbolicconstraintsstatetherelativepo-
sitionsbetweeneventse.g.John’strip overlappedthesoccer
game.

Given thesekind of information, one important task is
to representandreasonaboutsuchknowledgeandanswer
queriessuchas: “is theaboveproblemconsistent?”, “what
arethepossibletimesat which Wendyarrivedat thesoccer
game?”, ����� etc.
To reach this goal, and using an extensionof the Allen
algebra(Allen 1983) to handle numeric constraints,our
model TemPro transformsa temporal problem involving
numeric and symbolic information into a temporal con-
straintsatisfactionproblem(TCSP)includingasetof events�
EV1 � ����� � EVn � , eachdefinedonadiscretedomainstanding

for thesetof possibleoccurrences(time intervals) in which
the correspondingevent canhold; anda setof binary con-
straints,eachrepresentinga qualitative disjunctive relation
betweena pair of eventsandthusrestrictingthevaluesthat
the eventscansimultaneouslytake. A disjunctive relation
involvesoneor moreAllen primitives.

Relation Symbol Inverse Meaning
X precedesY P P� XXX YYY
X equalsY E E XXX

YYY
X meetsY M M � XXXYYY
X overlapsY O O� XXXX

YYYY
X duringy D D � XXX

YYYYYY
X startsY S S� XXX

YYYYY
X finishesY F F � XXX

YYYYY

Table1: Allen primitives

The initial problemof figure 1 correspondsto the trans-
formationof thetemporalreasoningproblem,we presented
before, to a TCSP using the model TemPro. Informa-
tion aboutthe relative positionbetweeneachpair of events
is converted to a disjunction of Allen primitives. In-
deed,Allen(Allen 1983)hasproposed13basicrelationsbe-
tweentimeintervals: starts(S),during(D), meets(M), over-
laps(O), finishes(F), precedes(P), their conversesand the
relation equals(E)(seetable 1 for the definition of the 13
Allen primitives). For example,the information“John ei-
ther startedor arrived just as Wendy started”is translated
asfollows: J � S � M 	 W. In the casewherethereis no in-
formationbetweena pair of events,thecorrespondingrela-
tion is representedby thedisjunctionof the13 Allen primi-
tives(sincethis constraintis not consideredduringthereso-
lution process,it doesnot appearon thegraphof constraint
asit is the casein figure1 concerningthe relationbetween
WendyandtheSoccergame).
Thedomainof eacheventcorrespondingto thesetof possi-
ble occurrences(we call it SOPO)that eachevent cantake
is generatedgiven its earliest start time, latest end time
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Figure1: Applying arc-consistency to a temporalproblem

and duration. In the caseof Wendy’s event, sincewe do
not have any informationabouttheearliestandlatesttime,
theseparametersareset respectively to 0 and the constant
horizon(timebeforewhich all eventsshouldbeperformed).
After a symbolic 
 numericpre-process,theseparameters
arethensetto 5 and60 respectively.

Solving a TCSPconsistsof finding an assignmentof a
valuefrom its domainto every variable,in sucha way that
every constraintis satisfied. Sincewe are dealingwith a
constraintsatisfaction problem,decidingconsistency is in
generalNP-hard4. In order to overcomethis difficulty in
practice,we havedeveloped(Mouhoub, Charpillet,& Haton
1998)a resolutionmethodperformedin two stages.Local
consistency algorithmsarefirst usedto reducethesizeof the
TCSPby removing someinconsistentvaluesfrom thevari-
abledomains(in thecasewherearc-consistency is applied)
andsomeinconsistentAllen primitivesfrom thedisjunctive
qualitative relations(in the casewherepath consistency is
performed). A backtracksearchis thenperformedto look
for a possiblesolution.WhenapplyingAC-3 to our tempo-
ral problem(seefigure1) thedomainof eventJ is reduced.

Dynamic Maintenance of Local Consistency
for Temporal Constraints

Dynamic Constraint Satisfaction Problem

A dynamicconstraintsatisfactionproblem(DCSP)P is ase-
quenceof staticCSPsP0 � ����� � Pi � Pi � 1 � ����� � Pn eachresulting
from a changein the precedingone imposedby the “out-
sideworld”. This changecaneitherbea restriction(adding
a new constraint)or a relaxation(removing a constraintbe-
causeit is no longerinterestingor becausethecurrentCSP

4Note that someCSPproblemscan be solved in polynomial
time. For example, if the constraintgraphcorrespondingto the
CSPhasno loops,thentheCSPcanbesolved in O � nd2  wheren
is thenumberof variablesof theproblemandd is thedomainsize
of thedifferentvariables

hasno solution). More precisely, Pi � 1 is obtainedby per-
forming a restriction(addition of a constraint)or a relax-
ation(suppressionof a constraint)on Pi . We considerthat
P0 (initial CSP)hasanemptysetof constraints.

Dynamic Temporal Constraint Satisfaction
Problem
Sincea TCSPis a CSPin which constraintsare disjunc-
tionsof Allen primitives,thedefinitionof adynamictempo-
ral constraintsatisfactionproblem(DTCSP)is slightly dif-
ferentfrom the definition of a DCSP. Indeedin the caseof
a DTCSP, a restrictioncanbeobtainedby removing oneor
more Allen primitive from a given constraint. A particu-
lar caseis whentheconstraintis equalto thedisjunctionof
the 13 primitives(we call it the universalrelation I ) which
meansthat the constraintdoesnot exist(thereis no infor-
mationabouttherelationbetweenthetwo involvedevents).
In this particularcase,removing oneor moreAllen prim-
itives from the universalrelation is equivalent to addinga
new constraint. Using the sameway, a relaxationcan be
obtainedby addingoneor moreAllen primitivesto a given
constraint.A particularcaseis whenthenew constrainthas
13Allen primitiveswhichis equivalentto thesuppressionof
theconstraint.

Figure2 showsa restrictionon theproblemof example1
obtainedby removing someAllen primitivesfrom thecon-
straintbetweenWendy’s event and the soccergame. This
restrictionis equivalentto the additionof the following in-
formationto our problem: 10. Wendy’s trip tookplacedur-
ing thegameor elsethegametookplaceduringher trip.

Dynamic Arc-Consistency Algorithms
The arc-consistency algorithmswe have used to solve a
TCSP(Mouhoub,1998)caneasilybeadaptedto updatethe
variable domainsincrementallywhen adding a new con-
straint.In ourexample,addingthenew constraint(seefigure
2) will leadto an arc inconsistentTCSPwhich leadsto an
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inconsistentTCSP. Let usassumenow thatto restorethearc-
consistency we decideto relax the TCSPby addingoneor
moreAllen primitivesto a chosenconstraint(oneof the10
constraintsof ourproblem).In thiscase,thearc-consistency
algorithmsareunableto updatethe variabledomainsin an
incrementalway becausethey arenot ableto determinethe
setvaluesthat mustbe restoredto the domains. The only
way, in this case,is to resetthe domains,addall the con-
straints(including the updatedone) to the “unconstrained”
TCSP(TCSPwith no constraints)andthenperformthearc-
consistency algorithm. To avoid this drawback, dynamic
arc-consistency algorithmshave beenproposed. Bessìere
hasproposedDnAC-4(Bessìere1991)which is an adapta-
tion of AC-4(Mohr & Henderson1986). This algorithm
storesa justification for eachdeletedvalue. Thesejusti-
ficationsare then usedto determinethe set of valuesthat
have beenremoved becauseof the relaxed constraintand
so can processrelaxationsincrementally. DnAC-4 inher-
its the bad time and spacecomplexity of AC-4. Indeed,
comparingto AC-3 for example,AC-4 hasa bad average
timecomplexity(Wallace1993).Theworst-casespacecom-
plexity of DnAC-4 is O � ed2 � nd	 (e� d and n are respec-
tively thenumberof constraints,thedomainsizeof thevari-
ablesandthe numberof variables).To work out the draw-
back of AC-4 while keepingan optimal worst casecom-
plexity, Bessìere hasproposedAC-6(Bessìere 1994). De-
bruynehasthenproposedDnAC-6adaptingtheideaof AC-
6 for dynamicCSPsby usingjustificationssimilar to those
of DnAC-4(Debruyne1995). While keepingan optimal
worst casetime complexity (O � ed2 	 ), DnAC-6 hasa lower
spacerequirements(O � ed � nd	 ) than DnAC-4. To solve
the problem of spacecomplexity, Neveu and Berlandier
proposedAC �DC(Neuveu & Berlandier1994). AC �DC is
basedon AC-3anddoesnot requiredatastructuresfor stor-
ing justifications. Thus it hasa very goodspacecomplex-
ity (O � e � nd	 ) but is lessefficient in time thanDnAC-4. In-
deedwith its O � ed3 	 worstcasetimecomplexity, it is notthe
algorithmof choicefor largedynamicCSPs.More recently,
Zhangand Yap proposedan new versionof AC-3(called

AC-3.1)achieving the optimal worst casetime complexity
with O � ed2 	 ((Zhang& Yap2001))5. Wehavemodifiedthis
algorithmin orderto solve dynamicCSPsaswe believe the
new algorithm(thatwe call AC-3.1�DC) mayprovidebetter
performancethanDnAC-4andDnAC-6.

AC-3.1 �DC
BeforewepresentthealgorithmAC3.1�DC, let usrecallthe
algorithmAC-3 andthenew view of AC-3(calledalsoAC-
3.1)proposedby ZhangandYap(Zhang& Yap2001).

Mackworth(Mackworth 1977) has presentedthe algo-
rithm AC-3for enforcingarc-consistency onaCSP. Thefol-
lowing is the pseudo-codeof AC-3 in the caseof a TCSP.
The worst casetime complexity of AC-3 is boundedby
O � ed3 	 (Mackworth & Freuder1985). In fact this com-
plexity dependsmainly on the way line 3 of the function
REVISE is implemented.Indeed,if anytime the arc � i � j 	
is revised, b is searchedfrom scratchthen the worst case
timecomplexity is O � ed3 	 . Insteadof asearchfrom scratch,
ZhangandYap(Zhang& Yap 2001)proposeda new view
that allows the searchto resumefrom the point where it
stoppedin the previous revision of � i � j 	 . By doing so the
worstcasetimecomplexity of AC-3 is achievedin O � ed2 	 .
Function REVISE � i � j 
1. REVISE � f alse
2. For eachinterval a � SOPOi Do
3. If � compatible� a � b for each interval b � SOPOj Then
4. remove a from SOPOi
5. REVISE � true
6. End-If
7. End-For

5Another arc consistency algorithm(called AC-2001) based
on the sameidea as AC-3.1(and having an O � ed2  worst case
time complexity) was proposedby Bessìere and Régin(Bessìere
& Régin 2001). We have chosenAC-3.1 for the simplicity of its
implementation
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Figure3: ExperimentalTestsonrandomDTCSPs

Algorithm AC-3
1. Givena TemPronetwork TN � � E � R

(E: setof events,
R: setof disjunctiverelationsbetweenevents)

2. Q ��� � i � j �� � i � j  � R�
(list initialized to all relationsof TN)

3. While Q �� Nil Do
4. Q � Q ��� � i � j  �
5. If REVISE � i � j  Then
6. Q � Q ��� � k � i  � � k � i  � R ! k �� j �
7. End-If
8. End-While

In thecaseof constraintrestriction,AC-3.1�DC works in
the sameway asAC-3.1. The worst-casetime complexity
of a restrictionis thenO � ed2 	 . The moreinterestingques-
tion iswhetherAC-3.1�DC’stimecomplexity canremainthe
sameduringretractions.Indeed,if we usethesameway as
for AC �DC (Neuveu& Berlandier1994),onemajorconcern
is thatduringtherestrictions,theAC-3.1algorithmkeepsa
Resumetableof the last placeto startcheckingfor consis-
tency from. Unfortunately, during retractions,this Resume
tablemayproveuselessasvaluesin thedomainof nodesare
restored.Our attemptwasto follow an ideaobservedfrom
the DnAC6 algorithm. Insteadof replacingvaluesin the
nodein the order they were deleted,the algorithm should
placethesevaluesto berestoredat theendof thelist of val-
uesfor thatnode,therebykeepingtheResumetableintact.
More precisely, theconstraintrelaxation,of a givenrelation
� k � m	 for example,is performedin 3 steps:

1. An estimation(over-estimation)of the setof valuesthat
havebeenremovedbecauseof theconstraint� k � m	 is first
determinedby looking for the valuesremoved from the
domainsof k andm thathaveno supporton � k � m	 ,

2. theabovesetis thenpropagatedto theothervariables,

3. andfinally a filtering procedurebasedon AC-3.1 is then
performedto remove from the estimationset the values
which are not arc-consistentwith respectto the relaxed
problem.
Sincethe time complexity of eachof the above stepsis

O � ed2 	 , the worst-casetime complexity of a relaxationis
O � ed2 	 . Comparingto AC �DC, AC3.1�DC hasa bettertime
complexity. Indeed,themaindifferencebetweenAC3.1�DC
andAC �DC is thethird step.This latersteprequiresO � ed3 	

in thecaseof AC �DC(which resultsin a O � ed3 	 worstcase
timecomplexity for a restriction).In thecaseof AC3.1�DC,
thethird stepcanbeperformedin O � ed2 	 in theworstcase
becauseof theimprovementwe mentionedabove. Compar-
ing to DnAC-4 andDnAC-6,AC-3.1�DC hasa betterspace
complexity (O � e � nd	 ) while keepinganoptimalworst-case
timecomplexity (O � ed2 	 ).

Experimentation
In orderto comparetheperformanceof the4 dynamicarc-
consistency algorithmswe have seenin the previous sub-
section,in the caseof temporalconstraints,we have per-
formedtestson randomlygeneratedDTCSPs.Thecriterion
usedto comparethe above algorithmsis the computingef-
fort neededby analgorithmto performthearcconsistency.
Thiscriterionis measuredby therunningtimein secondsre-
quiredby eachalgorithm.Theexperimentswereperformed
on a SUN SPARC Ultra 5 station. All the proceduresare
codedin C/C++. 3 classesof instances,correspondingto 3
typeof tests,weregeneratedasfollows:

case 1 : actionscorrespondto additionsof constraints.C "
N � N # 1	�$ 2 (constraintsareaddeduntil acompletegraph
is obtained).

case 2 : actions can be additions or retractionsof con-
straints.
C " N � N # 1	%$ 2 additions � N � N # 1	%$ 4 retractions(the
final TCSPwill haveN � N # 1	%$ 4 constraints).

case 3 : this caseis similar to case1 but with inconsistent
DTCSPs. Indeedin the previous 2 casesthe generated
DTCSPsareconsistent.In this last caseconstraintsare
addeduntil anarc inconsistency andthusa global incon-
sistency is detected(the inconsistency is detectedif one
variabledomainbecomesempty). Retractionsare then
performeduntil thearc-consistency is restored.

Results
Figure3a)showstheresultsof testscorrespondingto case1.
As we caneasilysee,the resultsprovidedby DnAC-6 and
AC-3.1�DC arebetterthantheonesprovidedby AC �DC and
DnAC-4(which do not appearon the chart). SinceDnAC-
6 requiresmuchmorememoryspacethanAC-3.1�DC, this
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latteris thealgorithmof choicein thecaseof constraintad-
ditions. Figure3b) and3c) correspondto case2 andcase3
respectively. DnAC-4andDnAC-6havebetterperformance
in thiscasethanAC3.1�DC andAC �DC(therunningtimeof
AC �DC is very slow comparingto the other3 algorithms).
However, sinceAC3.1�DC doesnot requirea lot of memory
space,it haslesslimitations thanDnAC-4 andDnAC-6 in
termsof spacerequirementsespeciallyin thecaseof prob-
lemshaving largedomainsizes.

Conclusion and Future Work
In this paperwe presenta comparative study of dynamic
arc-consistentalgorithmsin thecaseof temporalconstraint
problems.The resultsshown demonstratethe efficiency of
AC-3.1�DC, which is an adaptationof the new AC-3 al-
gorithm for dynamicconstraints,comparingto otheralgo-
rithms. Indeed,while keepingan optimal worst-casetime
complexity, AC-3.1�DC requiresless memory spacethan
DnAC-4andDnAC-6.

Oneperspective of our work is to look for a methodto
maintainpathconsistency whendealingwith dynamictem-
poral constraints.Indeed,aswe have shown in(Mouhoub,
Charpillet,& Haton1998),pathconsistency is usefulin the
filtering phaseto detecttheinconsistency whensolvingtem-
poralconstraintproblemsandalsoin thecasewherethenu-
meric information is incomplete. The other perspective is
to handlethe additionandrelaxationof constraintsduring
thebacktracksearchphase.For example,supposethatdur-
ing thebacktracksearcha constraintis addedwheninstan-
tiating the currentvariable. In this case,the instantiation
of thevariablesalreadyinstantiatedshouldbereconsidered
andthe domainsof the currentandfuture variablesshould
beupdated.
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